1
|
Faraj SE, Valsecchi WM, Cerf NT, Fedosova NU, Rossi RC, Montes MR. The interaction of Na +, K +, and phosphate with the gastric H,K-ATPase. Kinetics of E1-E2 conformational changes assessed by eosin fluorescence measurements. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183477. [PMID: 32949561 DOI: 10.1016/j.bbamem.2020.183477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
Abstract
H,K-ATPase and Na,K-ATPase show the highest degree of sequence similarity among all other members of the P-type ATPases family. To explore their common features in terms of ligand binding, we evaluated conformational transitions due to the binding of Na+, K+ and Pi in the H,K-ATPase, and compared the results with those obtained for the Na,K-ATPase. This work shows that eosin fluorescence time courses provide a reasonably precise method to study the kinetics of the E1-E2 conformational changes in the H,K-ATPase. We found that, although Na+ shifts the equilibrium toward the E1 conformation and seems to compete with H+ in ATPase activity assays, it was neither possible to isolate a Na+-occluded state, nor to reveal an influx of Na+ related to H,K-ATPase activity. The high rate of the E2K → E1 transition found for the H,K-ATPase, which is not compatible with the presence of a K+-occluded form, agrees with the negligible level of occluded Rb+ (used as a K+ congener) found in the absence of added ligands. The use of vanadate and fluorinated metals to induce E2P-like states increased the level of occluded Rb+ and suggests that-during dephosphorylation-the probability of K+ to remain occluded increases from the E2P-ground to the E2P-product state. From kinetic experiments we found an unexpected increase in the values of kobs for E2P formation with [Pi]; consequently, to obey the Albers-Post model, the binding of Pi to the E2 state cannot be a rapid-equilibrium reaction.
Collapse
Affiliation(s)
- S E Faraj
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - W M Valsecchi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N T Cerf
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - N U Fedosova
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - R C Rossi
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina
| | - M R Montes
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica, Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires, Instituto de Química y Fisicoquímica Biológicas "Prof. Alejandro C. Paladini" (IQUIFIB), Buenos Aires, Argentina.
| |
Collapse
|
2
|
Abe K, Tani K, Fujiyoshi Y. Systematic comparison of molecular conformations of H+,K+-ATPase reveals an important contribution of the A-M2 linker for the luminal gating. J Biol Chem 2014; 289:30590-30601. [PMID: 25231997 PMCID: PMC4215238 DOI: 10.1074/jbc.m114.584623] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Gastric H+,K+-ATPase, an ATP-driven proton pump responsible for gastric acidification, is a molecular target for anti-ulcer drugs. Here we show its cryo-electron microscopy (EM) structure in an E2P analog state, bound to magnesium fluoride (MgF), and its K+-competitive antagonist SCH28080, determined at 7 Å resolution by electron crystallography of two-dimensional crystals. Systematic comparison with other E2P-related cryo-EM structures revealed that the molecular conformation in the (SCH)E2·MgF state is remarkably distinguishable. Although the azimuthal position of the A domain of the (SCH)E2·MgF state is similar to that in the E2·AlF (aluminum fluoride) state, in which the transmembrane luminal gate is closed, the arrangement of transmembrane helices in the (SCH)E2·MgF state shows a luminal-open conformation imposed on by bound SCH28080 at its luminal cavity, based on observations of the structure in the SCH28080-bound E2·BeF (beryllium fluoride) state. The molecular conformation of the (SCH)E2·MgF state thus represents a mixed overall structure in which its cytoplasmic and luminal half appear to be independently modulated by a phosphate analog and an antagonist bound to the respective parts of the enzyme. Comparison of the molecular conformations revealed that the linker region connecting the A domain and the transmembrane helix 2 (A-M2 linker) mediates the regulation of luminal gating. The mechanistic rationale underlying luminal gating observed in H+,K+-ATPase is consistent with that observed in sarcoplasmic reticulum Ca2+-ATPase and other P-type ATPases and is most likely conserved for the P-type ATPase family in general.
