1
|
Advances in Liposome-Encapsulated Phthalocyanines for Photodynamic Therapy. Life (Basel) 2023; 13:life13020305. [PMID: 36836662 PMCID: PMC9965606 DOI: 10.3390/life13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
This updated review aims to describe the current status in the development of liposome-based systems for the targeted delivery of phthalocyanines for photodynamic therapy (PDT). Although a number of other drug delivery systems (DDS) can be found in the literature and have been studied for phthalocyanines or similar photosensitizers (PSs), liposomes are by far the closest to clinical practice. PDT itself finds application not only in the selective destruction of tumour tissues or the treatment of microbial infections, but above all in aesthetic medicine. From the point of view of administration, some PSs can advantageously be delivered through the skin, but for phthalocyanines, systemic administration is more suitable. However, systemic administration places higher demands on advanced DDS, active tissue targeting and reduction of side effects. This review focuses on the already described liposomal DDS for phthalocyanines, but also describes examples of DDS used for structurally related PSs, which can be assumed to be applicable to phthalocyanines as well.
Collapse
|
2
|
Zhang Y, Li K, Han X, Chen Q, Shao L, Bai D. A photochemical-responsive nanoparticle boosts doxorubicin uptake to suppress breast cancer cell proliferation by apoptosis. Sci Rep 2022; 12:10354. [PMID: 35725767 PMCID: PMC9209492 DOI: 10.1038/s41598-022-14518-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023] Open
Abstract
In the course of chemotherapy for breast cancer, doxorubicin (DOX) is one of the most commonly prescribed agents. However, it has been recognized as clinically circumscribed on account of its poor selectivity and toxic reactions to normal tissues. Fortunately, the distinct merit of photochemical-responsive nanoparticle delivery systems to enhance cellular drugs uptake through localized concentration, adequate selective and minimizing systemic toxicity has aroused substantial interest recently. In this study, we synthesized photochemical-responsive nanoparticle by incorporating DOX, curcumin (CUR), and perfluorooctyl bromide (PFOB) into poly(lactic-co-glycolic acid) (PLGA) via double emulsification (DOX-CUR-PFOB-PLGA). The synthesized composite nanoparticles, which featured good ultrasound imaging, engendered photochemical activation for drug release when given laser irradiation. Cumulative release rates for DOX were 76.34%, and for CUR were 83.64%, respectively. Also, MCF-7 cells displayed significant intracellular DOX uptake and reactive oxygen species (ROS) levels, degraded cytoskeleton, and decreased cell growth and migration capacity. At the molecular level, cellular pAKT levels decreased, which resulted in downregulated HIF-1α and BAX/BCl-2 levels, leading to Caspase-3 activation and thus induction of apoptosis. Therefore, the photochemical-responsive nanoparticles possess the potential to elicit apoptosis in MCF-7 cells via enhanced DOX uptake.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Kaiting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Lan Shao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Salkho NM, Awad NS, Pitt WG, Husseini GA. Photo-Induced Drug Release from Polymeric Micelles and Liposomes: Phototriggering Mechanisms in Drug Delivery Systems. Polymers (Basel) 2022; 14:1286. [PMID: 35406160 PMCID: PMC9003562 DOI: 10.3390/polym14071286] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Chemotherapeutic drugs are highly effective in treating cancer. However, the side effects associated with this treatment lower the quality of life of cancer patients. Smart nanocarriers are able to encapsulate these drugs to deliver them to tumors while reducing their contact with the healthy cells and the subsequent side effects. Upon reaching their target, the release of the encapsulated drugs should be carefully controlled to achieve therapeutic levels at the required time. Light is one of the promising triggering mechanisms used as external stimuli to trigger drug release from the light-responsive nanocarriers. Photo-induced drug release can be achieved at a wide range of wavelengths: UV, visible, and NIR depending on many factors. In this review, photo-induced release mechanisms were summarized, focusing on liposomes and micelles. In general, light-triggering mechanisms are based on one of the following: changing the hydrophobicity of a nanocarrier constituent(s) to make it more soluble, introducing local defects within a nanocarrier (by conformational transformation or photo-cleavage of its lipids/polymers chains) to make it more porous or concentrating heat for thermo-sensitive nanocarriers to release their payload. Several research studies were also presented to explore the potentials and limitations of this promising drug release triggering mechanism.
Collapse
Affiliation(s)
- Najla M Salkho
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| | - Nahid S Awad
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - William G Pitt
- Chemical Engineering Department, Brigham Young University, Provo, UT 84602, USA
| | - Ghaleb A Husseini
- Department of Chemical Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
| |
Collapse
|
4
|
Challenges of Current Anticancer Treatment Approaches with Focus on Liposomal Drug Delivery Systems. Pharmaceuticals (Basel) 2021; 14:ph14090835. [PMID: 34577537 PMCID: PMC8466509 DOI: 10.3390/ph14090835] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022] Open
Abstract
According to a 2020 World Health Organization report (Globocan 2020), cancer was a leading cause of death worldwide, accounting for nearly 10 million deaths in 2020. The aim of anticancer therapy is to specifically inhibit the growth of cancer cells while sparing normal dividing cells. Conventional chemotherapy, radiotherapy and surgical treatments have often been plagued by the frequency and severity of side effects as well as severe patient discomfort. Cancer targeting by drug delivery systems, owing to their selective targeting, efficacy, biocompatibility and high drug payload, provides an attractive alternative treatment; however, there are technical, therapeutic, manufacturing and clinical barriers that limit their use. This article provides a brief review of the challenges of conventional anticancer therapies and anticancer drug targeting with a special focus on liposomal drug delivery systems.
