1
|
Luo Z, Huang Y, Chen S, Zhang B, Huang H, Dabiri S, Chen Y, Zhang A, Andreas AR, Li S. Delivery of PARP inhibitors through 2HG-incorporated liposomes for synergistically targeting DNA repair in cancer. Cancer Lett 2024; 604:217268. [PMID: 39321912 DOI: 10.1016/j.canlet.2024.217268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
PARP inhibitors (PARPi) benefit only a small subset of patients with DNA homologous recombination (HR) defects. In addition, long-term administration of a PARPi can lead to the development of drug resistance. 2-Hydroxyglutarate (2HG) has long been known as an oncometabolite but is capable of inducing an HR defect, which makes tumor cells exquisitely sensitive to PARPi. To facilitate the translation of this discovery to the treatment of both HR-deficient and HR-proficient tumors, a liposomal formulation was developed for codelivery of 2HG and veliparib, a PARPi. A sequential loading protocol was developed such that the initial loading of 2HG into liposomes greatly facilitated the subsequent, pH gradient-driven remote loading of veliparib. The liposomes co-loaded with veliparib and 2HG exhibited favorable stability, slow kinetics of drug release, and targeted delivery to the tumor. Furthermore, the veliparib/2HG liposomes demonstrated enhanced anti-tumor activity in both PARPi-resistant BRCA mutant cancer and BRCA wildtype cancer by synergistically enhancing the defect in DNA repair. Moreover, combination of veliparib and 2HG via liposomal co-delivery also augmented the function of cytotoxic T cells by activating the STING pathway and downregulating PD-L1 expression via 2HG-induced hypermethylation.
Collapse
Affiliation(s)
- Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Shangyu Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Sheida Dabiri
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Anju Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Alexis R Andreas
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Science, University of Pittsburgh, School of Pharmacy, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Biscaia-Caleiras M, Fonseca NA, Lourenço AS, Moreira JN, Simões S. Rational formulation and industrial manufacturing of lipid-based complex injectables: Landmarks and trends. J Control Release 2024; 373:617-639. [PMID: 39002799 DOI: 10.1016/j.jconrel.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Lipid-based complex injectables are renowned for their effectiveness in delivering drugs, with many approved products. While significant strides have been made in formulating nanosystems for small molecular weight drugs, a pivotal breakthrough emerged with the recognition of lipid nanoparticles as a promising platform for delivering nucleic acids. This finding has paved the way for tackling long-standing challenges in molecular and delivery aspects (e.g., mRNA stability, intracellular delivery) that have impeded the clinical translation of gene therapy, especially in the realm of immunotherapy. Nonetheless, developing and implementing new lipid-based delivery systems pose significant challenges, as industrial manufacturing of these formulations often involves complex, multi-batch processes, giving rise to issues related to scalability, stability, sterility, and regulatory compliance. To overcome these obstacles, embracing the principles of quality-by-design (QbD) is imperative. Furthermore, adopting cutting-edge manufacturing and process analytical tools (PAT) that facilitate the transition from batch to continuous production is essential. Herein, the key milestones and insights derived from the development of currently approved lipid- nanosystems will be explored. Additionally, a comprehensive and critical overview of the latest technologies and regulatory guidelines that underpin the creation of more efficient, scalable, and flexible manufacturing processes for complex lipid-based nanoformulations will be provided.
Collapse
Affiliation(s)
- Mariana Biscaia-Caleiras
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal; Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Nuno A Fonseca
- Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - Ana Sofia Lourenço
- Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Bluepharma-Indústria Farmacêutica, S.A., São Martinho do Bispo, 3045-016 Coimbra, Portugal; Univ Coimbra-University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal.
| |
Collapse
|
3
|
Kumar S, Singh A, Pandey P, Khopade A, Sawant KK. Application of sphingolipid-based nanocarriers in drug delivery: an overview. Ther Deliv 2024; 15:619-637. [PMID: 39072358 PMCID: PMC11412150 DOI: 10.1080/20415990.2024.2377066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/03/2024] [Indexed: 07/30/2024] Open
Abstract
Sphingolipids (SL) are well recognized for their cell signaling through extracellular and intracellular pathways. Based on chemistry different types of SL are biosynthesized in mammalian cells and have specific function in cellular activity. SL has an ampiphilic structure with have hydrophobic body attached to the polar head enables their use as a drug delivery agent in the form of nanocarriers. SL-based liposomes can improve the solubility of lipophilic drugs through host and drug complexes and are more stable than conventional liposomal formulations. Preclinical studies of SL nanocarriers are reported on topical delivery, oral delivery, ocular delivery, chemotherapeutic delivery, cardiovascular delivery and Alzheimer's disease. The commercial challenges and patents related to SL nanoformulations are highlighted in this article.
Collapse
Affiliation(s)
- Samarth Kumar
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| | - Ajit Singh
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
| | - Prachi Pandey
- Krishna School of Pharmacy & Research, KPGU, Vadodara, Gujarat, 391243, India
| | - Ajay Khopade
- Formulation Research & Development-Non-Orals, Sun Pharmaceutical Industries Ltd, Vadodara, 390012, Gujarat, India
| | - Krutika K Sawant
- Faculty of Pharmacy, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390001, India
| |
Collapse
|
4
|
Arai Y, Iwao Y, Muguruma Y, Yamamoto K, Ikeda Y. Efficient Drug Loading Method for Poorly Water-Soluble Drug into Bicelles through Passive Diffusion. Mol Pharm 2023; 20:5701-5713. [PMID: 37823379 PMCID: PMC10630946 DOI: 10.1021/acs.molpharmaceut.3c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
The bicelle, a type of solid lipid nanoparticle, comprises phospholipids with varying alkyl chain lengths and possesses the ability to solubilize poorly water-soluble drugs. Bicelle preparation is complicated and time-consuming because conventional drug-loading methods in bicelles require multiple rounds of thermal cycling or co-grinding with drugs and lipids. In this study, we proposed a simple drug-loading method for bicelles that utilizes passive diffusion. Drug-unloaded bicelles were placed inside a dialysis device and incubated in a saturated solution of ketoconazole (KTZ), which is a model drug. KTZ was successfully loaded into bare bicelles over time with morphological changes, and the final encapsulated concentration was dependent on the lipid concentration of the bicelles. When polyethylene glycol (PEG) chains of two different lengths (PEG2K and 5K) were incorporated into bicelles, PEG2k and PEG5k bicelles mitigated the morphological changes and improved the encapsulation rate. This mitigation of morphological changes enhanced the encapsulated drug concentration. Specifically, PEG5k bicelles, which exhibited the greatest prevention of morphological changes, had a lower encapsulated concentration after 24 h than that of PEG2k bicelles, indicating that PEGylation with a longer PEG chain length improved the loading capacity but decreased the encapsulation rate owing to the presence of a hydration layer of PEG. Thus, PEG with a certain length is more suitable for passive loading. Moreover, loading factors, such as temperature and vehicles used in the encapsulation process, affected the encapsulation rate of the drug. Taken together, the passive loading method offers high throughput with minimal resources, making it a potentially valuable approach during early drug development phases.
Collapse
Affiliation(s)
- Yuta Arai
- Analytical
Development, Pharmaceutical Sciences, Takeda
Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
- Laboratory
of Physiochemistry and Preformulation Research, Graduate School of
Medical and Pharmaceutical Sciences, Chiba
University, 1-8-1, Inohana,
Chuo-ku, Chiba-shi, Chiba 260-0856 Japan
| | - Yasunori Iwao
- Department
of Physical Pharmaceutics, School of Pharmaceutical Sciences, Wakayama Medical University, 25-1 Shichiban-cho, Wakayama 640-8156, Japan
| | - Yoshio Muguruma
- Drug
Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Katsuhiko Yamamoto
- Analytical
Development, Pharmaceutical Sciences, Takeda
Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
- Laboratory
of Physiochemistry and Preformulation Research, Graduate School of
Medical and Pharmaceutical Sciences, Chiba
University, 1-8-1, Inohana,
Chuo-ku, Chiba-shi, Chiba 260-0856 Japan
| | - Yukihiro Ikeda
- Analytical
Development, Pharmaceutical Sciences, Takeda
Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
- Laboratory
of Physiochemistry and Preformulation Research, Graduate School of
Medical and Pharmaceutical Sciences, Chiba
University, 1-8-1, Inohana,
Chuo-ku, Chiba-shi, Chiba 260-0856 Japan
| |
Collapse
|
5
|
Makky AMA, S El-Leithy E, Hussein DG, Khattab A. A Full Factorial Design to Optimize Aminexil Nano Lipid Formulation to Improve Skin Permeation and Efficacy Against Alopecia. AAPS PharmSciTech 2023; 24:40. [PMID: 36653508 DOI: 10.1208/s12249-023-02500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Aminexil (AMX) is considered to be one of the most widely used hair growth promoters. Nanostructured lipid carriers (NLC) are employed to increase the permeation of both lipophilic and hydrophilic drugs. Aminexil nanostructured lipid carrier (NLC) designed by pre-emulsion/ultrasonication method was utilized for alopecia treatment. For selecting optimum excipients, a solubility study was executed in liquid lipids, solid lipids, surfactants, and co-surfactants. A 23 full factorial design was utilized for NLC optimization. Characterization of the developed formulas was performed. The penetration of the optimized formula across cuticle tissues was studied using confocal laser scanning microscopy (CLSM). AMX showed high solubility in glyceryl monostearate (GMS) and stearic acid, 28.87 ± 2.17 and 58.06 ± 2.227 mg/g, respectively. The results of physicochemical characterization showed that formula A7 was the optimized one. It is composed of GMS (solid lipid), oleic acid:garlic oil (1:1 v/v) (liquid lipid), and a surfactant/co-surfactant mixture (Cremophor EL/Transcutol HP). The particle size (PS) was 238.0 ± 2.13 nm, entrapment efficiency (EE) 100.535 ± 6.73%, and zeta potential (ZP) - 29.3 ± 0.93 mv. Ex vivo permeation study demonstrates the potential of AMX-NLC (formula A7) as a delivery system for AMX. The CLSM highly proved AMX-loaded NLC penetration through the skin. The histological study clearly demonstrated that AMX-loaded NLC promoted hair growth more effectively than the market product in chemotherapy-induced alopecia rats. The acquired findings revealed that targeting of AMX-loaded NLC into hair follicles was improved.