Collapse
Affiliation(s)
- Kazuhiro Abe
- Cellular and Structural Physiology Institute and Nagoya University, Nagoya 464-8601, Japan; Graduate School of Pharmaceutical Science, Nagoya University, Nagoya 464-8601, Japan.
| | - Kazutoshi Tani
- Cellular and Structural Physiology Institute and Nagoya University, Nagoya 464-8601, Japan
| | - Yoshinori Fujiyoshi
- Cellular and Structural Physiology Institute and Nagoya University, Nagoya 464-8601, Japan; Graduate School of Pharmaceutical Science, Nagoya University, Nagoya 464-8601, Japan
| |
Collapse
|
3
|
Yoon YA, Kim DH, Lee BM, Kim TK, Cha MH, Sim JY, Kim JG. Novel 1H-pyrrolo[2,3-c]pyridines as acid pump antagonists (APAs). Bioorg Med Chem Lett 2010; 20:5237-40. [DOI: 10.1016/j.bmcl.2010.06.143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/11/2010] [Accepted: 06/30/2010] [Indexed: 01/11/2023]
|
4
|
Affiliation(s)
- Jai Moo Shin
- Department of Physiology and Medicine, University of California at Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | |
Collapse
|
5
|
Piche T, Galmiche JP. Pharmacological targets in gastro-oesophageal reflux disease. Basic Clin Pharmacol Toxicol 2006; 97:333-41. [PMID: 16364047 DOI: 10.1111/j.1742-7843.2005.pto_273.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although proton pump inhibitors have become the mainstay of treatment in gastro-oesophageal reflux disease (GORD), there are still unmet needs in the management of this very common disorder. For example, all current proton pump inhibitors have a relatively slow onset of action and their activity is limited mainly to the post-prandial period with far less effective inhibition of nocturnal acid secretion. In order to achieve more potent, rapid and sustained acid inhibition several compounds are currently under development, such as new proton pump inhibitors with a prolonged plasma half-life, potassium competitive ATPase blockers (PCABs), histamine H3 agonists, and gastrin antagonists. Acid suppression does not, however, cure the disease and relapses are frequently observed after discontinuation of proton pump inhibitor therapy. Among the different abnormalities involved in the pathophysiology of this multifactorial disease, transient lower oesophageal sphincter relaxations represent the major mechanism responsible for episodes of reflux. Baclofen, the prototype GABA(B) receptor agonist, is one of the most potent inhibitors of transient lower oesophageal sphincter relaxations identified. To date the transfer of these relaxation-controlling pharmacological agents into clinical practice has however been hampered by the occurrence of unacceptable side effects. Beside "anti-relaxation therapy", the potential of novel prokinetics such as motilin agonists has been explored, especially since the motilin receptor has been cloned. Thus far the broad therapeutic value of prokinetics in GORD does, however, seem very limited in terms of efficacy with respect to oesophageal motility and acid exposure. Lastly, further research is necessary to better understand the complex mechanisms involved in oesophageal sensitivity and mucosal defence.
Collapse
|
6
|
Shin JM, Grundler G, Senn-Bilfinger J, Simon WA, Sachs G. Functional consequences of the oligomeric form of the membrane-bound gastric H,K-ATPase. Biochemistry 2006; 44:16321-32. [PMID: 16331993 DOI: 10.1021/bi051342q] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cross-linking and two-dimensional crystallization studies have suggested that the membrane-bound gastric H,K-ATPase might be a dimeric alpha,beta-heterodimer. Effects of an oligomeric structure on the characteristics of E(1), E(2), and phosphoenzyme conformations were examined by measuring binding stoichiometries of acid-stable phosphorylation (EP) from [gamma-(32)P]ATP or (32)P(i) or of binding of [gamma-(32)P]ATP and of a K(+)-competitive imidazonaphthyridine (INT) inhibitor to an enzyme preparation containing approximately 5 nmol of ATPase/mg of protein. At <10 microM MgATP, E(1)[ATP].Mg.(H(+)):E(2) is formed at a high-affinity site, and is then converted to E(1)P.Mg.(H(+)):E(2) and then to E(2)P.Mg:E(1) with luminal proton extrusion. Maximal acid-stable phosphorylation yielded 2.65 nmol/mg of protein. Luminal K(+)-dependent dephosphorylation returns this conformation to the E(1) form. At high MgATP concentrations (>0.1 mM), the oligomer forms E(2)P.Mg:E(1)[ATP].Mg.(H(+)). The sum of the levels of maximal EP formation and ATP binding was 5.3 nmol/mg. The maximal amount of [(3)H]INT bound was 2.6 nmol/mg in the presence of MgATP, Mg(2+), Mg-P(i), or Mg-vanadate with complete inhibition of activity. K(+) displaced INT only in nigericin-treated vesicles, and thus, INT binds to the luminal surface of the E(2) form. INT-bound enzyme also formed 2.6 nmol of EP/mg at high ATP concentrations by formation of E(2).Mg.(INT)(exo):E(1)[ATP].Mg.(H(+)) which is converted to E(2).Mg.(INT)(exo):E(1)P.Mg.(H(+))(cyto), but this E(1)P form was K(+)-insensitive. Binding of the inhibitor fixes half the oligomer in the E(2) form with full inhibition of activity, while the other half of the oligomer is able to form E(1)P only when the inhibitor is bound. It appears that the catalytic subunits of the oligomer during turnover in intact gastric vesicles are restricted to a reciprocal E(1):E(2) configuration.
