1
|
Abd El-Wahed AA, Khalifa SA, Sheikh BY, Farag MA, Saeed A, Larik FA, Koca-Caliskan U, AlAjmi MF, Hassan M, Wahabi HA, Hegazy MEF, Algethami AF, Büttner S, El-Seedi HR. Bee Venom Composition: From Chemistry to Biological Activity. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2019:459-484. [DOI: 10.1016/b978-0-444-64181-6.00013-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
2
|
Issé BA, Yunes Quartino P, Fidelio GD, Farías RN. Thyroid hormones-membrane interaction: Reversible association of hormones with organized phospholipids with changes in fluidity and dipole potential. Chem Phys Lipids 2013; 175-176:131-7. [DOI: 10.1016/j.chemphyslip.2013.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 07/26/2013] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
3
|
Matysiak J, Schmelzer CEH, Neubert RHH, Kokot ZJ. Characterization of honeybee venom by MALDI-TOF and nanoESI-QqTOF mass spectrometry. J Pharm Biomed Anal 2010; 54:273-8. [PMID: 20850943 DOI: 10.1016/j.jpba.2010.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/30/2010] [Accepted: 08/15/2010] [Indexed: 10/19/2022]
Abstract
The aim of the study was to comprehensively characterize different honeybee venom samples applying two complementary mass spectrometry methods. 41 honeybee venom samples of different bee strains, country of origin (Poland, Georgia, and Estonia), year and season of the venom collection were analyzed using MALDI-TOF and nanoESI-QqTOF-MS. It was possible to obtain semi-quantitative data for 12 different components in selected honeybee venom samples using MALDI-TOF method without further sophisticated and time consuming sample pretreatment. Statistical analysis (ANOVA) has shown that there are qualitative and quantitative differences in the composition between honeybee venom samples collected over different years. It has also been demonstrated that MALDI-TOF spectra can be used as a "protein fingerprint" of honeybee venom in order to confirm the identity of the product. NanoESI-QqTOF-MS was applied especially for identification purposes. Using this technique 16 peptide sequences were identified, including melittin (12 different breakdown products and precursors), apamine, mast cell degranulating peptide and secapin. Moreover, the significant achievement of this study is the fact that the new peptide (HTGAVLAGV+Amidated (C-term), M(r)=822.53Da) has been discovered in bee venom for the first time.
Collapse
Affiliation(s)
- Jan Matysiak
- Department of Inorganic & Analytical Chemistry, Poznań University of Medical Sciences, Grunwaldzka 6 Street, 60-780 Poznań, Poland
| | | | | | | |
Collapse
|
4
|
Abstract
Melittin is the principal toxic component in the venom of the European honey bee Apis mellifera and is a cationic, hemolytic peptide. It is a small linear peptide composed of 26 amino acid residues in which the amino-terminal region is predominantly hydrophobic whereas the carboxy-terminal region is hydrophilic due to the presence of a stretch of positively charged amino acids. This amphiphilic property of melittin has resulted in melittin being used as a suitable model peptide for monitoring lipid-protein interactions in membranes. In this review, the solution and membrane properties of melittin are highlighted, with an emphasis on melittin-membrane interaction using biophysical approaches. The recent applications of melittin in various cellular processes are discussed.
Collapse
Affiliation(s)
- H Raghuraman
- Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
5
|
Oleinikov VA, Fleury F, Ianoul A, Zaitsev S, Nabiev I. P-glycoprotein effect on the properties of its natural lipid environment probed by Raman spectroscopy and Langmuir-Blodgett technique. FEBS Lett 2006; 580:4953-8. [PMID: 16930597 DOI: 10.1016/j.febslet.2006.07.069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 07/17/2006] [Accepted: 07/18/2006] [Indexed: 10/24/2022]
Abstract
Behavior of P-glycoprotein (Pgp) natural lipid environment within the membrane of CEM cells expressing Pgp in the quantities varying from 0% to 32% of the total amount of all membrane proteins is described for the first time. Observed cooperative effect of Pgp-induced increase of membrane stability, decrease of the temperature of gel-to-crystal lipids transition and predominance of the lipid liquid crystalline phase at physiological temperatures should have an impact in development of multidrug resistance phenotype of tumor cells by favoring the Pgp intercellular transfer and Pgp ATPase activity.