Collapse
|
5
|
Angelova A, Angelov B, Drechsler M, Bizien T, Gorshkova YE, Deng Y. Plasmalogen-Based Liquid Crystalline Multiphase Structures Involving Docosapentaenoyl Derivatives Inspired by Biological Cubic Membranes. Front Cell Dev Biol 2021; 9:617984. [PMID: 33644054 PMCID: PMC7905036 DOI: 10.3389/fcell.2021.617984] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022] Open
Abstract
Structural properties of plasmenyl-glycerophospholipids (plasmalogens) have been scarcely studied for plasmalogens with long polyunsaturated fatty acid (PUFA) chains, despite of their significance for the organization and functions of the cellular membranes. Elaboration of supramolecular assemblies involving PUFA-chain plasmalogens in nanostructured mixtures with lyotropic lipids may accelerate the development of nanomedicines for certain severe pathologies (e.g., peroxisomal disorders, cardiometabolic impairments, and neurodegenerative Alzheimer's and Parkinson's diseases). Here, we investigate the spontaneous self-assembly of bioinspired, custom-produced docosapentaenoyl (DPA) plasmenyl (ether) and ester phospholipids in aqueous environment (pH 7) by synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). A coexistence of a liquid crystalline primitive cubic Im3m phase and an inverted hexagonal (HII) phase is observed for the DPA-ethanolamine plasmalogen (C16:1p-22:5n6 PE) derivative. A double-diamond cubic Pn3m phase is formed in mixed assemblies of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) and monoolein (MO), whereas a coexistence of cubic and lamellar liquid crystalline phases is established for the DPA-plasmenyl phosphocholine (C16:1p-22:5n6 PC)/MO mixture at ambient temperature. The DPA-diacyl phosphoinositol (22:5n6-22:5n6 PI) ester lipid displays a propensity for a lamellar phase formation. Double membrane vesicles and multilamellar onion topologies with inhomogeneous distribution of interfacial curvature are formed upon incorporation of the phosphoethanolamine plasmalogen (C16:1p-22:5n6 PE) into dioleoylphosphocholine (DOPC) bilayers. Nanoparticulate formulations of plasmalogen-loaded cubosomes, hexosomes, and various multiphase cubosome- and hexosome-derived architectures and mixed type nano-objects (e.g., oil droplet-embedding vesicles or core-shell particles with soft corona) are produced with PUFA-chain phospholipids and lipophilic antioxidant-containing membrane compositions that are characterized by synchrotron SAXS and cryo-TEM imaging. The obtained multiphase nanostructures reflect the changes in the membrane curvature induced by the inclusion of DPA-based PE and PC plasmalogens, as well as DPA-PI ester derivative, and open new opportunities for exploration of these bioinspired nanoassemblies.
Collapse
Affiliation(s)
- Angelina Angelova
- Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, Châtenay-Malabry, France
| | - Borislav Angelov
- Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, Czech
| | - Markus Drechsler
- Keylab "Electron and Optical Microscopy", Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany
| | - Thomas Bizien
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, France
| | - Yulia E Gorshkova
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
6
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 278] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
7
|
Lou J, Best MD. Strategies for altering lipid self-assembly to trigger liposome cargo release. Chem Phys Lipids 2020; 232:104966. [PMID: 32888913 DOI: 10.1016/j.chemphyslip.2020.104966] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/18/2020] [Accepted: 08/28/2020] [Indexed: 01/21/2023]
Abstract
While liposomes have proven to be effective drug delivery nanocarriers, their therapeutic attributes could be improved through the development of clinically viable triggered release strategies in which encapsulated drug contents could be selectively released at the sites of diseased cells. As such, a significant amount of research has been reported involving the development of stimuli-responsive liposomes and a broad range of strategies have been explored for driving content release. These have included the introduction of trigger groups at either the lipid headgroup or within the acyl chains that alter lipid self-assembly properties of known lipids as well as the rational design of lipid analogs programed to undergo conformational changes induced by events such as binding interactions. This review article describes advances in the design of stimuli-responsive liposome strategies with an eye towards emerging trends in the field.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Dr, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Dr, Knoxville, TN, 37996, USA.
| |
Collapse
|
8
|
Watanabe K, Terao N, Kii I, Nakagawa R, Niwa T, Hosoya T. Indolizines Enabling Rapid Uncaging of Alcohols and Carboxylic Acids by Red Light-Induced Photooxidation. Org Lett 2020; 22:5434-5438. [DOI: 10.1021/acs.orglett.0c01799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kenji Watanabe
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Nodoka Terao
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Isao Kii
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- RIKEN Cluster for Science, Technology and Innovation Hub, 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Laboratory for Drug Target Research, Integrated Bioscience Division, Institute of Agriculture, Shinshu University, 8304 minami-Minowa, Kami-Ina, Nagano, 399-4598, Japan
| | - Reiko Nakagawa
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), 2-2-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takashi Niwa
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takamitsu Hosoya
- Laboratory for Chemical Biology, RIKEN Center for Biosystems Dynamics Research (BDR), 6-7-3 minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
9
|
Abstract
Introduction: Recent technological progress in pain management includes patient´s stratification depending on their disease subtype, prognosis, risk, or treatment response using data analysis and genetic testing in order to select the most appropriate drug for each group. A spatiotemporal control on the release of the selected anesthetic drug is also desirable in order to minimize side effects and to provide the patient with the appropriate dose above the therapeutic threshold and below the maximum desirable concentration. Light can be used non-invasively as an exogenous trigger to allow multiple drug administrations with precise spatiotemporal control. By controlling light fluence/irradiance, pulse structure, and duration of the irradiation drug release kinetics can be controlled in a pulsatile manner to release totally or partially the drug loaded into particulate carriers.Areas covered: Recent advances in the field of light-triggered nanoparticles used in pain management specially those studies which include preclinical models are reviewed.Expert opinion: Two decades later after the first light-sensitive drug delivery systems reported still several limitations hinder their clinical translation. Additional efforts should be undertaken to understand the nanoparticles biological fate, to satisfy their large-scale production, and to facilitate the technology to apply this therapeutic approach at a low cost.