Collapse
Affiliation(s)
- Jai Moo Shin
- Department of Physiology and Medicine, University of California at Los Angeles, and VA Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA. jaishin@ ucla.edu
| | | | | | | | | |
Collapse
|
7
|
Abstract
Proton pump inhibitors, which act at the terminal point of acid secretion--the H+, K+-ATPase--are currently the most effective pharmacological treatments available for reflux disease. Despite the efficacy of the proton pump inhibitors, there is still potential for clinical improvement in gastro-oesophageal reflux disease pharmacotherapy. Faster onset of complete acid inhibition and improved duration of efficacy are two potential areas for improvement A number of novel pharmaceutical agents are currently undergoing clinical evaluation for the treatment of gastro-oesophageal reflux disease. These include transient lower oesophageal sphincter relaxation-reducing agents, serotonergic agents/prokinetics, potassium-competitive acid blockers, mucosal protectants, histamine H3 agonists and anti-gastrin agents. One or more of these drug groups may represent the future medical therapy for gastro-oesophageal reflux disease, should they prove effective in the clinical setting. This review summarizes the state of the art with these agents.
Collapse
Affiliation(s)
- N Vakil
- University of Wisconsin Medical School, Madison, WI, USA.
| |
Collapse
|
8
|
Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 2004; 22:6267-76. [PMID: 14633986 PMCID: PMC291840 DOI: 10.1093/emboj/cdg599] [Citation(s) in RCA: 804] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is an unmet medical need for anabolic treatments to restore lost bone. Human genetic bone disorders provide insight into bone regulatory processes. Sclerosteosis is a disease typified by high bone mass due to the loss of SOST expression. Sclerostin, the SOST gene protein product, competed with the type I and type II bone morphogenetic protein (BMP) receptors for binding to BMPs, decreased BMP signaling and suppressed mineralization of osteoblastic cells. SOST expression was detected in cultured osteoblasts and in mineralizing areas of the skeleton, but not in osteoclasts. Strong expression in osteocytes suggested that sclerostin expressed by these central regulatory cells mediates bone homeostasis. Transgenic mice overexpressing SOST exhibited low bone mass and decreased bone strength as the result of a significant reduction in osteoblast activity and subsequently, bone formation. Modulation of this osteocyte-derived negative signal is therapeutically relevant for disorders associated with bone loss.
Collapse
Affiliation(s)
- David G Winkler
- Department of Gene Function and Target Validation, Celltech R&D, Inc., Bothell, WA 98021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Thomas LE, Burguillos L, del Castillo JR. Backdoor phosphorylation of basolateral plasma membranes of small intestinal epithelial cells: characterization of a furosemide-induced phosphoprotein related to the second sodium pump. Arch Biochem Biophys 2003; 419:190-7. [PMID: 14592462 DOI: 10.1016/j.abb.2003.08.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Enterocyte has two different Na+-stimulated ATPases, the ouabain-sensitive Na+/K+ ATPase and a furosemide-inhibitable Na+ ATPase. To identify the polypeptide associated with the Na+-ATPase, 32Pi phosphorylation into basolateral membranes of enterocyte was investigated. Both, ouabain and furosemide induced Mg2+-dependent, vanadate-sensitive 32Pi incorporation into a 100kDa polypeptide. K(m) for Pi was 17.7+/-1.82 microM and 16.8+/-0.69 microM for ouabain-induced and furosemide-induced phosphorylation, respectively. K(m) for furosemide was 1.3+/-0.21 mM. Furosemide-induced 32Pi incorporation was sensitive to alkaline pH and hydroxylamine suggesting an acyl-phosphate bond. Na+ and K+ inhibited 32Pi incorporation induced by ouabain. In contrast, Na+ stimulated furosemide-induced phosphorylation with a K(m) of 16.5+/-5.59 mM while K+ had no effect. Purified Na+/K+ ATPase only presented ouabain-induced phosphoprotein, indicating that furosemide-induced phosphorylation is not related to this enzyme and appears to correspond to a new member of P-type ATPases associated with the second Na+ pump.