Collapse
Affiliation(s)
- Vladimir A Oleinikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 ul. Miklukho-Maklaya, 117997 Moscow, Russia.
| | | | | | | | | |
Collapse
|
6
|
Measuring melittin binding to planar supported lipid bilayer by chiral second harmonic generation. Anal Chim Acta 2003. [DOI: 10.1016/s0003-2670(03)00995-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Plasencia I, Cruz A, Casals C, Pérez-Gil J. Superficial disposition of the N-terminal region of the surfactant protein SP-C and the absence of specific SP-B-SP-C interactions in phospholipid bilayers. Biochem J 2001; 359:651-9. [PMID: 11672440 PMCID: PMC1222187 DOI: 10.1042/0264-6021:3590651] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A dansylated form of porcine surfactant-associated protein C (Dns-SP-C), bearing a single dansyl group at its N-terminal end, has been used to characterize the lipid-protein and protein-protein interactions of SP-C reconstituted in phospholipid bilayers, using fluorescence spectroscopy. The fluorescence emission spectrum of Dns-SP-C in phospholipid bilayers is similar to the spectrum of dansyl-phosphatidylethanolamine, and indicates that the N-terminal end of the protein is located at the surface of the membranes and is exposed to the aqueous environment. In membranes containing phosphatidylglycerol (PG), the fluorescence of Dns-SP-C shows a 3-fold increase with respect to the fluorescence of phosphatidylcholine (PC), suggesting that electrostatic lipid-protein interactions induce important effects on the structure and disposition of the N-terminal segment of the protein in these membranes. This effect saturates above 20% PG molar content in the bilayers. The parameters for the interaction of Dns-SP-C with PC or PG have been estimated from the changes induced in the fluorescence emission spectrum of the protein. The protein had similar K(d) values for its interaction with the different phospholipids tested, of the order of a few micromolar. Cooling of Dns-SP-C-containing dipalmitoyl PC bilayers to temperatures below the phase transition of the phospholipid produced a progressive blue-shift of the fluorescence emission of the protein. This effect is interpreted as a consequence of the transfer of the N-terminal segment of the protein into less polar environments that originate during protein lateral segregation. This suggests that conformation and interactions of the N-terminal segment of SP-C could be important in regulating the lateral distribution of the protein in surfactant bilayers and monolayers. Potential SP-B-SP-C interactions have been explored by analysing fluorescence resonance energy transfer (RET) from the single tryptophan in porcine SP-B to dansyl in Dns-SP-C. RET has been detected in samples where native SP-B and Dns-SP-C were concurrently reconstituted in PC or PG bilayers. However, the analysis of the dependence of RET on the protein density excluded specific SP-B-Dns-SP-C associations.
Collapse
Affiliation(s)
- I Plasencia
- Departamento de Bioquímica, Facultad de Biología, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
8
|
Boni LT, Batenjany MM, Neville ME, Guo Y, Xu L, Wu F, Mason JT, Robb RJ, Popescu MC. Interleukin-2-induced small unilamellar vesicle coalescence. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1514:127-38. [PMID: 11513810 DOI: 10.1016/s0005-2736(01)00377-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recombinant human interleukin-2 (rhIL-2) was incorporated in liposomes for potential therapeutic applications using a novel process. In this process, rhIL-2 caused the formation of large, unique multilamellar vesicles (MLVs) from small unilamellar vesicles (SUVs) of dimyristoylphosphatidylcholine (DMPC). Vesicle coalescence occurred most rapidly at 19 degrees C, between the pre- and main phase transition temperatures of DMPC, and showed a dependence upon pH (pH <5.5), ionic strength (>50 mM) and the initial size of the unilamellar vesicles (<or=25 nm). Intermediates (partially coalesced vesicles) within the forming multilamellar structures were identified by freeze-fracture electron microscopy and their presence was corroborated by differential scanning calorimetry. Several distinct steps were identified in the coalescence process. In the initial step, rhIL-2 rapidly bound to the DMPC SUVs. This was followed by a pH-dependent conformational change in the protein, as evidenced by an increase in tryptophan fluorescence intensity. The SUVs then aggregated in large clusters that eventually annealed to form closed MLVs. In this process over 90% of the rhIL-2 was bound to and incorporated within the multilamellar structures.