Collapse
Affiliation(s)
- Gracia Mendoza
- Department of Chemical Engineering and Environmental Technologies, Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain.,Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain
| | - Manuel Arruebo
- Department of Chemical Engineering and Environmental Technologies, Aragon Nanoscience Institute, University of Zaragoza, Zaragoza, Spain.,Aragon Health Research Institute (IIS Aragon), Zaragoza, Spain.,Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, Madrid, Spain
| |
Collapse
|
10
|
Jayaraj P, Shavi GV, Srinivasan AK, Raghavendra R, Sivaramakrishna A, Desikan R. A pre-formulation strategy for the liposome encapsulation of new thioctic acid conjugates for enhanced chemical stability and use as an efficient drug carrier for MPO-mediated atherosclerotic CVD treatment. NEW J CHEM 2020. [DOI: 10.1039/c9nj05258e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lipoyl-apocynin and lipoyl-sesamol are bio-active conjugates of thioctic acid, synthesized using a benign chemical approachviathe combination of thioctic acid and the powerful bio-phytonutrients, apocynin and sesamol, respectively.
Collapse
Affiliation(s)
- Premkumar Jayaraj
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore
- India
| | - Gopal Venkatesh Shavi
- South Easter Applied Material Research Centre
- Waterford Institute of Technology
- Ireland
| | | | - Ramesh Raghavendra
- South Easter Applied Material Research Centre
- Waterford Institute of Technology
- Ireland
| | - Akella Sivaramakrishna
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore
- India
| | - Rajagopal Desikan
- Department of Chemistry
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|
11
|
Nguyen L, Li M, Woo S, You Y. Development of Prodrugs for PDT-Based Combination Therapy Using a Singlet-Oxygen-Sensitive Linker and Quantitative Systems Pharmacology. J Clin Med 2019; 8:jcm8122198. [PMID: 31847080 PMCID: PMC6947033 DOI: 10.3390/jcm8122198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Photodynamic therapy (PDT) has become an effective treatment for certain types of solid tumors. The combination of PDT with other therapies has been extensively investigated in recent years to improve its effectiveness and expand its applications. This focused review summarizes the development of a prodrug system in which anticancer drugs are activated locally at tumor sites during PDT treatment. The development of a singlet-oxygen-sensitive linker that can be conveniently conjugated to various drugs and efficiently cleaved to release intact drugs is recapitulated. The initial design of prodrugs, preliminary efficacy evaluation, pharmacokinetics study, and optimization using quantitative systems pharmacology is discussed. Current treatment optimization in animal models using physiologically based a pharmacokinetic (PBPK) modeling approach is also explored.
Collapse
Affiliation(s)
- Luong Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
| | - Mengjie Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
| | - Sukyung Woo
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
| | - Youngjae You
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73117, USA; (L.N.); (M.L.); (S.W.)
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, USA
- Correspondence: ; Tel.: +1-716-645-4843
| |
Collapse
|
12
|
Fukui Y, Otsuka H, Fujimoto K. Controlled release and targeting of polypeptide-deposited liposomes by enzymatic degradation. Polym J 2019. [DOI: 10.1038/s41428-019-0232-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Massiot J, Rosilio V, Makky A. Photo-triggerable liposomal drug delivery systems: from simple porphyrin insertion in the lipid bilayer towards supramolecular assemblies of lipid–porphyrin conjugates. J Mater Chem B 2019; 7:1805-1823. [DOI: 10.1039/c9tb00015a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Light-responsive liposomes are considered nowadays as one of the most promising nanoparticulate systems for the delivery and release of an active pharmaceutical ingredient (API) in a spatio-temporal manner.
Collapse
Affiliation(s)
- Julien Massiot
- Institut Galien Paris Sud
- Univ Paris-Sud
- CNRS
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Véronique Rosilio
- Institut Galien Paris Sud
- Univ Paris-Sud
- CNRS
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Ali Makky
- Institut Galien Paris Sud
- Univ Paris-Sud
- CNRS
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| |
Collapse
|
14
|
Dariva CG, Coelho JF, Serra AC. Near infrared light-triggered nanoparticles using singlet oxygen photocleavage for drug delivery systems. J Control Release 2019; 294:337-354. [DOI: 10.1016/j.jconrel.2018.12.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 10/27/2022]
|
15
|
Kenaan A, Cheng J, Qi D, Chen D, Cui D, Song J. Physicochemical Analysis of DPPC and Photopolymerizable Liposomal Binary Mixture for Spatiotemporal Drug Release. Anal Chem 2018; 90:9487-9494. [PMID: 30009597 DOI: 10.1021/acs.analchem.8b02144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of a spatiotemporal drug delivery system with a long release profile, high loading efficiency, and robust therapeutic effects is still a challenge. Liposomal nanocarriers have secured a fortified position in the biomedical field over decades. Herein, liposomal binary mixtures of 1,2-dipalmitoyl- sn-glycero-3-phosphocholine (DPPC) and photopolymerizable 1,2-bis(10,12-tricosadiynoyl)- sn-glycero-3-phosphocholine (DC8,9PC) phospholipids were prepared for drug delivery applications. The diacetylenic groups of DC8,9PC produce intermolecular cross-linking following UV irradiation. Exposure of the liposomal mixture to 254 nm radiation induces a pore within the lipid bilayer, expediting the release of its entrapped 5,6-carboxyfluorescein dye. The dosage and rate of the released content are highly dependent on the number and size of the induced pore. Photochemical cross-linking studies at different exposure times were reported through the analysis of UV-visible spectrophotometry, nano differential scanning calorimetry, Fourier transform infrared spectroscopy, and Raman spectroscopy. The optimal irradiation time was established after 8 min of exposure, inducing lipid cross-linking with minimal oxidative degradation, which plays an essential role in the pathogenesis of numerous diseases due to the formation of primary and secondary oxidation products, accordingly reducing the encapsulated drug therapeutic level.