Collapse
Affiliation(s)
- Amna M A Makky
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Eman S El-Leithy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Ain-Helwan, Cairo, 11795, Egypt
| | - Doaa Galaa Hussein
- Department of Pharmaceutics, Egyptian Drug Authority (EDA), Cairo, Egypt
| | - Abeer Khattab
- Department of Pharmaceutics, Egyptian Drug Authority (EDA), Cairo, Egypt.
| |
Collapse
|
6
|
Imtiyaz Z, He J, Leng Q, Agrawal AK, Mixson AJ. pH-Sensitive Targeting of Tumors with Chemotherapy-Laden Nanoparticles: Progress and Challenges. Pharmaceutics 2022; 14:pharmaceutics14112427. [PMID: 36365245 PMCID: PMC9692785 DOI: 10.3390/pharmaceutics14112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Accumulating chemotherapeutic drugs such as doxorubicin within a tumor while limiting the drug dose to normal tissues is a central goal of drug delivery with nanoparticles. Liposomal products such as Doxil® represent one of the marked successes of nanoparticle-based strategies. To replicate this success for cancer treatment, many approaches with nanoparticles are being explored in order to direct and release chemotherapeutic agents to achieve higher accumulation in tumors. A promising approach has been stimulus-based therapy, such as the release of chemotherapeutic agents from the nanoparticles in the acidic environments of the tumor matrix or the tumor endosomes. Upon reaching the acidic environments of the tumor, the particles, which are made up of pH-dependent polymers, become charged and release the entrapped chemotherapy agents. This review discusses recent advances in and prospects for pH-dependent histidine-based nanoparticles that deliver chemotherapeutic agents to tumors. The strategies used by investigators include an array of histidine-containing peptides and polymers which form micelles, mixed micelles, nanovesicles, polyplexes, and coat particles. To date, several promising histidine-based nanoparticles have been demonstrated to produce marked inhibition of tumor growth, but challenges remain for successful outcomes in clinical trials. The lessons learned from these histidine-containing particles will provide insight in the development of improved pH-dependent polymeric delivery systems for chemotherapy.
Collapse
Affiliation(s)
- Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
| | - Jiaxi He
- 20511 Seneca Meadows Pkwy, Suite 260, RNAimmune, Germantown, MD 20876, USA
| | - Qixin Leng
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
| | - Atul K. Agrawal
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
| | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3223; Fax: +1-410-706-8414
| |
Collapse
|
7
|
Cardiolipin for Enhanced Cellular Uptake and Cytotoxicity of Thermosensitive Liposome-Encapsulated Daunorubicin toward Breast Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms231911763. [PMID: 36233061 PMCID: PMC9569717 DOI: 10.3390/ijms231911763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Daunorubicin (DNR) and cardiolipin (CL) were co-delivered using thermosensitive liposomes (TSLs). 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1-myristoyl-2-stearoyl-sn-glycero-3-phosphocholine (MSPC), cholesterol, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] or DSPE-mPEG (2000) and CL were used in the formulation of liposomes at a molar ratio of 57:40:30:3:20, respectively. CL forms raft-like microdomains that may relocate and change lipid organization of the outer and inner mitochondrial membranes. Such transbilayer lipid movement eventually leads to membrane permeabilization. TSLs were prepared by thin-film hydration (drug:lipid ratio 1:5) where DNR was encapsulated within the aqueous core of the liposomes and CL acted as a component of the lipid bilayer. The liposomes exhibited high drug encapsulation efficiency (>90%), small size (~115 nm), narrow size distribution (polydispersity index ~0.12), and a rapid release profile under the influence of mild hyperthermia. The liposomes also exhibited ~4-fold higher cytotoxicity against MDA-MB-231 cells compared to DNR or liposomes similar to DaunoXome® (p < 0.001). This study provides a basis for developing a co-delivery system of DNR and CL encapsulated in liposomes for treatment of breast cancer.
Collapse
|
8
|
pH-Sensitive Liposomes for Enhanced Cellular Uptake and Cytotoxicity of Daunorubicin in Melanoma (B16-BL6) Cell Lines. Pharmaceutics 2022; 14:pharmaceutics14061128. [PMID: 35745701 PMCID: PMC9228428 DOI: 10.3390/pharmaceutics14061128] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/13/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
Daunorubicin (DNR) was delivered using a pH-sensitive liposomal system in B16-BL6 melanoma cell lines for enhanced cytotoxic effects. DNR was encapsulated within liposomes and CL as a component of the lipid bilayer. PEGylated pH-sensitive liposomes, containing CL, were prepared in the molar ratio of 40:30:5:17:8 for DOPE/cholesterol/DSPE-mPEG (2000)/CL/SA using the lipid film hydration method and loaded with DNR (drug: lipid ratio of 1:5). The CL liposomes exhibited high drug encapsulation efficiency (>90%), a small size (~94 nm), narrow size distribution (polydispersity index ~0.16), and a rapid release profile at acidic pH (within 1 h). Furthermore, the CL liposomes exhibited 12.5- and 2.5-fold higher cytotoxicity compared to DNR or liposomes similar to DaunoXome®. This study provides a basis for developing DNR pH-sensitive liposomes for melanoma treatment.
Collapse
|
9
|
Ghosh S, Sun B, Jahagirdar D, Luo D, Ortega J, Straubinger RM, Lovell JF. Single-treatment tumor ablation with photodynamic liposomal irinotecan sucrosulfate. Transl Oncol 2022; 19:101390. [PMID: 35290919 PMCID: PMC8918863 DOI: 10.1016/j.tranon.2022.101390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/21/2022] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
Irinotecan (IRI) loaded actively into PEGylated liposomes via a sucrosulfate gradient has been approved recently to treat advanced pancreatic cancer. In this study, a similar liposomal composition was developed that includes a low mole fraction (1 mol.%) of porphyrin-phospholipid (PoP), a photosensitizer that stably incorporates into liposomes, to confer light-triggered IRI release. IRI-loaded PoP liposomes containing ammonium sucrosulfate (ASOS) as a complexing agent were more stable in serum compared to liposomes employing the more conventional ammonium sulfate. Without irradiation, PoP IRI liposomes released less than 5% IRI during 8 h of incubation in bovine serum at 37 °C, but released over 90% of the drug within minutes of exposure to red light (665 nm) irradiation. A single treatment with IRI-PoP liposomes and light exposure (15 mg/kg IRI with 250 J/cm2) resulted in tumor eradication in mice bearing either MIA PaCa-2 tumors or low-passage patient-derived tumor xenografts that recapitulate characteristics of the clinical disease. Analogous monotherapies of IRI or photodynamic therapy were ineffective in controlling tumor growth. Enhanced drug uptake could be visualized within laser-treated tumors by direct in situ imaging of irinotecan. Biodistribution analysis of IRI, its active metabolite (SN-38), and major metabolite (SN-38 G) showed that laser treatment significantly increased tumor accumulation of all IRI-derived molecular species. A pharmacokinetic model that hypothesized tumor vasculature permeabilization as the primary reason underlying the increased drug deposition accounted for the enhanced drug influx into tumors.