Collapse
Affiliation(s)
- L T Boni
- Biomira USA Inc., Cranbury, NJ 08512, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Micol V, Mateo CR, Shapiro S, Aranda FJ, Villalaín J. Effects of (+)-totarol, a diterpenoid antibacterial agent, on phospholipid model membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1511:281-90. [PMID: 11286971 DOI: 10.1016/s0005-2736(01)00284-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
(+)-Totarol, a highly hydrophobic diterpenoid isolated from Podocarpus spp., is inhibitory towards the growth of diverse bacterial species. (+)-Totarol decreased the onset temperature of the gel to liquid-crystalline phase transition of DMPC and DMPG membranes and was immiscible with these lipids in the fluid phase at concentrations greater than 5 mol%. Different (+)-totarol/phospholipid mixtures having different stoichiometries appear to coexist with the pure phospholipid in the fluid phase. At concentrations greater than 15 mol% (+)-totarol completely suppressed the gel to liquid-crystalline phase transition in both DMPC and DMPG vesicles. Incorporation of increasing amounts of (+)-totarol into DEPE vesicles induced the appearance of the H(II) hexagonal phase at low temperatures in accordance with NMR data. At (+)-totarol concentrations between 5 and 35 mol% complex thermograms were observed, with new immiscible phases appearing at temperatures below the main transition of DEPE. Steady-state fluorescence anisotropy measurements showed that (+)-totarol decreased and increased the structural order of the phospholipid bilayer below and above the main gel to liquid-crystalline phase transition of DMPC respectively. The changes that (+)-totarol promotes in the physical properties of model membranes, compromising the functional integrity of the cell membrane, could explain its antibacterial effects.
Collapse
Affiliation(s)
- V Micol
- Centro de Biologia Molecular y Celular, Universidad Miguel Hernandez, E-0302 Elche, Spain
| | | | | | | | | |
Collapse
|
10
|
Reid-Taylor KL, Chu JWK, Sharom FJ. Reconstitution of the glycosylphosphatidylinositol-anchored protein Thy-1: interaction with membrane phospholipids and galactosylceramide. Biochem Cell Biol 1999. [DOI: 10.1139/o99-031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are proposed to interact preferentially with glycosphingolipids and cholesterol to form microdomains, which may play an important role in apical targeting and signal transduction. The objective of the present study was to investigate the interaction of the GPI-anchored protein Thy-1 with phospholipids and a glycosphingolipid. Purified Thy-1 was reconstituted into lipid bilayer vesicles of dimyristoyl-phosphatidylcholine (DMPC) alone or in combination with galactosylceramide (GC). The ability of Thy-1 to perturb the gel to a liquid-crystalline phase transition of DMPC was examined by differential scanning calorimetry. As the mole fraction of Thy-1 increased, the phase transition enthalpy, deltaH, declined. Analysis indicated that each molecule of Thy-1 perturbed over 50 phospholipids, suggesting that, in addition to the anchor insertion into the bilayer, the protein itself may interact with the membrane surface. Inclusion of 5% w/w GC in the bilayer resulted in a striking change in the interaction of Thy-1 with phospholipids. At low Thy-1 content, there was a reduction in the phase transition temperature and an increase in phospholipid cooperativity, suggesting the formation of Thy-1/GC-enriched domains. deltaH initially decreased with increasing Thy-1 content of the bilayer; however, at higher Thy-1 mole ratios, deltaH rose again. These results are interpreted in terms of a model whereby, at low protein:lipid mole ratios, Thy-1 preferentially sequesters GC to form enriched microdomains. At high protein:lipid mole ratios, Thy-1 may alter its conformation in response to steric crowding within these domains such that its interaction with the bilayer surface is reduced.Key words: glycosylphosphatidylinositol anchor, Thy-1 antigen, reconstitution, lipid bilayer, glycosphingolipid, differential scanning calorimetry, dynamic light scattering.
Collapse
|
11
|
Soloaga A, Veiga MP, García-Segura LM, Ostolaza H, Brasseur R, Goñi FM. Insertion of Escherichia coli alpha-haemolysin in lipid bilayers as a non-transmembrane integral protein: prediction and experiment. Mol Microbiol 1999; 31:1013-24. [PMID: 10096071 DOI: 10.1046/j.1365-2958.1999.01225.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
alpha-Haemolysin is an extracellular protein toxin (approximately 107 kDa) secreted by Escherichia coli that acts at the level of the plasma membranes of target eukaryotic cells. The nature of the toxin interaction with the membrane is not known at present, although it has been established that receptor-mediated binding is not essential. In this work, we have studied the perturbation produced by purified alpha-haemolysin on pure phosphatidylcholine bilayers in the form of large unilamellar vesicles, under conditions in which the toxin has been shown to induce vesicle leakage. The bilayer systems containing bound protein have been examined by differential scanning calorimetry, fluorescence spectroscopy, differential solubilization by Triton X-114, and freeze-fracture electron microscopy. All the data concur in indicating that alpha-haemolysin, under conditions leading to cell lysis, becomes inserted in the target membrane in the way of intrinsic or integral proteins. In addition, the experimental results support the idea that inserted alpha-haemolysin occupies only one of the membrane phospholipid monolayers, i.e. it is not a transmembrane protein. The experimental data are complemented by structure prediction studies according to which as many as ten amphipathic alpha-helices, appropriate for protein-lipid interaction, but no hydrophobic transmembrane helices are predicted in alpha-haemolysin. These observations and predictions have important consequences for the mechanism of cell lysis by alpha-haemolysin; in particular, a non-transmembrane arrangement of the toxin in the target membrane is not compatible with the concept of alpha-haemolysin as a pore-forming toxin.