Collapse
Affiliation(s)
- Ahmad Kenaan
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Daizong Qi
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Di Chen
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering , Shanghai Jiao Tong University , 800 Dongchuan Road , Shanghai 200240 , P.R. China
| |
Collapse
|
16
|
Liang C, Wen J, Liao X. A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO 2 nanotubes with a hydrophobic layer. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1793-1801. [PMID: 29977712 PMCID: PMC6009292 DOI: 10.3762/bjnano.9.170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/24/2018] [Indexed: 05/28/2023]
Abstract
In this work, a visible-light-controlled drug release platform was constructed for localized and prolonged drug release based on two-layer titania nanotubes (TNTs) fabricated using by an in situ voltage up-anodization process. The visible-light photocatalytic activity is improved by loading Ag onto the TNTs by NaBH4 reduction. Then, the TNTs containing Ag nanoparticles were modified with dodecanethiol (NDM) to create a hydrophobic layer. To demonstrate the visible-light-controlled drug release, the Zn2+ release behavior of the samples was investigated. In the initial 12 h, TNTs without NDM displayed a faster release rate with 29.4% Zn2+ release, which was more than three times that of the TNTs with NDM (8.7% Zn2+ release). Upon visible-light illumination, drug release from the sample coated with NDM was shown to increase due to the photocatalytic decomposition of NDM. The amount of released Zn2+ for this sample increased up to 71.9% within 12 h, indicating visible-light-controlled drug release. This drug release system may exhibit promising application as a localized, prolonged drug delivery platform.
Collapse
Affiliation(s)
- Caihong Liang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiang Wen
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xiaoming Liao
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|
17
|
Thomas JM, Friddin MS, Ces O, Elani Y. Programming membrane permeability using integrated membrane pores and blockers as molecular regulators. Chem Commun (Camb) 2018; 53:12282-12285. [PMID: 29091084 DOI: 10.1039/c7cc05423h] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a bottom-up synthetic biology approach to engineering vesicles with programmable permeabilities. Exploiting the concentration-dependent relationship between constitutively active pores (alpha-hemolysin) and blockers allows blockers to behave as molecular regulators for tuning permeability, enabling us to systematically modulate cargo release kinetics without changing the lipid fabric of the system.
Collapse
Affiliation(s)
- Julia M Thomas
- Department of Chemistry, Imperial College London, Exhibition Road, London, SW7 2AZ, UK.
| | | | | | | |
Collapse
|
18
|
Bouchaala R, Anton N, Anton H, Vandamme T, Vermot J, Smail D, Mély Y, Klymchenko AS. Light-triggered release from dye-loaded fluorescent lipid nanocarriers in vitro and in vivo. Colloids Surf B Biointerfaces 2017; 156:414-421. [PMID: 28551576 DOI: 10.1016/j.colsurfb.2017.05.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/26/2022]
Abstract
Light is an attractive trigger for release of active molecules from nanocarriers in biological systems. Here, we describe a phenomenon of light-induced release of a fluorescent dye from lipid nano-droplets under visible light conditions. Using auto-emulsification process we prepared nanoemulsion droplets of 32nm size encapsulating the hydrophobic analogue of Nile Red, NR668. While these nano-droplets cannot spontaneously enter the cells on the time scale of hours, after illumination for 30s under the microscope at the wavelength of NR668 absorption (535nm), the dye showed fast accumulation inside the cells. The same phenomenon was observed in zebrafish, where nano-droplets initially staining the blood circulation were released into endothelial cells and tissues after illumination. Fluorescence correlation spectroscopy revealed that laser illumination at relatively low power (60mW/cm2) could trigger the release of the dye into recipient media, such as 10% serum or blank lipid nanocarriers. The photo-release can be inhibited by deoxygenation with sodium sulfite, suggesting that at least in part the release could be related to a photochemical process involving oxygen, though a photo-thermal effect could also take place. Finally, we showed that illumination of NR668 can provoke the release into the cells of another highly hydrophobic dye co-encapsulated into the lipid nanocarriers. These results suggest dye-loaded lipid nano-droplets as a prospective platform for preparation of light-triggered nanocarriers of active molecules.
Collapse
Affiliation(s)
- Redouane Bouchaala
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France; Laboratory of Photonic Systems and Nonlinear Optics, Institute of optics and fine mechanics, University of Setif 1, 19000 Algeria
| | - Nicolas Anton
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Halina Anton
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Thierry Vandamme
- CNRS UMR 7199, Laboratoire de Conception et Application de Molécules Bioactives, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Julien Vermot
- IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Inserm U964, CNRS UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404 ILLKIRCH, France
| | - Djabi Smail
- Laboratory of Photonic Systems and Nonlinear Optics, Institute of optics and fine mechanics, University of Setif 1, 19000 Algeria
| | - Yves Mély
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France
| | - Andrey S Klymchenko
- CNRS UMR 7213, Laboratoire de Biophotonique et Pharmacologie, University of Strasbourg,74 route du Rhin, 67401 Illkirch Cedex, France.
| |
Collapse
|
19
|
Chin AL, Zhong Y, Tong R. Emerging strategies in near-infrared light triggered drug delivery using organic nanomaterials. Biomater Sci 2017; 5:1491-1499. [DOI: 10.1039/c7bm00348j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Near-infrared light has significant advantages for light-triggered drug delivery systems within deep tissues.
Collapse
Affiliation(s)
- Ai Lin Chin
- Department of Chemical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Yongliang Zhong
- Department of Chemical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| | - Rong Tong
- Department of Chemical Engineering
- Virginia Polytechnic Institute and State University
- Blacksburg
- USA
| |
Collapse
|
20
|
Liposomal drug delivery systems for targeted cancer therapy: is active targeting the best choice? Future Med Chem 2016; 8:2091-2112. [PMID: 27774793 DOI: 10.4155/fmc-2016-0135] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Liposomes are biodegradable and biocompatible self-forming spherical lipid bilayer vesicles. They can encapsulate and deliver one or more hydrophobic and hydrophilic therapeutic agents with poor therapeutic indices to tumor sites. Properties such as lipid bilayer fluidity, charge, size and surface hydration can be modified to extend liposome circulation time in the bloodstream and enhance efficacy. The focus of this review is on ligand-conjugated liposomes and their potential application in tumor-targeted delivery. Ligand-conjugated liposomes are designed to target receptors which are overexpressed on tumor cells to decrease drugs side effects by enhancing their selective delivery to tumor site. Despite the extensive research in this area, no small molecule ligand-conjugated liposome has been approved up to date for cancer therapy.