Collapse
Affiliation(s)
- Sanjana Ghosh
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, United States of America
| | - Boyang Sun
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States of America
| | - Dushyant Jahagirdar
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Dandan Luo
- CSL Behring LLC, 1020 1st Avenue, King of Prussia, PA, 19406, United States of America
| | - Joaquin Ortega
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 0C7, Canada
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY United States of America
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, United States of America.
| |
Collapse
|
10
|
El Founi M, Laroui H, Canup BSB, Ametepe JS, Vanderesse R, Acherar S, Babin J, Ferji K, Chevalot I, Six JL. Doxorubicin Intracellular Release Via External UV Irradiation of Dextran- g-poly( o-nitrobenzyl acrylate) Photosensitive Nanoparticles. ACS APPLIED BIO MATERIALS 2021; 4:2742-2751. [PMID: 35014313 DOI: 10.1021/acsabm.0c01644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the present study, innovative doxorubicin-loaded nanoparticles (NPs) made of a photosensitive poly(o-nitrobenzyl acrylate) (PNBA) hydrophobic matrix and an hydrophilic dextran (Dex) shell were first formulated by the emulsion-solvent evaporation process. Doxorubicin (DOX), a very well-known anticancer drug, was herein chosen as the model. DOX-loaded NPs were successfully produced by covering the hydrophobic PNBA core with Dex chains either physically adsorbed or covalently linked by changing process parameters as the presence of a catalyst (CuBr or CuSO4/ascorbic acid). It was then proved that the neutralization of DOX optimized drug loading. DOX loading and release were independent of the coverage mechanism if the catalyst used to covalently link the shell to the core was correctly chosen. Second, the kinetics of DOX release were investigated by simple diffusion or light irradiation of the NPs. Experiments showed that less than 20% of DOX was released by simple diffusion after 48 h in PBS or DMEM media when 45% of DOX released after only 30 s of light irradiation of the NPs. Finally, the impact of the phototriggered DOX release on cell viability was investigated on various cell lines [Caco-2, HepG2, HCT-116, and HT-29 cells as well as murine macrophages (RAW 264.7)]. Cellular mortality was evaluated to be dependent on the cell lines tested. Our approach provided an improved DOX release toward the human liver cancer cell line, and a high internalization of the PNBA-based NPs into HepG2 cells was observed using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Hamed Laroui
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Brandon S B Canup
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | - Joseph S Ametepe
- Department of Chemistry/Biology, Georgia State University, Atlanta, Georgia 30303, United States
| | | | - Samir Acherar
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | - Jérome Babin
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | - Khalid Ferji
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| | | | - Jean-Luc Six
- Université de Lorraine, CNRS, LCPM, Nancy F-5400, France
| |
Collapse
|
11
|
Comprehensive analysis of liposome formulation parameters and their influence on encapsulation, stability and drug release in glibenclamide liposomes. Int J Pharm 2021; 592:120051. [DOI: 10.1016/j.ijpharm.2020.120051] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
|
12
|
Liu W, Li D, Dong Z, Liu K, He H, Lu Y, Wu W, Li Q, Gan L, Qi J. Insight into the in vivo translocation of oral liposomes by fluorescence resonance energy transfer effect. Int J Pharm 2020; 587:119682. [PMID: 32717284 DOI: 10.1016/j.ijpharm.2020.119682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/21/2022]
Abstract
Liposomes have been broadly used in pharmaceutical field to overcome oral absorption barriers, such as gastric acid, tenacious mucus or intestinal epithelia. However, the concrete in vivo absorption mechanisms of liposomes are still indistinct. This study aims to visually elucidate the effect of particle size and surface characteristics on in vivo translocation of oral liposomes by fluorescence resonance energy transfer (FRET) effect. We fabricated liposomes of various sizes (100 nm, 200 nm and 500 nm) and surface characteristics (anionic, cationic and PEGylated) which are also labeled with FRET probes for discriminating the intact liposomes. We then investigated the in vivo fate of those different liposomes upon oral administration. Results showed that smaller conventional liposomes, cationic and PEGylated liposomes had longer retention time in digestive tract. Few intact liposomes were taken up by intestinal epithelial cells and none were found in circulation. In vivo pharmacokinetics revealed that the smaller, cationic or PEGylated liposomes had higher relative bioavailability. Similar retention time of various liposomes in blood circulation to control solution indicated that liposomes improved oral drug absorption by either prolonging contact time with gastrointestinal tract or increasing penetration ability through mucus barrier, instead of being absorbed integrally into circulation. This study offered new insight into developing highly effective liposomes for oral delivery.
Collapse
Affiliation(s)
- Wenjuan Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Dong Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China; Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Zirong Dong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Kaiheng Liu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Haisheng He
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Yi Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Wei Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China
| | - Qinghua Li
- Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
| | - Li Gan
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jianping Qi
- School of Pharmacy, Key Laboratory of Smart Drug Delivery of MOE, Fudan University, Shanghai 201203, China.
| |
Collapse
|
13
|
Shobaki N, Sato Y, Suzuki Y, Okabe N, Harashima H. Manipulating the function of tumor-associated macrophages by siRNA-loaded lipid nanoparticles for cancer immunotherapy. J Control Release 2020; 325:235-248. [DOI: 10.1016/j.jconrel.2020.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023]
|
14
|
Wei P, Gangapurwala G, Pretzel D, Wang L, Schubert S, Brendel JC, Schubert US. Tunable nanogels by host-guest interaction with carboxylate pillar[5]arene for controlled encapsulation and release of doxorubicin. NANOSCALE 2020; 12:13595-13605. [PMID: 32555817 DOI: 10.1039/d0nr01881c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanogels have become one of the most attractive systems for application as delivery vectors or for theragnostic approaches in nanomedicine, which is mainly related to the ease of their synthesis by precipitation polymerization. However, only a few suitable monomers have been reported so far and stabilization of the nanogels requires the incorporation of rather defined amounts of in most cases charged co-monomers, such as acrylic acid, which limits the flexibility in their design. Here, we present an alternative approach using a pyridinium based monomer, which not only provides stability due to the positive charge, but also allows the attachment of functional carboxylate-pillar[5]arene by the formation of a host-guest complex. This approach is tested on pH-sensitive nanogels based on the monomer N-[(2,2-dimethyl-1,3-dioxolane)methyl]acrylamide (DMDOMA) featuring an acetal group, which is hydrolysed under acidic conditions. As carboxylates are known to catalyze this hydrolysis, we tested different amounts of carboxylate-pillar[5]arenes to tune the hydrolysis rate of the acetal group and found a direct correlation. Additional encapsulation studies with doxorubicin (DOX) revealed that surface potential and charge density represent additional key factors not only for the loading capacity, but also for the release profile of the nanogels. The option to tune such properties simply by the addition of a co-factor, in this case, the carboxylate-pillar[5]arenes provides a powerful tool to optimize characteristics of functional nanogels for drug delivery or other applications.
Collapse
Affiliation(s)
- Peng Wei
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 07743 Jena, Germany
| | - Gauri Gangapurwala
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 07743 Jena, Germany
| | - David Pretzel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 07743 Jena, Germany
| | - Limin Wang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Schubert
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 07743 Jena, Germany and Institute of Pharmacy and Biopharmacy, Department of Pharmaceutical Technology, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany. and Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
15
|
Moodley T, Singh M. Sterically Stabilised Polymeric Mesoporous Silica Nanoparticles Improve Doxorubicin Efficiency: Tailored Cancer Therapy. Molecules 2020; 25:E742. [PMID: 32046364 PMCID: PMC7037074 DOI: 10.3390/molecules25030742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 01/05/2023] Open
Abstract
The fruition, commercialisation and clinical application combining nano-engineering, nanomedicine and material science for utilisation in drug delivery is becoming a reality. The successful integration of nanomaterial in nanotherapeutics requires their critical development to ensure physiological and biological compatibility. Mesoporous silica nanoparticles (MSNs) are attractive nanocarriers due to their biodegradable, biocompatible, and relative malleable porous frameworks that can be functionalized for enhanced targeting and delivery in a variety of disease models. The optimal formulation of an MSN with polyethylene glycol (2% and 5%) and chitosan was undertaken, to produce sterically stabilized, hydrophilic MSNs, capable of efficient loading and delivery of the hydrophobic anti-neoplastic drug, doxorubicin (DOX). The pH-sensitive release kinetics of DOX, together with the anticancer, apoptosis and cell-cycle activities of DOX-loaded MSNs in selected cancer cell lines were evaluated. MSNs of 36-60 nm in size, with a pore diameter of 9.8 nm, and a cumulative surface area of 710.36 m²/g were produced. The 2% pegylated MSN formulation (PCMSN) had the highest DOX loading capacity (0.98 mgdox/mgmsn), and a sustained release profile over 72 h. Pegylated-drug nanoconjugates were effective at a concentration range between 20-50 μg/mL, inducing apoptosis in cancer cells, and affirming their potential as effective drug delivery vehicles.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, University of Kwa-Zulu Natal, Private Bag X54001, Durban 4000, Kwa-Zulu Natal, South Africa;
| |
Collapse
|
16
|
Small Peptide-Doxorubicin Co-Assembly for Synergistic Cancer Therapy. Molecules 2020; 25:molecules25030484. [PMID: 31979298 PMCID: PMC7036863 DOI: 10.3390/molecules25030484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/16/2020] [Indexed: 12/02/2022] Open
Abstract
Design of elaborated nanomaterials to improve the therapeutic efficacy and mitigate the side effects of chemotherapeutic anticancer drugs, such as Doxorubicin (Dox), is significant for cancer treatment. Here, we describe a co-assembled strategy, where amphiphile short peptides are co-assembled with Doxorubicin to form nanoscale particles for enhanced delivery of Dox. Two kinds of short peptides, Fmoc-FK (FK) and Fmoc-FKK (FKK), are synthesized. Through adjusting the component ratio of peptide and Dox, we obtain two kinds of co-assembled nanoparticles with homogeneous size distributions. These nanoparticles show several distinct characteristics. First, they are pH-responsive as they are stable in alkaline and neutral conditions, however, de-assembly at acidic pH enables selective Dox release in malignant cancer cells. Second, the nanoparticles show an average size of 50–100 nm with positive charges, making them effective for uptake by tumor cells. Moreover, the side effects of Dox on healthy cells are mitigated due to decreased exposure of free-Dox to normal cells. To conclude, the co-assembled peptide-Dox nanoparticles exhibit increased cellular uptake compared to free-Dox, therefore causing significant cancer cell death. Further apoptosis and cell cycle analysis indicates that there is a synergistic effect between the peptide and Doxorubicin.