Collapse
Affiliation(s)
- A Soloaga
- Departamento de Bioquímica, Universidad del País Vasco, Bilbao, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Lo WC, Henk WG, Enright FM. Light-microscopic studies of 3T3 cell plasma membrane alterations mediated by melittin. Toxicon 1997; 35:15-26. [PMID: 9028005 DOI: 10.1016/s0041-0101(96)00082-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Various light microscopic techniques were used to study the effect of melittin, a major toxic constituent of honey bee venom, on plasma membranes of 3T3 mouse fibroblasts. Bright-field light microscopy and Trypan Blue dye exclusion were used to demonstrate changes in membrane permeability after exposure to melittin. Differential interference contrast (DIC) microscopy showed that membrane vesiculation induced by melittin was dose dependent. Using both fluorescent lipid and glycoprotein markers, we found that membrane vesicles were primarily composed of lipids. A sequence of events associated with vesicle formation was depicted by DIC and fluorescence microscopy. Confocal laser scanning fluorescence microscopy demonstrated a translocation of membrane glycoproteins from the plasma membrane to the cytosol following melittin treatment. The significance of membrane vesiculation and translocation of membrane glycoproteins in damaged cells is discussed.
Collapse
Affiliation(s)
- W C Lo
- Department of Veterinary Pathology, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803, USA
| | | | | |
Collapse
|
13
|
Bradrick TD, Philippetis A, Georghiou S. Stopped-flow fluorometric study of the interaction of melittin with phospholipid bilayers: importance of the physical state of the bilayer and the acyl chain length. Biophys J 1995; 69:1999-2010. [PMID: 8580343 PMCID: PMC1236433 DOI: 10.1016/s0006-3495(95)80070-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Stopped-flow fluorometry has been employed to study the effects of melittin, the major protein component of bee venom, on dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) small unilamellar vesicles (SUVs) on the millisecond time scale, before melittin-induced vesicle fusion takes place. Use is made of 1-(4-trimethylammoniumphenyl)-6-phenyl-1,3,5-hexatriene (TMA-DPH), which is an oriented fluorescent probe that anchors itself to the bilayer-water interface and is aligned parallel to the normal to the bilayer surface; its fluorescence anisotropy reports on the "fluidity" of the bilayer. For DMPC bilayers, melittin is found to decrease their fluidity only at their melting transition temperature. This perturbation appears to be exerted almost instantaneously on the millisecond time scale of the measurements, as deduced from the fact that its rate is comparable to that obtained by following the change in the fluorescence of the single tryptophan residue of melittin upon inserting itself into the bilayer. The perturbation is felt in the bilayer over a distance of at least 50 A, with measurements of transfer of electronic energy indicating that the protein is not sequestered in the neighborhood of TMA-DPH. The length of the acyl chains is found to be an important physical parameter in the melittin-membrane interaction: unlike the case of DMPC SUVs, melittin does not alter the fluidity of DPPC SUVs and has a considerably greater affinity for them. These results are discussed in terms of the concept of elastic distortion of the lipids, which results from a mismatch between the protein and the acyl chains that are attempting to accommodate it. Melittin is also found to cause a small (approximately 10%) enhancement in the total fluorescence intensity of TMA-DPH, which is interpreted as indicating a reduction in the degree of hydration of the bilayer.