Collapse
|
21
|
Luo D, Li N, Carter KA, Lin C, Geng J, Shao S, Huang WC, Qin Y, Atilla-Gokcumen GE, Lovell JF. Rapid Light-Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin-Phospholipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3039-47. [PMID: 27121003 PMCID: PMC4899298 DOI: 10.1002/smll.201503966] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/29/2016] [Indexed: 05/09/2023]
Abstract
Prompt membrane permeabilization is a requisite for liposomes designed for local stimuli-induced intravascular release of therapeutic payloads. Incorporation of a small amount (i.e., 5 molar percent) of an unsaturated phospholipid, such as dioleoylphosphatidylcholine (DOPC), accelerates near infrared (NIR) light-triggered doxorubicin release in porphyrin-phospholipid (PoP) liposomes by an order of magnitude. In physiological conditions in vitro, the loaded drug can be released in a minute under NIR irradiation, while liposomes maintain serum stability otherwise. This enables rapid laser-induced drug release using remarkably low amounts of PoP (i.e., 0.3 molar percent). Light-triggered drug release occurs concomitantly with DOPC and cholesterol oxidation, as detected by mass spectrometry. In the presence of an oxygen scavenger or an antioxidant, light-triggered drug release is inhibited, suggesting that the mechanism is related to singlet oxygen mediated oxidization of unsaturated lipids. Despite the irreversible modification of lipid composition, DOPC-containing PoP liposome permeabilization is transient. Human pancreatic xenograft growth in mice is significantly delayed with a single chemophototherapy treatment following intravenous administration of 6 mg kg(-1) doxorubicin, loaded in liposomes containing small amounts of DOPC and PoP.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Nasi Li
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kevin A. Carter
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Cuiyan Lin
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jumin Geng
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Shuai Shao
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Wei-chiao Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Yueling Qin
- Department of Physics, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - G. Ekin Atilla-Gokcumen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
22
|
Xu J, Zhou X, Gao Z, Song YY, Schmuki P. Visible-Light-Triggered Drug Release from TiO2
Nanotube Arrays: A Controllable Antibacterial Platform. Angew Chem Int Ed Engl 2015; 55:593-7. [DOI: 10.1002/anie.201508710] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/02/2015] [Indexed: 01/09/2023]
|
23
|
Xu J, Zhou X, Gao Z, Song YY, Schmuki P. Visible-Light-Triggered Drug Release from TiO2
Nanotube Arrays: A Controllable Antibacterial Platform. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Drug nano-reservoirs synthesized using layer-by-layer technologies. Biotechnol Adv 2015; 33:1310-26. [DOI: 10.1016/j.biotechadv.2015.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/25/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022]
|
25
|
Olejniczak J, Carling CJ, Almutairi A. Photocontrolled release using one-photon absorption of visible or NIR light. J Control Release 2015; 219:18-30. [PMID: 26394063 DOI: 10.1016/j.jconrel.2015.09.030] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/08/2015] [Accepted: 09/16/2015] [Indexed: 11/26/2022]
Abstract
Light is an excellent means to externally control the properties of materials and small molecules for many applications. Light's ability to initiate chemistries largely independent of a material's local environment makes it particularly useful as a bio-orthogonal and on-demand trigger in living systems. Materials responsive to UV light are widely reported in the literature; however, UV light has substantial limitations for in vitro and in vivo applications. Many biological molecules absorb these energetic wavelengths directly, not only preventing substantial tissue penetration but also causing detrimental photochemical reactions. The more innocuous nature of long-wavelength light (>400nm) and its ability at longer wavelengths (600-950nm) to effectively penetrate tissues is ideal for biological applications. Multi-photon processes (e.g. two-photon excitation and upconversion) using longer wavelength light, often in the near-infrared (NIR) range, have been proposed as a means of avoiding the negative characteristics of UV light. However, high-power focused laser light and long irradiation times are often required to initiate photorelease using these inefficient non-linear optical methods, limiting their in vivo use in mammalian tissues where NIR light is readily scattered. The development of materials that efficiently convert a single photon of long-wavelength light to chemical change is a viable solution to achieve in vivo photorelease. However, to date only a few such materials have been reported. Here we review current technologies for photo-regulated release using photoactive organic materials that directly absorb visible and NIR light.
Collapse
Affiliation(s)
- Jason Olejniczak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Carl-Johan Carling
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; IEM Center for Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; IEM Center for Nanomedicine and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; Department of Nanoengineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA; Department of Materials Science and Engineering, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
| |
Collapse
|
26
|
Viger ML, Sheng W, Doré K, Alhasan AH, Carling CJ, Lux J, de Gracia Lux C, Grossman M, Malinow R, Almutairi A. Near-infrared-induced heating of confined water in polymeric particles for efficient payload release. ACS NANO 2014; 8:4815-26. [PMID: 24717072 PMCID: PMC4046803 DOI: 10.1021/nn500702g] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/31/2014] [Indexed: 05/14/2023]
Abstract
Near-infrared (NIR) light-triggered release from polymeric capsules could make a major impact on biological research by enabling remote and spatiotemporal control over the release of encapsulated cargo. The few existing mechanisms for NIR-triggered release have not been widely applied because they require custom synthesis of designer polymers, high-powered lasers to drive inefficient two-photon processes, and/or coencapsulation of bulky inorganic particles. In search of a simpler mechanism, we found that exposure to laser light resonant with the vibrational absorption of water (980 nm) in the NIR region can induce release of payloads encapsulated in particles made from inherently non-photo-responsive polymers. We hypothesize that confined water pockets present in hydrated polymer particles absorb electromagnetic energy and transfer it to the polymer matrix, inducing a thermal phase change. In this study, we show that this simple and highly universal strategy enables instantaneous and controlled release of payloads in aqueous environments as well as in living cells using both pulsed and continuous wavelength lasers without significant heating of the surrounding aqueous solution.