Collapse
|
17
|
Soliman SMA, El Founi M, Vanderesse R, Acherar S, Ferji K, Babin J, Six JL. Light-sensitive dextran-covered PNBA nanoparticles to continuously or discontinuously improve the drug release. Colloids Surf B Biointerfaces 2019; 182:110393. [DOI: 10.1016/j.colsurfb.2019.110393] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/07/2019] [Accepted: 07/23/2019] [Indexed: 10/26/2022]
|
18
|
Witzigmann D, Uhl P, Sieber S, Kaufman C, Einfalt T, Schöneweis K, Grossen P, Buck J, Ni Y, Schenk SH, Hussner J, Meyer Zu Schwabedissen HE, Québatte G, Mier W, Urban S, Huwyler J. Optimization-by-design of hepatotropic lipid nanoparticles targeting the sodium-taurocholate cotransporting polypeptide. eLife 2019; 8:42276. [PMID: 31333191 PMCID: PMC6682401 DOI: 10.7554/elife.42276] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Active targeting and specific drug delivery to parenchymal liver cells is a promising strategy to treat various liver disorders. Here, we modified synthetic lipid-based nanoparticles with targeting peptides derived from the hepatitis B virus large envelope protein (HBVpreS) to specifically target the sodium-taurocholate cotransporting polypeptide (NTCP; SLC10A1) on the sinusoidal membrane of hepatocytes. Physicochemical properties of targeted nanoparticles were optimized and NTCP-specific, ligand-dependent binding and internalization was confirmed in vitro. The pharmacokinetics and targeting capacity of selected lead formulations was investigated in vivo using the emerging zebrafish screening model. Liposomal nanoparticles modified with 0.25 mol% of a short myristoylated HBV derived peptide, that is Myr-HBVpreS2-31, showed an optimal balance between systemic circulation, avoidance of blood clearance, and targeting capacity. Pronounced liver enrichment, active NTCP-mediated targeting of hepatocytes and efficient cellular internalization were confirmed in mice by 111In gamma scintigraphy and fluorescence microscopy demonstrating the potential use of our hepatotropic, ligand-modified nanoparticles.
Collapse
Affiliation(s)
- Dominik Witzigmann
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Philipp Uhl
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sandro Sieber
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Christina Kaufman
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Tomaz Einfalt
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Katrin Schöneweis
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Philip Grossen
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Jonas Buck
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Yi Ni
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Susanne H Schenk
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Janine Hussner
- Division of Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | | | - Gabriela Québatte
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, INF, Heidelberg, Germany
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Giannakou C, Aimonen K, Bloois LV, Catalán J, Geertsma RE, Gremmer ER, de Jong WH, Keizers PHJ, Schwillens PLWJ, Vandebriel RJ, Park MVDZ. Sensitive method for endotoxin determination in nanomedicinal product samples. Nanomedicine (Lond) 2019; 14:1231-1246. [DOI: 10.2217/nnm-2018-0339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Nanomaterials and nanomedicinal products tend to interfere with various commonly used assays, including regulatory required endotoxin detection methods for medicines. We developed a method to quantify endotoxin levels that is compatible with nanomaterials and nanomedicinal products. Materials & methods: The method is based on measuring endotoxin indirectly via 3-hydroxylated fatty acids of lipid-A, using Ultra High Performance Liquid Chromatography coupled with mass spectrometry. The outcome was related to results of the commonly used Limulus Amebocyte Lysate method. Results: The ultra high performance liquid chromatography coupled with mass spectrometry method has clear advantages compared with other endotoxin determination assays; particularly the absence of nanospecific interference. Conclusion: The method is sensitive, straightforward and accurate in determining and quantifying endotoxin in nanomedicinal product samples.
Collapse
Affiliation(s)
- Christina Giannakou
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
- Department of Toxicogenomics, Maastricht University, Maastricht, The Netherlands
| | - Kukka Aimonen
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Julia Catalán
- Finnish Institute of Occupational Health, Helsinki, Finland
- University of Zaragoza, Zaragoza, Spain
| | - Robert E Geertsma
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Eric R Gremmer
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Wim H de Jong
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Peter HJ Keizers
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Paul LWJ Schwillens
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| | - Margriet VDZ Park
- Centre for Health Protection, National Institute for Public Health & the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
20
|
Arantseva DA, Vodovozova EL. Platinum-Based Antitumor Drugs and Their Liposomal Formulations in Clinical Trials. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162018060031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Tajvar S, Mohammadi S, Askari A, Janfaza S, Nikkhah M, Tamjid E, Hosseinkhani S. Preparation of liposomal doxorubicin-graphene nanosheet and evaluation of its in vitro anti-cancer effects. J Liposome Res 2018; 29:163-170. [DOI: 10.1080/08982104.2018.1524481] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Samira Tajvar
- Department of Bioinformatics, Faculty of High Technologies, Tarbiat Modares University, Tehran, Iran
| | - Soheila Mohammadi
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Askari
- Department of Bioinformatics, Faculty of High Technologies, Tarbiat Modares University, Tehran, Iran
| | - Sajjad Janfaza
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
22
|
Development of doxorubicin hydrochloride loaded pH-sensitive liposomes: Investigation on the impact of chemical nature of lipids and liposome composition on pH-sensitivity. Eur J Pharm Biopharm 2018; 133:331-338. [DOI: 10.1016/j.ejpb.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/20/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
|
23
|
Ionic gradient liposomes: Recent advances in the stable entrapment and prolonged released of local anesthetics and anticancer drugs. Biomed Pharmacother 2018; 107:34-43. [DOI: 10.1016/j.biopha.2018.07.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022] Open
|
24
|
Xu HL, Fan ZL, ZhuGe DL, Tong MQ, Shen BX, Lin MT, Zhu QY, Jin BH, Sohawon Y, Yao Q, Zhao YZ. Ratiometric delivery of two therapeutic candidates with inherently dissimilar physicochemical property through pH-sensitive core-shell nanoparticles targeting the heterogeneous tumor cells of glioma. Drug Deliv 2018; 25:1302-1318. [PMID: 29869524 PMCID: PMC6060705 DOI: 10.1080/10717544.2018.1474974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Currently, combination drug therapy is one of the most effective approaches to glioma treatment. However, due to the inherent dissimilar pharmacokinetics of individual drugs and blood brain barriers, it was difficult for the concomitant drugs to simultaneously be delivered to glioma in an optimal dose ratio manner. Herein, a cationic micellar core (Cur-M) was first prepared from d-α-tocopherol-grafted-ε-polylysine polymer to encapsulate the hydrophobic curcumin, followed by dopamine-modified-poly-γ-glutamic acid polymer further deposited on its surface as a anion shell through pH-sensitive linkage to encapsulate the hydrophilic doxorubicin (DOX) hydrochloride. By controlling the combinational Cur/DOX molar ratio at 3:1, a pH-sensitive core-shell nanoparticle (PDCP-NP) was constructed to simultaneously target the cancer stem cells (CSCs) and the differentiated tumor cells. PDCP-NP exhibited a dynamic diameter of 160.8 nm and a zeta-potential of -30.5 mV, while its core-shell structure was further confirmed by XPS and TEM. The ratiometric delivery capability of PDCP-NP was confirmed by in vitro and in vivo studies, in comparison with the cocktail Cur/DOX solution. Meanwhile, the percentage of CSCs in tumors was significantly decreased from 4.16% to 0.95% after treatment with PDCP-NP. Overall, PDCP-NP may be a promising carrier for the combination therapy with drug candidates having dissimilar physicochemical properties.