Collapse
Affiliation(s)
- Luz E Thomas
- Laboratorio de Fisiología Gastrointestinal, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, 1020-A Caracas, Venezuela
| | | | | |
Collapse
|
10
|
Shin JM, Goldshleger R, Munson KB, Sachs G, Karlish SJ. Selective Fe2+-catalyzed oxidative cleavage of gastric H+,K+-ATPase: implications for the energy transduction mechanism of P-type cation pumps. J Biol Chem 2001; 276:48440-50. [PMID: 11585827 DOI: 10.1074/jbc.m106864200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of ascorbate/H(2)O(2), Fe(2+) ions or the ATP-Fe(2+) complex catalyze selective cleavage of the alpha subunit of gastric H(+),K(+)-ATPase. The electrophoretic mobilities of the fragments and dependence of the cleavage patterns on E(1) and E(2) conformational states are essentially identical to those described previously for renal Na(+),K(+)-ATPase. The cleavage pattern of H(+),K(+)-ATPase by Fe(2+) ions is consistent with the existence of two Fe(2+) sites: site 1 within highly conserved sequences in the P and A domains, and site 2 at the cytoplasmic entrance to trans-membrane segments M3 and M1. The change in the pattern of cleavage catalyzed by Fe(2+) or the ATP-Fe(2+) complex induced by different ligands provides evidence for large conformational movements of the N, P, and A cytoplasmic domains of the enzyme. The results are consistent with the Ca(2+)-ATPase crystal structure (Protein Data Bank identification code; Toyoshima, C., Nakasako, M., Nomura, H., and Ogawa, H. (2000) Nature 405, 647-655), an E(1)Ca(2+) conformation, and a theoretical model of Ca(2+)-ATPase in an E(2) conformation (Protein Data Bank identification code ). Thus, it can be presumed that the movements of N, P, and A cytoplasmic domains, associated with the E(1) <--> E(2) transitions, are similar in all P-type ATPases. Fe(2+)-catalyzed cleavage patterns also reveal sequences involved in phosphate, Mg(2+), and ATP binding, which have not yet been shown in crystal structures, as well as changes which occur in E(1) <--> E(2) transitions, and subconformations induced by H(+),K(+)-ATPase-specific ligands such as SCH28080.
Collapse
Affiliation(s)
- J M Shin
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
11
|
Koenderink JB, Hermsen HP, Swarts HG, Willems PH, De Pont JJ. High-affinity ouabain binding by a chimeric gastric H+,K+-ATPase containing transmembrane hairpins M3-M4 and M5-M6 of the alpha 1-subunit of rat Na+,K+-ATPase. Proc Natl Acad Sci U S A 2000; 97:11209-14. [PMID: 11016952 PMCID: PMC17179 DOI: 10.1073/pnas.200109597] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Na(+),K(+)-ATPase and gastric H(+),K(+)-ATPase are two related enzymes that are responsible for active cation transport. Na(+), K(+)-ATPase activity is inhibited specifically by ouabain, whereas H(+),K(+)-ATPase is insensitive to this drug. Because it is not known which parts of the catalytic subunit of Na(+),K(+)-ATPase are responsible for ouabain binding, we prepared chimeras in which small parts of the alpha-subunit of H(+),K(+)-ATPase were replaced by their counterparts of the alpha(1)-subunit of rat Na(+),K(+)-ATPase. A chimeric enzyme in which transmembrane segments 5 and 6 of H(+), K(+)-ATPase were replaced by those of Na(+),K(+)-ATPase could form a phosphorylated intermediate, but hardly showed a K(+)-stimulated dephosphorylation reaction. When transmembrane segments 3 and 4 of Na(+),K(+)-ATPase were also included in this chimeric ATPase, K(+)-stimulated dephosphorylation became apparent. This suggests that there is a direct interaction between the hairpins M3-M4 and M5-M6. Remarkably, this chimeric enzyme, HN34/56, had obtained a high-affinity ouabain-binding site, whereas the rat Na(+), K(+)-ATPase, from which the hairpins originate, has a low affinity for ouabain. The low affinity of the rat Na(+),K(+)-ATPase previously had been attributed to the presence of two charged amino acids in the extracellular domain between M1 and M2. In the HN34/56 chimera, the M1/M2 loop, however, originates from H(+),K(+)-ATPase, which has two polar uncharged amino acids on this position. Placement of two charged amino acids in the M1/M2 loop of chimera HN34/56 results in a decreased ouabain affinity. This indicates that although the M1/M2 loop affects the ouabain affinity, binding occurs when the M3/M4 and M5/M6 hairpins of Na(+),K(+)-ATPase are present.