Collapse
Affiliation(s)
- T D Bradrick
- Department of Physics, University of Tennessee, Knoxville 37996-1200, USA
| | | | | |
Collapse
|
14
|
Pérez-Gil J, Casals C, Marsh D. Interactions of hydrophobic lung surfactant proteins SP-B and SP-C with dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol bilayers studied by electron spin resonance spectroscopy. Biochemistry 1995; 34:3964-71. [PMID: 7696261 DOI: 10.1021/bi00012a014] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hydrophobic surfactant-associated proteins SP-B and SP-C have been isolated from porcine lungs and reconstituted in multilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) containing different phospholipid spin probes, in order to characterize the lipid--protein interactions by electron spin resonance (ESR) spectroscopy. Both proteins caused a significant increase in the outer hyperfine splittings of all the ESR spectra, indicating that SP-B and SP-C reduce the mobility of the phospholipid acyl chains. The more hydrophobic SP-C had greater effects on phospholipid bilayers than did SP-B. The effect was saturated at protein/lipid ratios of 20% and 30% (w/w) for SP-B and SP-C, respectively, in bilayers of DPPC. SP-B and SP-C increased the ordering and decreased the mobility of the lipid acyl chains in both DPPC and DPPG bilayers in the fluid phase, without affecting the gel phase on the convention ESR time scale. On the other hand, both proteins induced a more homogeneous distribution of the phospholipid spin probes in the gel phase of DPPC. The selectivity of the interaction of SP-B and SP-C with different phospholipid species was determined from the ESR spectra of spin-labeled phospholipids with different headgroups in host bilayers of either DPPC or DPPG. SP-B showed a general preference to interact with negatively charged phospholipids, which was modulated in an ionic strength-dependent manner. At near-physiological ionic strength, SP-B showed selectivity for phosphatidylglycerol.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Pérez-Gil
- Departamento de Bioquímica y Biología I, Facultad Ciencias Químicas, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
15
|
Shiffer K, Hawgood S, Haagsman HP, Benson B, Clements JA, Goerke J. Lung surfactant proteins, SP-B and SP-C, alter the thermodynamic properties of phospholipid membranes: a differential calorimetry study. Biochemistry 1993; 32:590-7. [PMID: 8422370 DOI: 10.1021/bi00053a026] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability of the low molecular weight lung surfactant-associated proteins, SP-B and SP-C, to alter the thermotropic properties of synthetic multilamellar vesicles was tested using differential scanning calorimetry (DSC). The presence of either SP-B or SP-C in dipalmitoylphosphatidylcholine (DPPC) or dipalmitoylphosphatidylglycerol (DPPG) multilamellar vesicles broadened the DSC thermogram and reduced the enthalpy of transition in a concentration-dependent manner. With both proteins, the temperature at which the peak of the phase transition (Tm) was detected was shifted to a higher value. The increase in Tm caused by both proteins was greater with DPPG than DPPC. We have interpreted these results as implying the presence of a protein-perturbed domain of lipid. Both SP-B and SP-C were found to influence the surface activity of the phospholipids in a concentration-dependent fashion. We speculate that instability of lipid packing predicted to occur at protein-created lipid domain boundaries may be important for the expression of surface activity in pulmonary surfactant.
Collapse
Affiliation(s)
- K Shiffer
- Cardiovascular Research Institute, University of California, San Francisco 94143
| | | | | | | | | | | |
Collapse
|
16
|
Watala C, Gwoździński K. Melittin-induced alterations in dynamic properties of human red blood cell membranes. Chem Biol Interact 1992; 82:135-49. [PMID: 1314707 DOI: 10.1016/0009-2797(92)90106-u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The interaction of bee venom melittin with erythrocyte membrane ghosts has been investigated by means of fluorescence quenching of membrane tryptophan residues, fluorescence polarization and ESR spectroscopy. It has been revealed that melittin induces the disorders in lipid-protein matrix both in the hydrophobic core of bilayer and at the polar/non-polar interface of melittin complexed with erythrocyte membranes. The peptide has been found to act most efficiently at the concentration of the order of 10(-10) mol/mg membrane protein. The apparent distance separating the membrane tryptophan and bound 1-anilino-8-naphthalenesulphonate (ANS) molecules is decreased upon melittin binding, which results in a significant increase of the maximum energy transfer efficiency. Significant changes in the fluorescence anisotropy of both 1,6-diphenyl-1,3,5-hexatriene and 1-anilino-8-naphthalenesulphonate bound to erythrocyte ghosts, which have been observed in the presence of melittin and crude venom, indicate membrane lipid bilayer rigidization. The effect of crude honey bee venom has been found to be of similar magnitude as the effect of pure melittin at the concentration of 10(-10) mol/mg membrane protein. Using two lipophilic spin labels, methyl 5-doxylpalmitate and 16-doxylstearic acid, we found that melittin at its increasing concentrations induces a well marked rigidization in the deeper regions of lipid bilayer, whereas the effect of rigidization near the membrane surface maximizes at the melittin concentration of 10(-10) mol/mg (10(-4) mol melittin per mole of membrane phospholipid). The decrease in the ratio hw/hs of maleimide and the rise in relative rotational correlation time (tau c) of iodacetamid spin label, indicate that melittin effectively immobilizes membrane proteins in the plane of the lipid bilayer. We conclude that melittin-induced rigidization of the lipid bilayer may induce a reorganization of lipid assemblies as well as the rearrangements in membrane protein pattern and consequently the alterations in lipid-protein interactions. Thus, the interaction of melittin with erythrocyte membranes is supposed to produce local conformational changes in membranes, which are discussed in the connection with their significance during the synergistic action of melittin and phospholipase of bee venom on red blood cells.