Collapse
Affiliation(s)
- He-Lin Xu
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Zi-Liang Fan
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - De-Li ZhuGe
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Meng-Qi Tong
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Bi-Xin Shen
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Meng-Ting Lin
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Qun-Yan Zhu
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Bing-Hui Jin
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Yasin Sohawon
- b School of International Studies , Wenzhou Medical University , Wenzhou City , China.,c First Affiliated Hospital of Wenzhou Medical University , Wenzhou City , China
| | - Qing Yao
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| | - Ying-Zheng Zhao
- a Department of Pharmaceutics, School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou City , China
| |
Collapse
|
25
|
Cinquerrui S, Mancuso F, Vladisavljević GT, Bakker SE, Malik DJ. Nanoencapsulation of Bacteriophages in Liposomes Prepared Using Microfluidic Hydrodynamic Flow Focusing. Front Microbiol 2018; 9:2172. [PMID: 30258426 PMCID: PMC6144953 DOI: 10.3389/fmicb.2018.02172] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/23/2018] [Indexed: 12/19/2022] Open
Abstract
Increasing antibiotic resistance in pathogenic microorganisms has led to renewed interest in bacteriophage therapy in both humans and animals. A “Trojan Horse” approach utilizing liposome encapsulated phages may facilitate access to phagocytic cells infected with intracellular pathogens residing therein, e.g., to treat infections caused by Mycobacterium tuberculosis, Listeria, Salmonella, and Staphylococcus sp. Additionally, liposome encapsulated phages may adhere to and diffuse within mucosa harboring resistant bacteria which are challenges in treating respiratory and gastrointestinal infections. Orally delivered phages tend to have short residence times in the gastrointestinal tract due to clinical symptoms such as diarrhea; this may be addressed through mucoadhesion of liposomes. In the present study we have evaluated the use of a microfluidic based technique for the encapsulation of bacteriophages in liposomes having mean sizes between 100 and 300 nm. Encapsulation of two model phages was undertaken, an Escherichia coli T3 podovirus (size ~65 nm) and a myovirus Staphylococcus aureus phage K (capsid head ~80 nm and phage tail length ~200 nm). The yield of encapsulated T3 phages was 109 PFU/ml and for phage K was much lower at 105 PFU/ml. The encapsulation yield for E. coli T3 phages was affected by aggregation of T3 phages. S. aureus phage K was found to interact with the liposome lipid bilayer resulting in large numbers of phages bound to the outside of the formed liposomes instead of being trapped inside them. We were able to inactivate the liposome bound S. aureus K phages whilst retaining the activity of the encapsulated phages in order to estimate the yield of microfluidic encapsulation of large tailed phages. Previous published studies on phage encapsulation in liposomes may have overestimated the yield of encapsulated tailed phages. This overestimation may affect the efficacy of phage dose delivered at the site of infection. Externally bound phages would be inactivated in the stomach acid resulting in low doses of phages delivered at the site of infection further downstream in the gastrointestinal tract.
Collapse
Affiliation(s)
- Salvatore Cinquerrui
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | - Francesco Mancuso
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| | | | - Saskia E Bakker
- Advanced Bioimaging Research Technology Platform, University of Warwick, Coventry, United Kingdom
| | - Danish J Malik
- Chemical Engineering Department, Loughborough University, Loughborough, United Kingdom
| |
Collapse
|
26
|
Li D, Zhuang J, Yang Y, Wang D, Yang J, He H, Fan W, Banerjee A, Lu Y, Wu W, Gan L, Qi J. Loss of integrity of doxorubicin liposomes during transcellular transportation evidenced by fluorescence resonance energy transfer effect. Colloids Surf B Biointerfaces 2018; 171:224-232. [PMID: 30036789 DOI: 10.1016/j.colsurfb.2018.07.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/23/2018] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
The aim of this work was to elucidate the influence of liposome characteristics on the transcellular process by in vitro studies that would enable designing more efficient oral formulations. Various liposomes with different properties were prepared, including 100-500 nm, anionic, cationic and PEGylated liposomes. All liposomes were labeled by fluorescence resonance energy transfer (FRET) probes to evaluate their integrity in cellular uptake and transport. The FRET fluorescent intensity is proportional to the amount of intact liposomes, which was used to calculate the amount of intact liposomes in cellular uptake and transport. The liposomal structures were found to lose their integrity during or after uptake and only about 20% intact liposomes were detected in cells. However, more cationic liposomes were transported integrally across cell monolayer and accounted for 40.49% of total transport by triple culture models of Caco-2/HT29-MTX/Raji B. These results suggest that liposomes could improve cellular uptake and transport of the payloads significantly, but only a small fraction of liposomes are transported integrally across epithelial monolayer. The study is therefore helpful to rationally fabricate more efficient oral liposomes for poorly water-soluble drugs or biomacromolecules.
Collapse
Affiliation(s)
- Dong Li
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Jie Zhuang
- School of Pharmacy, Institute of Nanotechnology and Health, Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yinqian Yang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Dandan Wang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Jinlong Yang
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Haisheng He
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Wufa Fan
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Amrita Banerjee
- School of Pharmacy, Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, 58103, USA
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China
| | - Li Gan
- Department of Pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE, Shanghai 201203, China.
| |
Collapse
|
27
|
Giacalone G, Matoori S, Agostoni V, Forster V, Kabbaj M, Eggenschwiler S, Lussi M, De Gottardi A, Zamboni N, Leroux JC. Liposome-supported peritoneal dialysis in the treatment of severe hyperammonemia: An investigation on potential interactions. J Control Release 2018; 278:57-65. [DOI: 10.1016/j.jconrel.2018.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
|
28
|
Yamamoto E, Miyazaki S, Aoyama C, Kato M. A simple and rapid measurement method of encapsulation efficiency of doxorubicin loaded liposomes by direct injection of the liposomal suspension to liquid chromatography. Int J Pharm 2018; 536:21-28. [DOI: 10.1016/j.ijpharm.2017.11.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/22/2017] [Accepted: 11/19/2017] [Indexed: 10/18/2022]
|
29
|
Signorell RD, Papachristodoulou A, Xiao J, Arpagaus B, Casalini T, Grandjean J, Thamm J, Steiniger F, Luciani P, Brambilla D, Werner B, Martin E, Weller M, Roth P, Leroux JC. Preparation of PEGylated liposomes incorporating lipophilic lomeguatrib derivatives for the sensitization of chemo-resistant gliomas. Int J Pharm 2017; 536:388-396. [PMID: 29198811 DOI: 10.1016/j.ijpharm.2017.11.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022]
Abstract
Liposomal delivery is a well-established approach to increase the therapeutic index of drugs, mainly in the field of cancer chemotherapy. Here, we report the preparation and characterization of a new liposomal formulation of a derivative of lomeguatrib, a potent O6-methylguanine-DNA methyltransferase (MGMT) inactivator. The drug had been tested in clinical trials to revert chemoresistance, but was associated with a low therapeutic index. A series of lomeguatrib conjugates with distinct alkyl chain lengths - i.e. C12, C14, C16, and C18 - was synthesized, and the MGMT depleting activity as well as cytotoxicity were determined on relevant mouse and human glioma cell lines. Drug-containing liposomes were prepared and characterized in terms of loading and in vitro release kinetics. The lipophilic lomeguatrib conjugates did not exert cytotoxic effects at 5 μM in the mouse glioma cell line and exhibited a similar MGMT depleting activity pattern as lomeguatrib. Overall, drug loading could be improved by up to 50-fold with the lipophilic conjugates, and the slowest leakage was achieved with the C18 derivative. The present data show the applicability of lipophilic lomeguatrib derivatization for incorporation into liposomes, and identify the C18 derivative as the lead compound for in vivo studies.
Collapse
Affiliation(s)
- Rea D Signorell
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexandros Papachristodoulou
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, 8091, Zurich, Switzerland
| | - Jiawen Xiao
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Bianca Arpagaus
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Tommaso Casalini
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland; Institute of Mechanical Engineering and Material Technology, Department of Innovative Technology, SUPSI, 6928, Manno, Switzerland
| | - Joanes Grandjean
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, University and ETH Zurich, 8093, Zurich, Switzerland
| | - Jana Thamm
- Institute of Pharmacy, Department of Pharmaceutical Technology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Frank Steiniger
- Electron Microscopy Center, University Hospital Jena, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Paola Luciani
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland; Institute of Pharmacy, Department of Pharmaceutical Technology, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Davide Brambilla
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Beat Werner
- Center for MR-Research, University Children's Hospital, 8032, Zurich, Switzerland
| | - Ernst Martin
- Center for MR-Research, University Children's Hospital, 8032, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, 8091, Zurich, Switzerland
| | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital and University of Zurich, 8091, Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
30
|
Sum R, Swaminathan M, Rastogi SK, Piloto O, Cheong I. Beta-Hemolytic Bacteria Selectively Trigger Liposome Lysis, Enabling Rapid and Accurate Pathogen Detection. ACS Sens 2017; 2:1441-1451. [PMID: 28929742 DOI: 10.1021/acssensors.7b00333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For more than a century, blood agar plates have been the only test for beta-hemolysis. Although blood agar cultures are highly predictive for bacterial pathogens, they are too slow to yield actionable information. Here, we show that beta-hemolytic pathogens are able to lyse and release fluorophores encapsulated in sterically stabilized liposomes whereas alpha and gamma-hemolytic bacteria have no effect. By analyzing fluorescence kinetics, beta-hemolytic colonies cultured on agar could be distinguished in real time with 100% accuracy within 6 h. Additionally, end point analysis based on fluorescence intensity and machine-extracted textural features could discriminate between beta-hemolytic and cocultured control colonies with 99% accuracy. In broth cultures, beta-hemolytic bacteria were detectable in under an hour while control bacteria remained negative even the next day. This strategy, called beta-hemolysis triggered-release assay (BETA) has the potential to enable the same-day detection of beta-hemolysis with single-cell sensitivity and high accuracy.