Collapse
Affiliation(s)
- Mathieu L. Viger
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Wangzhong Sheng
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Kim Doré
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Ali H. Alhasan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Carl-Johan Carling
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Jacques Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Caroline de Gracia Lux
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Madeleine Grossman
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Roberto Malinow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| | - Adah Almutairi
- Skaggs School of Pharmacy and Pharmaceutical Sciences, Department of Mechanical and Aerospace Engineering, Materials Science and Engineering Program, Center for Neural Circuits and Behavior, Division of Biology, Department of Neuroscience and Section of Neurobiology, Department of Chemistry and Biochemistry, and KACST−UCSD Center of Excellence in Nanomedicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0600, United States
| |
Collapse
|
27
|
Phthalocyanine conjugates with carbohydrates: synthesis and aggregation in aqueous solutions. Russ Chem Bull 2014. [DOI: 10.1007/s11172-013-0121-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Abstract
In recent years, liposomes have been employed with growing success as pharmaceutical carriers for antineoplastic drugs. One specific strategy used to enhance in vivo liposome-mediated drug delivery is the improvement of intracytoplasmic delivery. In this context, pH-sensitive liposomes (pHSLip) have been designed to explore the endosomal acidification process, which may lead to a destabilization of the liposomes, followed by a release of their contents into the cell cytoplasm. This review considers the current status of pHSLip development and its applicability in cancer treatment, focusing on the mechanisms of pH sensitivity and liposomal composition of pHSLip. The final section will discuss the application of these formulations in both in vitro and in vivo studies of antitumor efficacy.
Collapse
|
29
|
Sadasivam M, Avci P, Gupta GK, Lakshmanan S, Chandran R, Huang YY, Kumar R, Hamblin MR. Self-assembled liposomal nanoparticles in photodynamic therapy. EUROPEAN JOURNAL OF NANOMEDICINE 2013; 5. [PMID: 24348377 DOI: 10.1515/ejnm-2013-0010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photodynamic therapy (PDT) employs the combination of non-toxic photosensitizers (PS) together with harmless visible light of the appropriate wavelength to produce reactive oxygen species that kill unwanted cells. Because many PS are hydrophobic molecules prone to aggregation, numerous drug delivery vehicles have been tested to solubilize these molecules, render them biocompatible and enhance the ease of administration after intravenous injection. The recent rise in nanotechnology has markedly expanded the range of these nanoparticulate delivery vehicles beyond the well-established liposomes and micelles. Self-assembled nanoparticles are formed by judicious choice of monomer building blocks that spontaneously form a well-oriented 3-dimensional structure that incorporates the PS when subjected to the appropriate conditions. This self-assembly process is governed by a subtle interplay of forces on the molecular level. This review will cover the state of the art in the preparation and use of self-assembled liposomal nanoparticles within the context of PDT.
Collapse
Affiliation(s)
- Magesh Sadasivam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pinar Avci
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; and Department of Dermatology, Dermatooncology and Venerology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Gaurav K Gupta
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | - Rakkiyappan Chandran
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA; and Pathology Department, Guangxi Medical University, Nanning, Guangxi, China
| | - Raj Kumar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; and Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | - Michael R Hamblin
- Department of Dermatology, Harvard Medical School, Boston, MA, USA; and Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
30
|
Leung SJ, Romanowski M. Light-activated content release from liposomes. Am J Cancer Res 2012; 2:1020-36. [PMID: 23139729 PMCID: PMC3493200 DOI: 10.7150/thno.4847] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022] Open
Abstract
Successful integration of diagnostic and therapeutic actions at the level of individual cells requires new materials that combine biological compatibility with functional versatility. This review focuses on the development of liposome-based functional materials, where payload release is activated by light. Methods of sensitizing liposomes to light have progressed from the use of organic molecular moieties to the use of metallic plasmon resonant structures. This development has facilitated application of near infrared light for activation, which is preferred for its deep penetration and low phototoxicity in biological tissues. Presented mechanisms of light-activated liposomal content release enable precise in vitro manipulation of minute amounts of reagents, but their use in clinical diagnostic and therapeutic applications will require demonstration of safety and efficacy.
Collapse
|
31
|
Zhang Y, Lovell JF. Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2012; 2:905-15. [PMID: 23082102 PMCID: PMC3475213 DOI: 10.7150/thno.4908] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023] Open
Abstract
Long before humans roamed the planet, porphyrins in blood were serving not only as indispensable oxygen carriers, but also as the bright red contrast agent that unmistakably indicates injury sites. They have proven valuable as whole body imaging modalities have emerged, with endogenous hemoglobin porphyrins being used for new approaches such as functional magnetic resonance imaging and photoacoustic imaging. With the capability for both near infrared fluorescence imaging and phototherapy, porphyrins were the first exogenous agents that were employed with intrinsic multimodal theranostic character. Porphyrins have been used as tumor-specific diagnostic fluorescence imaging agents since 1924, as positron emission agents since 1951, and as magnetic resonance (MR) contrast agents since 1987. Exogenous porphyrins remain in clinical use for photodynamic therapy. Because they can chelate a wide range of metals, exogenous porphyrins have demonstrated potential for use in radiotherapy and multimodal imaging modalities. Going forward, intrinsic porphyrin biocompatibility and multimodality will keep new applications of this class of molecules at the forefront of theranostic research.
Collapse
|
32
|
Vasdekis AE, Scott EA, O'Neil CP, Psaltis D, Hubbell JA. Precision intracellular delivery based on optofluidic polymersome rupture. ACS NANO 2012; 6:7850-7857. [PMID: 22900579 DOI: 10.1021/nn302122h] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We present an optical approach for intracellular delivery of molecules contained within oxidation-sensitive polymersomes. The photosensitizer ethyl eosin is associated with the polymersome membrane to oxidatively increase the hydrophilicity of the hydrophobic block under optical excitation. This optofluidic interaction induces rapid polymersome rupture and payload release via the reorganization of the aggregate structure into smaller diameter vesicles and micelles. When the particles are endocytosed by phagocytes, such as RAW macrophages and dendritic cells, the polymersomes' payload escapes the endosome and is released in the cell cytosol within a few seconds of illumination. The released payload is rapidly distributed throughout the cytosol within milliseconds. The presented optofluidic method enables fast delivery and distribution throughout the cytosol of individual cells, comparable to photochemical internalization, but a factor of 100 faster than similar carrier mediated delivery methods (e.g., liposomes, polymersomes, or nanoparticles). Due to the ability to simultaneously induce payload delivery and endosomal escape, this approach can find applications in detailed characterizations of intra- and intercellular processes. As an example in quantitative cell biology, a peptide antigen was delivered in dendritic cells and MHC I presentation kinetics were measured at the single cell and single complex level.