Collapse
Affiliation(s)
- C Watala
- Department of Biophysics, University of Lódź, Poland
| | | |
Collapse
|
17
|
Gromova IA, Molotkovsky JG, Bergelson LD. Anthrylvinyl-labeled phospholipids as fluorescent membrane probes. The action of melittin on multilipid systems. Chem Phys Lipids 1992; 60:235-46. [PMID: 1505062 DOI: 10.1016/0009-3084(92)90075-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The interaction of melittin with multicomponent lipid mixtures composed of phosphatidylcholine, sphingomyelin and phosphatidylserine or phosphatidylglycerol was investigated by measuring the intrinsic fluorescence of the peptide, steady state fluorescence anisotropy of, and Trp-fluorescence energy transfer to fluorescent analogs of the same phospholipids bearing the anthrylvinyl fluorophore in one of the aliphatic chains at various distances from the polar head group. Based on the finding that at high lipid/peptide ratio the peptide induces unequal changes in the fluorescence parameters of phospholipid probes differing structurally only in their polar head groups, it is concluded that melittin induces lipid demixing in its nearest environment. Comparison of the fluorescence energy transfer from Trp to different lipid probes indicates that the depth of penetration of melittin into the bilayer depends on the polar head group composition of the phospholipid matrix and that certain segments of the melittin chain display a specific affinity for a given lipid head group.
Collapse
Affiliation(s)
- I A Gromova
- M.M. Shemyakin Institute of Bioorganic Chemistry, Academy of Sciences of the USSR, Moscow
| | | | | |
Collapse
|
18
|
Stankowski S, Pawlak M, Kaisheva E, Robert CH, Schwarz G. A combined study of aggregation, membrane affinity and pore activity of natural and modified melittin. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1069:77-86. [PMID: 1932053 DOI: 10.1016/0005-2736(91)90106-i] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pore activity of melittin and several chemically modified derivatives has been investigated using conductance measurements on planar lipid bilayers and marker release from small unilamellar vesicles. The modifications included N-terminal formylation, acetylation, succinylation and modification of the tryptophan residue. All of the compounds showed bilayer permeabilizing properties, though quantitative differences were evident. These comprised changes in the voltage dependence of the conductance, in the single-pore kinetics, in the concentration of aqueous peptide required to induce a given pore activity and in the apparent 'molecularity' reflected by the power law of its concentration dependence. A strong tendency for disrupting bilayers was not always correlated with strong pore activity. For a better understanding of these results, measurements of pore activity were complemented by studying the aggregation behavior in solution and the water-membrane partition equilibrium. Modifications of charged residues gave rise to significant changes in the aggregation properties, had virtually no influence on the partition coefficient. The latter decreased strongly, however, as a result of tryptophan modification. Analysis of the isotherms was consistent with the assumption that the arginine residues in melittin do not contribute very much to charge accumulation at the immediate membrane/water interface.