Collapse
Affiliation(s)
- Rongji Sum
- Department
of Molecular Pathogenesis, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | - Muthukaruppan Swaminathan
- Department
of Molecular Pathogenesis, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Department
of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Sahil Kumar Rastogi
- Department
of Molecular Pathogenesis, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Ian Cheong
- Department
of Molecular Pathogenesis, Temasek Life Sciences Laboratory, Singapore 117604, Singapore
- Department
of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| |
Collapse
|
31
|
Mertz D, Sandre O, Bégin-Colin S. Drug releasing nanoplatforms activated by alternating magnetic fields. Biochim Biophys Acta Gen Subj 2017; 1861:1617-1641. [PMID: 28238734 DOI: 10.1016/j.bbagen.2017.02.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 02/05/2023]
Abstract
The use of an alternating magnetic field (AMF) to generate non-invasively and spatially a localized heating from a magnetic nano-mediator has become very popular these last years to develop magnetic hyperthermia (MH) as a promising therapeutic modality already used in the clinics. AMF has become highly attractive this last decade over others radiations, as AMF allows a deeper penetration in the body and a less harmful ionizing effect. In addition to pure MH which induces tumor cell death through local T elevation, this AMF-generated magneto-thermal effect can also be exploited as a relevant external stimulus to trigger a drug release from drug-loaded magnetic nanocarriers, temporally and spatially. This review article is focused especially on this concept of AMF induced drug release, possibly combined with MH. The design of such magnetically responsive drug delivery nanoplatforms requires two key and complementary components: a magnetic mediator which collects and turns the magnetic energy into local heat, and a thermoresponsive carrier ensuring thermo-induced drug release, as a consequence of magnetic stimulus. A wide panel of magnetic nanomaterials/chemistries and processes are currently developed to achieve such nanoplatforms. This review article presents a broad overview about the fundamental concepts of drug releasing nanoplatforms activated by AMF, their formulations, and their efficiency in vitro and in vivo. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editors: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France.
| | - Olivier Sandre
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, Université de Bordeaux, Bordeaux-INP, Pessac 33607, Cedex, France
| | - Sylvie Bégin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504 CNRS, Université de Strasbourg, 23, rue du Loess, 67034 Strasbourg, France
| |
Collapse
|
32
|
Abu Lila AS, Ishida T. Liposomal Delivery Systems: Design Optimization and Current Applications. Biol Pharm Bull 2017; 40:1-10. [PMID: 28049940 DOI: 10.1248/bpb.b16-00624] [Citation(s) in RCA: 217] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The liposome, a closed phospholipid bilayered vesicular system, has received considerable attention as a pharmaceutical carrier of great potential over the past 30 years. The ability of liposomes to encapsulate both hydrophilic and hydrophobic drugs, coupled with their biocompatibility and biodegradability, make liposomes attractive vehicles in the field of drug delivery. In addition, great technical advances such as remote drug loading, triggered release liposomes, ligand-targeted liposomes, liposomes containing combinations of drugs, and so on, have led to the widespread use of liposomes in diverse areas as delivery vehicles for anti-cancer, bio-active molecules, diagnostics, and therapeutic agents. In this review, we summarize design optimization of liposomal systems and invaluable applications of liposomes as effective delivery systems.
Collapse
Affiliation(s)
- Amr Selim Abu Lila
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Medical Biosciences, Tokushima University
| | | |
Collapse
|
33
|
Richards SM, Campbell RB. Piloting Your Nanovehicle to Overcome Biological Barriers. Methods Mol Biol 2017; 1530:139-145. [PMID: 28150201 DOI: 10.1007/978-1-4939-6646-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Designing an effective nanoparticle for selective drug transport requires careful consideration of the complex biological barriers encountered in transit to the desired target. Here, we review several of these barriers, and provide possible methods for formulating liposomal nanoparticles to overcome them. The methods include the biotinylation of an antibody, and subsequent conjugation to a PEGylated cationic lipid nanoparticle. Additionally, the incorporation of drug, and other relevant characteristics of the nanoparticle are also discussed.
Collapse
Affiliation(s)
- Steven M Richards
- Department of Pharmaceutical Sciences, MCPHS University, 19 Foster Street, Worcester, MA, 01608, USA
| | - Robert B Campbell
- Department of Pharmaceutical Sciences, MCPHS University, 19 Foster Street, Worcester, MA, 01608, USA.
| |
Collapse
|
34
|
Abstract
A major limiting factor for the wide application of pH-sensitive liposomes is their recognition and sequestration by the phagocytes of the reticuloendothelial system, which conditions a very short circulation half-life. Typically prolonged circulation of liposomes is achieved by grafting their membranes with pegylated phospholipids (PEG-lipids), which have been shown, however, to deteriorate membrane integrity on one hand and to hamper the pH-responsiveness on the other. Hence, the need for novel alternative surface modifying agents to ensure effective half-life prolongation of pH-sensitive liposomes is a subject of intensive research. A series of copolymers having short blocks of lipid-mimetic units has been shown to sterically stabilize conventional liposomes based on different phospholipids. This has prompted us to broaden their utilization to pH-sensitive liposomes, too. The present contribution gives a thorough account on the chemical synthesis of these copolymers their incorporation in DOPE:CHEMs pH-sensitive liposomes and detailed explanation on the battery of techniques for the biopharmaceutical characterization of the prepared formulations in terms of pH-responsiveness, cellular internalization, in vivo pharmacokinetics and biodistribution.
Collapse
Affiliation(s)
- Denitsa Momekova
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria.
| | | | - Nikolay Lambov
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University-Sofia, 2 Dunav Str., 1000, Sofia, Bulgaria
| |
Collapse
|
35
|
Fugit KD, Anderson BD. Ion-Pairing Contribution to the Liposomal Transport of Topotecan as Revealed by Mechanistic Modeling. J Pharm Sci 2016; 106:1149-1161. [PMID: 28007561 DOI: 10.1016/j.xphs.2016.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/18/2022]
Abstract
Actively loaded liposomal formulations of anticancer agents have been widely explored due to their high drug encapsulation efficiencies and prolonged drug retention. Mathematical models to predict and optimize drug loading and release kinetics from these nanoparticle formulations would be useful in their development and may allow researchers to tune release profiles. Such models must account for the driving forces as influenced by the physicochemical properties of the drug and the microenvironment, and the liposomal barrier properties. This study employed mechanistic modeling to describe the active liposomal loading and release kinetics of the anticancer agent topotecan (TPT). The model incorporates ammonia transport resulting in generation of a pH gradient, TPT dimerization, TPT lactone ring-opening and -closing interconversion kinetics, chloride transport, and transport of TPT-chloride ion-pairs to describe the active loading and release kinetics of TPT in the presence of varying chloride concentrations. Model-based predictions of the kinetics of active loading at varying loading concentrations of TPT and release under dynamic dialysis conditions were in reasonable agreement with experiments. These findings identify key attributes to consider in optimizing and predicting loading and release of liposomal TPT that may also be applicable to liposomal formulations of other weakly basic pharmaceuticals.
Collapse
Affiliation(s)
- Kyle D Fugit
- Department of Pharmaceutical Development, Metrics Contract Services, Greenville, NC 27834
| | - Bradley D Anderson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky 40536.
| |
Collapse
|
36
|
Thewalt J, Tieleman DP. Biophysical experiments and simulation in nanoparticle-based drug delivery systems. J Drug Target 2016; 24:768-773. [DOI: 10.1080/1061186x.2016.1221957] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jenifer Thewalt
- Department of Physics, Simon Fraser University, Burnaby, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, Canada
| | - D. Peter Tieleman
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, Calgary, Canada
| |
Collapse
|
37
|
Jung S, Lee S, Lee H, Yoon J, Lee EK. Oleic acid-embedded nanoliposome as a selective tumoricidal agent. Colloids Surf B Biointerfaces 2016; 146:585-9. [PMID: 27424089 DOI: 10.1016/j.colsurfb.2016.06.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Abstract
HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cell), a molecular complex of human α-lactalbumin and oleic acid, is known to have selective cytotoxic activity against certain types of tumors. This cytotoxicity is known to stem from water-insoluble oleic acid. In this study, we manufactured an alternative complex using liposome as an oleic acid delivery vesicle. We named this nanolipoplex LIMLET (LIposome Made LEthal to Tumor cell). The LIMLET vesicle contained approximately 90,200 oleic acid molecules inserted into its lipophilic phospholipid bilayer and had a nominal mean diameter of 127nm. Using a WST-1 assay, its cytotoxicity against two cancer cell lines, MDA-MB-231 (human breast cancer) and A549 (human lung cancer), were tested. The results were compared with that of a normal cell line, Vero (from monkey kidney). We found that (1) LIMLET showed distinctive cytotoxicity against A549 and MDA-MB-231 cells, whereas bare liposomes (containing no oleic acid) had no toxicity, even at high concentrations, and (2) LIMLET demonstrated selective, concentration-dependent toxicity against the cancer cells: the LD50 values of MDA-MB-231 and A549 cells were 1.3 and 2.2nM LIMLET, respectively, whereas the LD50 of Vero was 5.7nM. The strength of the tumoricidal effect appeared to stem from the number of oleic acid molecules present. Our result suggests that LIMLET, like HAMLET, is an interesting nanolipoplex that can potentially be developed into tumor treatments.