Collapse
Affiliation(s)
- J B Koenderink
- Department of Biochemistry, Institute of Cellular Signaling, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
12
|
Swarts HG, Hermsen HP, Koenderink JB, Schuurmans Stekhoven FM, De Pont JJ. Constitutive activation of gastric H+,K+-ATPase by a single mutation. EMBO J 1998; 17:3029-35. [PMID: 9606185 PMCID: PMC1170642 DOI: 10.1093/emboj/17.11.3029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the reaction cycle of P-type ATPases, an acid-stable phosphorylated intermediate is formed which is present in an intracellularly located domain of the membrane-bound enzymes. In some of these ATPases, such as Na+,K+-ATPase and gastric H+, K+-ATPase, extracellular K+ ions stimulate the rate of dephosphorylation of this phosphorylated intermediate and so stimulate the ATPase activity. The mechanism by which extracellular K+ ions stimulate the dephosphorylation process is unresolved. Here we show that three mutants of gastric H+,K+-ATPase lacking a negative charge on residue 820, located in transmembrane segment six of the alpha-subunit, have a high SCH 28080-sensitive, but K+-insensitive ATPase activity. This high activity is caused by an increased 'spontaneous' rate of dephosphorylation of the phosphorylated intermediate. A mutant with an aspartic acid instead of a glutamic acid residue in position 820 showed hardly any ATPase activity in the absence of K+, but K+ ions stimulated ATPase activity and the dephosphorylation process. These findings indicate that the negative charge normally present on residue 820 inhibits the dephosphorylation process. K+ ions do not stimulate dephosphorylation of the phosphorylated intermediate directly, but act by neutralizing the inhibitory effect of a negative charge in the membrane.
Collapse
Affiliation(s)
- H G Swarts
- Department of Biochemistry, Institute of Cellular Signalling, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
13
|
Swarts HG, Klaassen CH, de Boer M, Fransen JA, De Pont JJ. Role of negatively charged residues in the fifth and sixth transmembrane domains of the catalytic subunit of gastric H+,K+-ATPase. J Biol Chem 1996; 271:29764-72. [PMID: 8939913 DOI: 10.1074/jbc.271.47.29764] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of six negatively charged residues located in or around the fifth and sixth transmembrane domain of the catalytic subunit of gastric H+,K+-ATPase, which are conserved in P-type ATPases, was investigated by site-directed mutagenesis of each of these residues. The acid residues were converted into their corresponding acid amides. Sf9 cells were used as the expression system using a baculovirus with coding sequences for the alpha- and beta-subunits of H+,K+-ATPase behind two different promoters. Both subunits of all mutants were expressed like the wild type enzyme in intracellular membranes of Sf9 cells as indicated by Western blotting experiments, an enzyme-linked immunosorbent assay, and confocal laser scan microscopy studies. The mutants D824N, E834Q, E837Q, and D839N showed no 3-(cyanomethyl)-2-methyl-8(phenylmethoxy)-imidazo[1, 2a]pyridine (SCH 28080)-sensitive ATP dependent phosphorylation capacity. Mutants E795Q and E820Q formed a phosphorylated intermediate, which, like the wild type enzyme, was hydroxylamine-sensitive, indicating that an acylphosphate was formed. Formation of the phosphorylated intermediate from the E795Q mutant was similarly inhibited by K+ (I50 = 0.4 mM) and SCH 28080 (I50 = 10 nM) as the wild type enzyme, when the membranes were preincubated with these ligands before phosphorylation. The dephosphorylation reaction was K+-sensitive, whereas ADP had hardly any effect. Formation of the phosphorylated intermediate of mutant E820Q was much less sensitive toward K+ (I50 = 4.5 mM) and SCH 28080 (I50 = 1.7 microM) than the wild type enzyme. The dephosphorylation reaction of this intermediate was not stimulated by either K+ or ADP. In contrast to the wild type enzyme and mutant E795Q, mutant E820Q did not show any K+-stimulated ATPase activity. These findings indicate that residue Glu820 might be involved in K+ binding and transition to the E2 form of gastric H+,K+-ATPase.