Collapse
Affiliation(s)
- S Stankowski
- Department of Biophysical Chemistry, Biocenter of the University, Basel, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Frey S, Tamm LK. Orientation of melittin in phospholipid bilayers. A polarized attenuated total reflection infrared study. Biophys J 1991; 60:922-30. [PMID: 1742459 PMCID: PMC1260143 DOI: 10.1016/s0006-3495(91)82126-9] [Citation(s) in RCA: 223] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The helical order parameter of the 26-residue amphiphilic bee venom peptide melittin was measured by polarized attenuated total reflection infrared spectroscopy (ATR-IR) in dry phospholipid multibilayers (MBLs) and when bound to single supported planar bilayers (SPBs) under D2O. Melittin adopted an alpha-helical conformation in MBLs of dipalmitoyl-phosphatidylcholine (DPPC), 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), a 4:1 mixture of POPC and 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG), and when bound to SPBs of POPC:POPG (4:1). The order parameter of the alpha-helix in the bilayers depended mainly on the type of membrane preparation, and only little on the phospholipid composition of the bilayers. On hydrated SPBs, the helical order parameter was negative, indicating that the alpha-helix long axis of melittin was preferentially oriented parallel to the plane of the supported membrane. However, in dry MBLs, the helical order parameter was positive, indicating that the alpha-helix of melittin was preferentially oriented parallel to the phospholipid fatty acyl chains. It is concluded that the orientation of melittin in membranes depends on the degree of hydration of the model membranes rather than on the technique which is used for its determination. ATR-IR spectroscopy of polypeptides in or associated with supported planar membranes in D2O may become a useful tool for the determination of their orientation in and on membranes.
Collapse
Affiliation(s)
- S Frey
- Department of Biophysical Chemistry, University of Basel, Switzerland
| | | |
Collapse
|
20
|
Sekharam KM, Bradrick TD, Georghiou S. Kinetics of melittin binding to phospholipid small unilamellar vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1063:171-4. [PMID: 2015256 DOI: 10.1016/0005-2736(91)90367-h] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have used the decrease in the fluorescence intensity of the single tryptophan residue of bee venom melittin at long emission wavelengths that accompanies binding of the peptide to phospholipid small unilamellar vesicles to determine the rate of binding through the use of stopped-flow fluorometry in the millisecond range. We have found the rate to depend on the degree of saturation of the lipid acyl chains as well as on the physical state of the bilayer, the net electric charge of the polar headgroups, and the lipid-to-melittin molar ratio R. For zwitterionic lipids (i) the binding process is found to exhibit negative cooperativity, and (ii) the rate-limiting step appears to be penetration of the protein into the hydrophobic region of the bilayer. For negatively charged lipids the results show that binding is a very fast process that seems to be electrostatic in nature.
Collapse
Affiliation(s)
- K M Sekharam
- Department of Physics, University of Tennessee, Knoxville 37996-1200
| | | | | |
Collapse
|
21
|
Pérez-Payá E, Thiaudière E, Abad C, Dufourcq J. Selective labelling of melittin with a fluorescent dansylcadaverine probe using guinea-pig liver transglutaminase. FEBS Lett 1991; 278:51-4. [PMID: 1671567 DOI: 10.1016/0014-5793(91)80081-d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Melittin, a C-terminal glutamine peptide, incorporated the fluorescent probe monodansylcadaverine (DNC) when catalysed by guinea-pig liver transglutaminase and Ca2+, as determined by thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC). A 1:1 adduct DNC-melittin was identified in which a single glutamine residue out of two, i.e. Gln25, acts as acyl donor. Incubation of melittin with transglutaminase in the absence of DNC originated high molecular mass complexes indicative that the peptide lysine residue can act as an acyl acceptor. The DNC-melittin was about 3 times more active in the lysis of red cell membranes than native melittin. Fluorescence study of the labelled melittin in the submicromolar range where it is active on cells showed that while totally exposed to solvent in methanol solution, both Trp and dansyl groups are buried in buffer solution. This strongly suggests that DNC-melittin is self-associated and indeed more active than the native melittin in the same conditions.