Collapse
Affiliation(s)
- Andreas E Vasdekis
- Optics Laboratory, School of Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
33
|
Fomina N, Sankaranarayanan J, Almutairi A. Photochemical mechanisms of light-triggered release from nanocarriers. Adv Drug Deliv Rev 2012; 64:1005-20. [PMID: 22386560 PMCID: PMC3395781 DOI: 10.1016/j.addr.2012.02.006] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 02/16/2012] [Accepted: 02/16/2012] [Indexed: 12/18/2022]
Abstract
Over the last three decades, a handful of photochemical mechanisms have been applied to a large number of nanoscale assemblies that encapsulate a payload to afford spatio-temporal and remote control over activity of the encapsulated payload. Many of these systems are designed with an eye towards biomedical applications, as spatio-temporal and remote control of bioactivity would advance research and clinical practice. This review covers five underlying photochemical mechanisms that govern the activity of the majority of photoresponsive nanocarriers: 1. photo driven isomerization and oxidation, 2. surface plasmon absorption and photothermal effects, 3. photo driven hydrophobicity changes, 4. photo driven polymer backbone fragmentation and 5. photo driven de-crosslinking. The ways in which these mechanisms have been incorporated into nanocarriers and how they affect release are detailed, as well as the advantages and disadvantages of each system.
Collapse
Affiliation(s)
- Nadezda Fomina
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, Dept. of Materials Science and Engineering, Dept. of NanoEngineering, 9500 Gilman Dr. MC 0660, La Jolla, CA, USA
| | - Jagadis Sankaranarayanan
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, Dept. of Materials Science and Engineering, Dept. of NanoEngineering, 9500 Gilman Dr. MC 0660, La Jolla, CA, USA
| | - Adah Almutairi
- University of California San Diego, Skaggs School of Pharmacy & Pharmaceutical Sciences, Dept. of Materials Science and Engineering, Dept. of NanoEngineering, 9500 Gilman Dr. MC 0660, La Jolla, CA, USA
| |
Collapse
|
34
|
Narayanan RP, Melman G, Letourneau NJ, Mendelson NL, Melman A. Photodegradable iron(III) cross-linked alginate gels. Biomacromolecules 2012; 13:2465-71. [PMID: 22775540 DOI: 10.1021/bm300707a] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biocompatible photoresponsive materials are of interest for targeted drug delivery, tissue engineering, 2D and 3D protein patterning, and other biomedical applications. We prepared light degradable hydrogels using a natural alginate polysaccharide cross-linked with iron(III) cations. The "hard" iron(III) cations used to cross-link the alginate hydrogel were found to undergo facile photoreduction to "soft" iron(II) cations in the presence of millimolar concentrations of sodium lactate. The "soft" iron(II) cations have a decreased ability to cross-link the alginate which results in dissolution of the hydrogel and the formation of a homogeneous solution. The photodegradation is done using long wave UV or visible light at neutral pH. The very mild conditions required for the photodegradation and the high rate at which it occurs suggest applications for iron(III) cross-linked alginate hydrogels as light-controlled biocompatible scaffolds.
Collapse
Affiliation(s)
- Remya P Narayanan
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699-5810, United States
| | | | | | | | | |
Collapse
|
35
|
Aygun A, Torrey K, Kumar A, Stephenson LD. Investigation of Factors Affecting Controlled Release from Photosensitive DMPC and DSPC Liposomes. Appl Biochem Biotechnol 2012; 167:743-57. [DOI: 10.1007/s12010-012-9724-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
36
|
Amstad E, Reimhult E. Nanoparticle actuated hollow drug delivery vehicles. Nanomedicine (Lond) 2012; 7:145-64. [PMID: 22191783 DOI: 10.2217/nnm.11.167] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The trend towards personalized medicine and the long-standing wish to reduce drug consumption and unwanted side effects have been the driving force behind research on drug delivery vehicles that control localization, timing and dose of released cargo. Controlling location and timing of the release allows using more potent drugs as the interaction with the right target is ensured and enables sequential drug release. A particularly desired solution allows for externally triggered release of encapsulated compounds. Externally controlled release can be accomplished if drug delivery vehicles, such as liposomes or polyelectrolyte multilayer capsules, incorporate nanoparticle (NP) actuators. However, close control over the structure of the composite material is necessary to harness this potential. This review describes the assembly and characterization of NP functionalized liposomes and polyelectrolyte multilayer capsules that allow for externally triggered cargo release. Special attention is paid to the relationship between NP stability and the assembly and performance of NP functionalized drug delivery vehicles.