Collapse
Affiliation(s)
- H G Swarts
- Department of Biochemistry, Institute of Cellular Signalling, University of Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
14
|
Swarts HG, Klaassen CH, Schuurmans Stekhoven FM, De Pont JJ. Tertiary amines as antagonists of both the luminal and cytosolic K(+)-site of gastric H,K-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1189:143-51. [PMID: 8292618 DOI: 10.1016/0005-2736(94)90059-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tertiary amines like imidazole and triallylamine lower the apparent affinity of K+ in the ATP hydrolysis reaction of pig gastric H,K-ATPase in a pH and amine concentration dependent way. The mechanism and sidedness of this effect was studied by analyzing the partial reactions of the enzyme in both leaky and ion-tight vesicles. In leaky vesicles Tris and Hepes had nearly no effect on the apparent Km for K+ in the ATPase reaction, but imidazole (Ki = 13 mM) and triallylamine (Ki = 1.6 mM) markedly decreased the K+ affinity. The steady-state ATP-phosphorylation level in the absence of K+ was not or only slightly affected by these compounds. The reduction of the ATP-phosphorylation level by K+, however, again depended on both the type and concentration of tertiary amine used. A comparable K(+)-amine antagonism was observed in the dephosphorylation reaction. In tightly sealed vesicles, where no activation of K+ at the luminal side could occur, K+ reduced the affinity for ATP in the phosphorylation reaction. Triallylamine counteracted this effect. The K(+)-activated p-nitrophenylphosphatase activity in these ion-tight vesicles also showed a K(+)-triallylamine antagonism. Inhibition of H,K-ATPase activity in these vesicles by triallylamine was immediate (with nigericin present in order to allow intravesicular K+ activation), suggesting the transmembrane feature of this inhibition. These results indicate that tertiary amines decrease the affinity for K+ at both luminal and cytosolic binding sites by interaction at the cytosolic side of the membrane. This results in shifts in the equilibrium of both the E1.H<==>E1.K transition and in the dephosphorylation reaction, E2-P-->E2.K.
Collapse
Affiliation(s)
- H G Swarts
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
15
|
Pope AJ, Parsons ME. Reversible inhibitors of the gastric H+/K(+)-transporting ATPase: a new class of anti-secretory agent. Trends Pharmacol Sci 1993; 14:323-5. [PMID: 8249153 DOI: 10.1016/0165-6147(93)90004-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- A J Pope
- Cellular Biochemistry Department, Smith-Kline Beecham, The Frythe, Welwyn, UK
| | | |
Collapse
|
16
|
Klaassen CH, Van Uem TJ, De Moel MP, De Caluwé GL, Swarts HG, De Pont JJ. Functional expression of gastric H,K-ATPase using the baculovirus expression system. FEBS Lett 1993; 329:277-82. [PMID: 8396043 DOI: 10.1016/0014-5793(93)80237-o] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A novel approach to construct a single recombinant baculovirus expressing two protein subunits simultaneously by replacing polyhedrin as well as p10 coding sequences is described. The recombinant baculovirus expressed the alpha- as well as the beta-subunit of the gastric H,K-ATPase. Sf9 cells infected with this virus exhibited a K(+)- and SCH 28080-sensitive ATP-dependent phosphorylation capacity in purified Sf9 membranes similar to native H,K-ATPase. This activity was not present in control membranes containing only one of the two H,K-ATPase subunits. We therefore conclude that both subunits are essential for the phosphorylation capacity of H,K-ATPase.
Collapse
Affiliation(s)
- C H Klaassen
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
17
|
Chapter 2 Structure and function of gastric H,K-ATPase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|