Collapse
Affiliation(s)
- E Pérez-Payá
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Spain
| | | | | | | |
Collapse
|
22
|
Sansom MS. The biophysics of peptide models of ion channels. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1991; 55:139-235. [PMID: 1715999 DOI: 10.1016/0079-6107(91)90004-c] [Citation(s) in RCA: 350] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M S Sansom
- Department of Zoology, University of Nottingham, U.K
| |
Collapse
|
23
|
Kaszycki P, Wasylewski Z. Fluorescence-quenching-resolved spectra of melittin in lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1040:337-45. [PMID: 2223839 DOI: 10.1016/0167-4838(90)90131-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The interaction of bee venom melittin with dimyristoylphosphatidylcholine (DMPC) unilamellar vesicles has been studied by means of fluorescence quenching of the single tryptophan residue of the protein, at lipid-to-peptide ratio, Ri = 50 and at high ionic strength (2 M NaCl). The method of fluorescence-quenching-resolved spectra (FQRS), applied in this study with potassium iodide as a quencher, enabled us to decompose the tryptophan emission spectrum of liposome-bound melittin into components, at temperatures above as well as below the main phase transition temperature (Tt) of DMPC. One of the two resolved spectra exhibits maximum at 342 and 338 nm for experiments above and below Tt, respectively, and is similar to the maximum of tryptophan emission found for tetrameric melittin in solution (340 nm). This spectrum is characterized by the Stern-Volmer quenching constant, Ksv, of about 4 M-1 and it represents the fraction of melittin molecules whose tryptophan residues are exposed to the solvent to a degree comparable with tetrameric species in solution. The other spectrum component, corresponding to the quencher-inaccessible fraction of tryptophan molecules (Ksv = 0 M-1) has its maximum blue-shifted up to 15 nm, indicating a decrease in polarity of the environment. For experiments above Tt, the blue spectrum component revealed the excitation-wavelength dependence, originating probably from the relaxation processes between the excited tryptophan molecules and lipid polar head groups. We conclude that melittin bound to DMPC liposomes exists in two lipid-associated forms; one, with tryptophan residues exposed to the solvent and the other, penetrating the membrane interior, with tryptophan residues located in close proximity to the phospholipid polar head groups of the outer vesicle lipid layer. We also discuss our data with current models of melittin-bilayer interactions.
Collapse
Affiliation(s)
- P Kaszycki
- Department of Biochemistry, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
24
|
Stankowski S, Schwarz G. Electrostatics of a peptide at a membrane/water interface. The pH dependence of melittin association with lipid vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1025:164-72. [PMID: 2364075 DOI: 10.1016/0005-2736(90)90094-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The association of the peptide melittin with small unilamellar DMPC vesicles was studied as a function of pH. The results are discussed quantitatively assuming a water-membrane partition equilibrium. Electrostatic surface charging is taken into account as more and more of the strongly basic peptide accumulates at the bilayer/water interface. The data could be well described in terms of a Gouy-Chapman approach involving an effective interfacial charge well below the actual physical charge carried by the individual peptide molecules. The partition coefficient turned out to be pH invariant, so that one can exclude deprotonation reactions upon insertion of the peptide into the bilayer. The effective interfacial charge per associated melittin molecule decreased over a broad range of pH (pH 7 to pH above 10). Contributions of the free amino terminus and of the arginine residues could be determined by comparing with results obtained using modified melittin (N-terminally formylated and fully acetylated). The data suggest approximately equal fractional contributions of the amino terminus and the three lysines to the effective interfacial charge. The two arginines contribute less. Thus, they may be located farther away from the interface or be closely associated with counter-ions. The analysis is extended to the effect of different ionic strengths.
Collapse
|
25
|
Abstract
The molecular mechanisms underlying the various effects of melittin on membranes have not been completely defined and much of the evidence described indicates that different molecular mechanisms may underlie different actions of the peptide. Ideas about the formation of transbilayer aggregates of melittin under the influence of a transbilayer potential, and for bilayer structural perturbation arising from the location of the peptide helix within the head group region of the membrane have been made based on the crystal structure of the peptide, the kinetics and concentration dependence of melittins membrane actions, together with simple ideas about the conformational properties of amphipathic helical peptides and their interactions with membranes. Physical studies of the interaction of melittin with model membranes have been useful in determining the potential of the peptide to adopt different locations, orientations and association states within membranes under different conditions, but the relationship of the results obtained to the actions of melittin in cell membranes or under the influence of a membrane potential are unclear. Experimental definition of the interaction of melittin with more complex membranes, including the erythrocyte membrane or in bilayers under the influence of a transmembrane potential, will require direct study in these membranes. Experiments employing labeled melittins for ESR, NMR or fluorescence experiments are promising both for their sensitivity (ESR and fluorescence) and the ability to focus on the peptide within the background of endogenous proteins within cell membranes. The study of melittin in model membranes has been useful for the development of methodology for determination of membrane protein structures. Despite the structural complexity of integral membrane proteins, it is interesting that in some respects their study be more straightforward, lacking as they do the elusive properties of melittin (and other structurally labile membrane peptides) which limit the possibility of defining their interaction with membranes in terms of a single conformation, location, orientation and association state within the membrane.
Collapse
Affiliation(s)
- C E Dempsey
- Biochemistry Department, Oxford University, U.K
| |
Collapse
|