Collapse
Affiliation(s)
- Sujin Jung
- Department of Bionano Engineering, Hanyang University-ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Sangah Lee
- Department of Bionano Engineering, Hanyang University-ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hyejin Lee
- Department of Bionano Engineering, Hanyang University-ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Jaejin Yoon
- Department of Bionano Engineering, Hanyang University-ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - E K Lee
- Department of Bionano Engineering, Hanyang University-ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea.
| |
Collapse
|
38
|
Pathak P, Dhawan V, Magarkar A, Danne R, Govindarajan S, Ghosh S, Steiniger F, Chaudhari P, Gopal V, Bunker A, Róg T, Fahr A, Nagarsenker M. Design of cholesterol arabinogalactan anchored liposomes for asialoglycoprotein receptor mediated targeting to hepatocellular carcinoma: In silico modeling, in vitro and in vivo evaluation. Int J Pharm 2016; 509:149-158. [PMID: 27231122 DOI: 10.1016/j.ijpharm.2016.05.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/14/2016] [Accepted: 05/21/2016] [Indexed: 02/06/2023]
Abstract
We have developed active targeting liposomes to deliver anticancer agents to ASGPR which will contribute to effective treatment of hepatocellular carcinoma. Active targeting is achieved through polymeric ligands on the liposome surface. The liposomes were prepared using reverse phase evaporation method and doxorubicin hydrocholoride, a model drug, was loaded using the ammonium sulphate gradient method. Liposomes loaded with DOX were found to have a particle size of 200nm with more than 90% entrapment efficiency. Systems were observed to release the drug in a sustained manner in acidic pH in vitro. Liposomes containing targeting ligands possessed greater and selective toxicity to ASGPR positive HepG2 cell lines due to specific ligand receptor interaction. Bio-distribution studies revealed that liposomes were concentrated in the liver even after 3h of administration, thus providing conclusive evidence of targeting potential for formulated nanosystems. Tumor regression studies indicated greater tumor suppression with targeted liposomes thereby establishing superiority of the liposomal system. In this work, we used a novel methodology to guide the determination of the optimal composition of the targeting liposomes: molecular dynamics (MD) simulation that aided our understanding of the behaviour of the ligand within the bilayer. This can be seen as a demonstration of the utility of this methodology as a rational design tool for active targeting liposome formulation.
Collapse
Affiliation(s)
- Pankaj Pathak
- Bombay College of Pharmacy, University of Mumbai, Mumbai 400098, India
| | - Vivek Dhawan
- Bombay College of Pharmacy, University of Mumbai, Mumbai 400098, India
| | - Aniket Magarkar
- Academy of the Sciences of the Czech Republic, Prague, Czech Republic; Centre for Drug Research, Division of Pharmaceutical Bioscience, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Reinis Danne
- Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland
| | - Srinath Govindarajan
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Sandipto Ghosh
- Small Animal Imaging Facility (SAIF), Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Kharghar, Mumbai 410210, India
| | - Frank Steiniger
- Center for Electron Microscopy of the Medical Faculty, Friedrich-Schiller-University Jena, Ziegelmühlenweg 1, D-07740 Jena, Germany
| | - Pradip Chaudhari
- Small Animal Imaging Facility (SAIF), Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Kharghar, Mumbai 410210, India
| | - Vijaya Gopal
- Council of Scientific and Industrial Research-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, India
| | - Alex Bunker
- Centre for Drug Research, Division of Pharmaceutical Bioscience, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, PO Box 692, FI-33101 Tampere, Finland
| | - Alfred Fahr
- Department of Pharmaceutical Technology, Friedrich-Schiller-University Jena, Lessing-str. 8, D-07743 Jena, Germany
| | | |
Collapse
|
39
|
Wehbe M, Chernov L, Chen K, Bally MB. PRCosomes: pretty reactive complexes formed in liposomes. J Drug Target 2016; 24:787-796. [DOI: 10.1080/1061186x.2016.1186169] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mohamed Wehbe
- Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lina Chernov
- Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kent Chen
- Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, BC, Canada
- Department of Interdisciplinary Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
| | - Marcel B. Bally
- Experimental Therapeutics, British Columbia Cancer Agency, Vancouver, BC, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Interdisciplinary Oncology, BC Cancer Research Centre, Vancouver, BC, Canada
- Center for Drug Research and Development, Vancouver, BC, Canada
| |
Collapse
|
40
|
Reduction and pH dual-responsive nanoparticles based chitooligosaccharide-based graft copolymer for doxorubicin delivery. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.01.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Wehbe M, Anantha M, Backstrom I, Leung A, Chen K, Malhotra A, Edwards K, Bally MB. Nanoscale Reaction Vessels Designed for Synthesis of Copper-Drug Complexes Suitable for Preclinical Development. PLoS One 2016; 11:e0153416. [PMID: 27055237 PMCID: PMC4824478 DOI: 10.1371/journal.pone.0153416] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/29/2016] [Indexed: 11/18/2022] Open
Abstract
The development of copper-drug complexes (CDCs) is hindered due to their very poor aqueous solubility. Diethyldithiocarbamate (DDC) is the primary metabolite of disulfiram, an approved drug for alcoholism that is being repurposed for cancer. The anticancer activity of DDC is dependent on complexation with copper to form copper bis-diethyldithiocarbamate (Cu(DDC)2), a highly insoluble complex that has not been possible to develop for indications requiring parenteral administration. We have resolved this issue by synthesizing Cu(DDC)2 inside liposomes. DDC crosses the liposomal lipid bilayer, reacting with the entrapped copper; a reaction that can be observed through a colour change as the solution goes from a light blue to dark brown. This method is successfully applied to other CDCs including the anti-parasitic drug clioquinol, the natural product quercetin and the novel targeted agent CX-5461. Our method provides a simple, transformative solution enabling, for the first time, the development of CDCs as viable candidate anticancer drugs; drugs that would represent a brand new class of therapeutics for cancer patients.
Collapse
Affiliation(s)
- Mohamed Wehbe
- Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Malathi Anantha
- Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ian Backstrom
- Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Ada Leung
- Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kent Chen
- Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Armaan Malhotra
- Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Katarina Edwards
- Department of Chemistry, University of Uppsala, 3 Husargatan (B7), Uppsala, Sweden
| | - Marcel B. Bally
- Experimental Therapeutics, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Center for Drug Research and Development, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Katti KS, Molla MS, Karandish F, Haldar MK, Mallik S, Katti DR. Sequential culture on biomimetic nanoclay scaffolds forms three-dimensional tumoroids. J Biomed Mater Res A 2016; 104:1591-602. [PMID: 26873510 DOI: 10.1002/jbm.a.35685] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/09/2016] [Indexed: 01/17/2023]
Abstract
In recent times, the limitation of two-dimensional cultures and complexity of in vivo models has paved the way for the development of three-dimensional models for studying cancer. Here we report the development of a new tumor model using PCL/HAPClay scaffolds seeded with a sequential culture of human mesenchymal stem cells (hMSCs) followed by human prostate cancer cells (HPCCs). This nanocomposite system is used as a test-bed for studying cancer metastasis and efficacy of anti-cancer drugs using a polymersome delivery method. A novel sequential cell culture system in three-dimensional in vitro bone model provides a unique bone mimetic environment. The hMSCs seeded scaffolds are seeded with prostate cancer cells after the hMSCs have differentiated into osteoblasts. Sequential culture on the scaffolds has shown formation of tumoroids or microtissue consisting of organized, densely packed round cells with hypoxic core regions similar to in vivo tumors. Such tumoroids are not observed on HPCC seeded scaffolds or when HPCCs sequentially cultured with human osteoblast cells. Clearly, the newly differentiated hMSCs play a vital role in the ability of cancer cells to grow into tumoroids and cause disease. The PCL/HAPclay scaffold system seeded with the sequential culture of hMSCs, and HPCCs presents a good model system for study of the interactions between prostate cancer cells and bone microenvironment. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1591-1602, 2016.
Collapse
Affiliation(s)
- Kalpana S Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota, 58105
| | - Md Shahjahan Molla
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota, 58105
| | - Fataneh Karandish
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105
| | - Manas K Haldar
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105
| | - Sanku Mallik
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, 58105
| | - Dinesh R Katti
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota, 58105
| |
Collapse
|
43
|
Wan C, Allen TM, Cullis PR. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv Transl Res 2015; 4:74-83. [PMID: 25786618 DOI: 10.1007/s13346-013-0161-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Therapeutics based on small interfering RNA (siRNA) have a huge potential for the treatment of disease but requires sophisticated delivery systems for in vivo applications. Lipid nanoparticles (LNP) are proven delivery systems for conventional small molecule drugs with over eight approved LNP drugs. Experience gained in the clinical development of LNP for the delivery of small molecules, combined with an understanding of the physical properties of lipids, can be applied to design LNP systems for in vivo delivery of siRNA. In particular, cationic lipids are required to achieve efficient encapsulation of oligonucleotides; however, the presence of a charge on LNP systems can result in toxic side effects and rapid clearance from the circulation. To address these problems, we have developed ionizable cationic lipids with pKa values below 7 that allow oligonucleotide encapsulation at low pH (e.g., pH 4) and a relatively neutral surface at physiological pH. Further optimization of cationic lipids to achieve maximized endosomal destabilization following uptake has resulted in LNP siRNA systems that can silence genes in hepatocytes at doses as low as 0.005 mg siRNA/kg body weight in mouse models. These systems have been shown to be highly effective clinically, with promising results for the treatment of hypercholesterolemia and transthyretin-induced amyloidosis among others. More LNP siRNA therapeutics, targeting different tissues and diseases, are expected to become available in the near future.