Collapse
Affiliation(s)
- Esther Amstad
- Department of Nanobiotechnology, University of Natural Resources & Life Sciences (BOKU), Vienna, Austria.
| | | |
Collapse
|
37
|
Chen H, Zhang H, Thor D, Rahimian R, Guo X. Novel pH-sensitive cationic lipids with linear ortho ester linkers for gene delivery. Eur J Med Chem 2012; 52:159-72. [PMID: 22480493 DOI: 10.1016/j.ejmech.2012.03.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 03/02/2012] [Accepted: 03/06/2012] [Indexed: 01/08/2023]
Abstract
In an effort to develop pH-sensitive lipoplexes for efficient gene delivery, we report three novel cationic lipids containing a linear ortho ester linker that conjugates either the headgroup (Type I) or one hydrocarbon chain (Type II) with the rest of the lipid molecule. The cationic lipids carry either an iodide or a chloride counterion. Compared to our previously reported cyclic ortho ester linker, the linear ortho ester linker facilitated the construction of cationic liposomes and lipoplexes with different helper lipids. The chloride counterion not only facilitated the hydration of the lipid films during liposome construction, but also enhanced the hydrolysis of the ortho ester linker in the lipoplexes. After incubation at endosomal pH 5.5, the Type I lipoplexes aggregated and destabilized the endosome-mimicking model liposomes, but not the Type II lipoplexes. The helper lipids (DOPE or cholesterol) of the lipoplexes enhanced the pH-sensitivity of the Type I lipoplexes. In CV-1 cells (monkey kidney fibroblast), the Type I ortho ester-based lipoplexes, especially those with the chloride counterion, significantly improved the gene transfection efficiency, in some cases by more than 100 fold, compared to their pH-insensitive counterparts consisting of DOTAP. The gene transfection efficiency of the ortho ester-based lipoplexes was well correlated with their rate of aggregation and membrane destabilization in response to the endosomal pH 5.5.
Collapse
Affiliation(s)
- Haigang Chen
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211, USA
| | | | | | | | | |
Collapse
|
38
|
|
39
|
Ramadurai D, Orosz WC, Nelson A, Garland JW, Stephenson LD, Kumar A. Fast Photolytic Release of Nano-Encapsulated Biocides for Neutralizing Bacteria. PARTICULATE SCIENCE AND TECHNOLOGY 2011. [DOI: 10.1080/02726351.2010.494709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Leung SJ, Kachur XM, Bobnick MC, Romanowski M. Wavelength-Selective Light-Induced Release from Plasmon Resonant Liposomes. ADVANCED FUNCTIONAL MATERIALS 2011; 21:1113-1121. [PMID: 21796268 PMCID: PMC3142818 DOI: 10.1002/adfm.201002373] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Biodegradable, spectrally tunable plasmon resonant nanocapsules are created via the deposition of gold onto the surface of 100 nm diameter thermosensitive liposomes. These nanocapsules demonstrate selective release of encapsulated contents upon illumination with light of a wavelength matching their distinct resonance bands, which correspond to 760 and 1210 nm in this study. Spectrally selective release is accomplished through the use of multiple, low intensity laser pulses delivered over a period of less than four minutes, ensuring that illumination affects only the gold-coated liposomes and avoids heating the surrounding media. The result of this illumination scheme for selective release using multiple wavelengths of light is a biologically safe mechanism for realizing drug delivery, microfluidic, and sensor applications.
Collapse
|
41
|
Balamurali V, Pramodkuma T, Srujana N, Venkatesh M, Gupta NV, Krishna K, Gangadhara H. pH Sensitive Drug Delivery Systems: A Review. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ajdd.2011.24.48] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Katz JS, Burdick JA. Light-Responsive Biomaterials: Development and Applications. Macromol Biosci 2009; 10:339-48. [DOI: 10.1002/mabi.200900297] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
43
|
Klaikherd A, Nagamani C, Thayumanavan S. Multi-stimuli sensitive amphiphilic block copolymer assemblies. J Am Chem Soc 2009; 131:4830-8. [PMID: 19290632 PMCID: PMC2693022 DOI: 10.1021/ja809475a] [Citation(s) in RCA: 471] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stimuli-responsive polymers are arguably the most widely considered systems for a variety of applications in biomedical arena. We report here a novel triple stimuli sensitive block copolymer assembly that responds to changes in temperature, pH and redox potential. Our block copolymer design constitutes an acid-sensitive THP-protected HEMA as the hydrophobic part and a temperature-sensitive PNIPAM as the hydrophilic part with an intervening disulfide bond. The micellar properties and the release kinetics of the encapsulated guest molecule in response to one stimulus as well as combinations of stimuli have been evaluated. Responsiveness to combination of stimuli not only allows for fine-tuning the guest molecule release kinetics, but also provides the possibility of achieving location-specific delivery.
Collapse
Affiliation(s)
- Akamol Klaikherd
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| | | | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
44
|
|
45
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049309104392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
46
|
Literature Alerts. J Microencapsul 2008. [DOI: 10.3109/02652049309031529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
47
|
Christie JG, Kompella UB. Ophthalmic light sensitive nanocarrier systems. Drug Discov Today 2008; 13:124-34. [PMID: 18275910 DOI: 10.1016/j.drudis.2007.12.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 12/18/2007] [Indexed: 01/01/2023]
Abstract
The eye is afflicted by chronic vision debilitating neovascular disorders, such as age-related macular degeneration, proliferative diabetic retinopathy, and corneal angiogenesis. Photodynamic therapy (PDT) is an innovative, evolving approach for treating neovascular diseases of the eye. PDT refers to the process of activating a light sensitive agent or carrier with non-thermal light to induce chemical reactions that ameliorate a pathological condition. Key components of PDT include a photosensitizer, a colloidal carrier or formulation and a light source. This article summarizes currently available clinical PDTs, desirable features of PDTs and photosensitizers, useful light sources for PDT and investigational nanosystems, and colloidal carriers for PDT.
Collapse
Affiliation(s)
- Jennifer G Christie
- Department of Pharmaceutical Sciences, 985840 Nebraska Medical Center, Omaha, NE 68198-5840, United States
| | | |
Collapse
|
48
|
Bisby RH, Mead C, Morgan CG. Active Uptake of Drugs into Photosensitive Liposomes and Rapid Release on UV Photolysis ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720057auodip2.0.co2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
49
|
Thompson DH, Inerowicz HD, Grove J, Sarna T. Structural Characterization of Plasmenylcholine Photooxidation Products¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2003)0780323scoppp2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Rovers JP, Jode ML, Rezzoug H, Grahn MF. In Vivo Photodynamic Characteristics of the Near-Infrared Photosensitizer 5,10,15,20-Tetrakis(M-Hydroxyphenyl) Bacteriochlorin ¶. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0720358ivpcot2.0.co2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|