Collapse
Affiliation(s)
- C Wan
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada,
| | | | | |
Collapse
|
44
|
Alyane M, Barratt G, Lahouel M. Remote loading of doxorubicin into liposomes by transmembrane pH gradient to reduce toxicity toward H9c2 cells. Saudi Pharm J 2015; 24:165-75. [PMID: 27013909 PMCID: PMC4792903 DOI: 10.1016/j.jsps.2015.02.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/20/2015] [Indexed: 01/13/2023] Open
Abstract
The use of doxorubicin (DOX) is limited by its dose-dependent cardiotoxicity. Entrapped DOX in liposome has been shown to reduce cardiotoxicity. Results showed that about 92% of the total drug was encapsulated in liposome. The release experiments showed a weak DOX leakage in both culture medium and in PBS, more than 98% and 90% of the encapsulated DOX respectively was still retained in liposomes after 24 h of incubation. When the release experiments were carried out in phosphate buffer pH5.3, the leakage of DOX from liposomes reached 37% after 24 h of incubation. Evaluation of cellular uptake of the liposomal DOX indicated the possible endocytosis of liposomes because the majority of visible fluorescence of DOX was mainly in the cytoplasm, whereas the nuclear compartment showed a weak intensity. When using unloaded fluorescent-liposomes, the fluorescence was absent in nuclei suggests that liposomes cannot cross the nuclear membrane. MTT assay and measurement of LDH release suggest that necrosis is the form of cellular death predominates in H9c2 cells exposed to high doses of DOX, while for weak doses apoptosis could be the predominate form. Entrapped DOX reduced significantly DOX toxicity after 3 and 6 h of incubation, but after 20 h entrapped DOX is more toxic than free one.
Collapse
Affiliation(s)
- Mohamed Alyane
- Laboratoire de Toxicologie Moléculaire, Université de Jijel, BP 98, Ouled Aissa, 18000 Jijel, Algeria; Université Paris sud-11, UMR 8612, 5 rue JB Clémént, 92296 Châtenay-Malabry, France
| | - Gillian Barratt
- Université Paris sud-11, UMR 8612, 5 rue JB Clémént, 92296 Châtenay-Malabry, France
| | - Mesbah Lahouel
- Laboratoire de Toxicologie Moléculaire, Université de Jijel, BP 98, Ouled Aissa, 18000 Jijel, Algeria
| |
Collapse
|
45
|
Fugit KD, Jyoti A, Upreti M, Anderson BD. Insights into accelerated liposomal release of topotecan in plasma monitored by a non-invasive fluorescence spectroscopic method. J Control Release 2015; 197:10-9. [PMID: 25456833 PMCID: PMC4356028 DOI: 10.1016/j.jconrel.2014.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/29/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
A non-invasive fluorescence method was developed to monitor liposomal release kinetics of the anticancer agent topotecan (TPT) in physiological fluids and subsequently used to explore the cause of accelerated release in plasma. Analyses of fluorescence excitation spectra confirmed that unencapsulated TPT exhibits a red shift in its spectrum as pH is increased. This property was used to monitor TPT release from actively loaded liposomal formulations having a low intravesicular pH. Mathematical release models were developed to extract reliable rate constants for TPT release in aqueous solutions monitored by fluorescence and release kinetics obtained by HPLC. Using the fluorescence method, accelerated TPT release was observed in plasma as previously reported in the literature. Simulations to estimate the intravesicular pH were conducted to demonstrate that accelerated release correlated with alterations in the low intravesicular pH. This was attributed to the presence of ammonia in plasma samples rather than proteins and other plasma components generally believed to alter release kinetics in physiological samples. These findings shed light on the critical role that ammonia may play in contributing to the preclinical/clinical variability and performance seen with actively-loaded liposomal formulations of TPT and other weakly-basic anticancer agents.
Collapse
Affiliation(s)
- Kyle D Fugit
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Amar Jyoti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Meenakshi Upreti
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Bradley D Anderson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| |
Collapse
|
46
|
Yeo SY, de Smet M, Langereis S, Vander Elst L, Muller RN, Grüll H. Temperature-sensitive paramagnetic liposomes for image-guided drug delivery: Mn2+ versus [Gd(HPDO3A)(H2O)]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2807-16. [DOI: 10.1016/j.bbamem.2014.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 06/29/2014] [Accepted: 07/15/2014] [Indexed: 01/08/2023]
|
47
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014; 53:12320-64. [PMID: 25294565 DOI: 10.1002/anie.201403036] [Citation(s) in RCA: 744] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 12/18/2022]
Abstract
In medicine, nanotechnology has sparked a rapidly growing interest as it promises to solve a number of issues associated with conventional therapeutic agents, including their poor water solubility (at least, for most anticancer drugs), lack of targeting capability, nonspecific distribution, systemic toxicity, and low therapeutic index. Over the past several decades, remarkable progress has been made in the development and application of engineered nanoparticles to treat cancer more effectively. For example, therapeutic agents have been integrated with nanoparticles engineered with optimal sizes, shapes, and surface properties to increase their solubility, prolong their circulation half-life, improve their biodistribution, and reduce their immunogenicity. Nanoparticles and their payloads have also been favorably delivered into tumors by taking advantage of the pathophysiological conditions, such as the enhanced permeability and retention effect, and the spatial variations in the pH value. Additionally, targeting ligands (e.g., small organic molecules, peptides, antibodies, and nucleic acids) have been added to the surface of nanoparticles to specifically target cancerous cells through selective binding to the receptors overexpressed on their surface. Furthermore, it has been demonstrated that multiple types of therapeutic drugs and/or diagnostic agents (e.g., contrast agents) could be delivered through the same carrier to enable combination therapy with a potential to overcome multidrug resistance, and real-time readout on the treatment efficacy. It is anticipated that precisely engineered nanoparticles will emerge as the next-generation platform for cancer therapy and many other biomedical applications.
Collapse
Affiliation(s)
- Tianmeng Sun
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332 (USA)
| | | | | | | | | | | |
Collapse
|
48
|
Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Maßgeschneiderte Nanopartikel für den Wirkstofftransport in der Krebstherapie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403036] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Hood RR, Vreeland WN, DeVoe DL. Microfluidic remote loading for rapid single-step liposomal drug preparation. LAB ON A CHIP 2014; 14:3359-67. [PMID: 25003823 PMCID: PMC4131864 DOI: 10.1039/c4lc00390j] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Microfluidic-directed formation of liposomes is combined with in-line sample purification and remote drug loading for single step, continuous-flow synthesis of nanoscale vesicles containing high concentrations of stably loaded drug compounds. Using an on-chip microdialysis element, the system enables rapid formation of large transmembrane pH and ion gradients, followed by immediate introduction of amphipathic drug for real-time remote loading into the liposomes. The microfluidic process enables in-line formation of drug-laden liposomes with drug : lipid molar ratios of up to 1.3, and a total on-chip residence time of approximately 3 min, representing a significant improvement over conventional bulk-scale methods which require hours to days for combined liposome synthesis and remote drug loading. The microfluidic platform may be further optimized to support real-time generation of purified liposomal drug formulations with high concentrations of drugs and minimal reagent waste for effective liposomal drug preparation at or near the point of care.
Collapse
Affiliation(s)
- R R Hood
- Department of Bioengineering, University of Maryland, College Park, MD, USA.
| | | | | |
Collapse
|
50
|
Viglianti BL, Dewhirst MW, Boruta RJ, Park JY, Landon C, Fontanella AN, Guo J, Manzoor A, Hofmann CL, Palmer GM. Systemic anti-tumour effects of local thermally sensitive liposome therapy. Int J Hyperthermia 2014; 30:385-92. [PMID: 25164143 DOI: 10.3109/02656736.2014.944587] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE There were two primary objectives of this study: (1) to determine whether treatment of a tumour site with systemically administered thermally sensitive liposomes and local hyperthermia (HT) for triggered release would have dual anti-tumour effect on the primary heated tumour as well as an unheated secondary tumour in a distant site, and (2) to determine the ability of non-invasive optical spectroscopy to predict treatment outcome. The optical end points studied included drug levels, metabolic markers flavin adenine dinucleotide (FAD), nicotinamide adenine dinucleotide phosphate (NAD(P)H), and physiological markers (total haemoglobin (Hb) and Hb oxygen saturation) before and after treatment. MATERIALS AND METHODS Mice were inoculated with SKOV3 human ovarian carcinoma in both hind legs. One tumour was selected for local hyperthermia and subsequent systemic treatment. There were four treatment groups: control, DOXIL (non-thermally sensitive liposomes containing doxorubicin), and two different thermally sensitive liposome formulations containing doxorubicin. Optical spectroscopy was performed prior to therapy, immediately after treatment, and 6, 12, and 24 h post therapy. RESULTS Tumour growth delay was seen with DOXIL and the thermally sensitive liposomes in the tumours that were heated, similar to previous studies. Tumour growth delay was also seen in the opposing tumour in the thermally sensitive liposome-treated groups. Optical spectroscopy demonstrated correlation between growth delay, doxorubicin (DOX) levels, and changes of NAD(P)H from baseline levels. Hb and Hb saturation were not correlated with growth delay. DISCUSSION The study demonstrated that thermally sensitive liposomes affect the primary heated tumour as well as systemic efficacy. Non-invasive optical spectroscopy methods were shown to be useful in predicting efficacy at early time points post-treatment.
Collapse
|