1
|
Yoneda JS, Sebinelli HG, Itri R, Ciancaglini P. Overview on solubilization and lipid reconstitution of Na,K-ATPase: enzyme kinetic and biophysical characterization. Biophys Rev 2020; 12:49-64. [PMID: 31955383 DOI: 10.1007/s12551-020-00616-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Na,K-ATPase is a membrane protein which plays a vital role. It pumps Na+ and K+ ions across the cellular membranes using energy from ATP hydrolysis, and is responsible for maintaining the osmotic equilibrium and generating the membrane potential. Moreover, Na,K-ATPase has also been involved in cell signaling, interacting with partner proteins. Cardiotonic steroids bind specifically to Na,K-ATPase triggering a number of signaling pathways. Because of its importance, many efforts have been employed to study the structure and function of this protein. Difficulties associated with its removal from natural membranes and the concomitant search for appropriate replacement conditions to keep the protein in solution have presented a challenge that had to be overcome prior to carrying out biophysical and biochemical studies in vitro. In this review, we summarized all of the methods and techniques applied by our group in order to obtain information about Na,K-ATPase in respect to solubilization, reconstitution into mimetic system, influence of lipid composition, stability, oligomerization, and aggregation.
Collapse
Affiliation(s)
- Juliana Sakamoto Yoneda
- Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil.
| | - Heitor Gobbi Sebinelli
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| | - Rosangela Itri
- Instituto de Fisica, Universidade de Sao Paulo, Rua do Matao, 1371, 05508-090, Sao Paulo, SP, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto da Universidade de São Paulo (FFCLRP-USP), Ribeirão Preto, SP, 14040-901, Brazil
| |
Collapse
|
2
|
General and specific interactions of the phospholipid bilayer with P-type ATPases. Biophys Rev 2019; 11:353-364. [PMID: 31073955 DOI: 10.1007/s12551-019-00533-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
Protein structure and function are modulated via interactions with their environment, representing both the surrounding aqueous media and lipid membranes that have an active role in shaping the structural topology of membrane proteins. Compared to a decade ago, there is now an abundance of crystal structural data on membrane proteins, which together with their functional studies have enhanced our understanding of the salient features of lipid-protein interactions. It is now important to recognize that membrane proteins are regulated by both (1) general lipid-protein interactions, where the general physicochemical properties of the lipid environment affect the conformational flexibility of a membrane protein, and (2) by specific lipid-protein interactions, where lipid molecules directly interact via chemical interactions with specific lipid-binding sites located on the protein. However, due to local differences in membrane composition, thickness, and lipid packing, local membrane physical properties and hence the associated lipid-protein interactions also differ due to membrane location, even for the same protein. Such a phenomenon has been shown to be true for one family of integral membrane ion pumps, the P2-type adenosine triphosphatases (ATPases). Despite being highly homologous, individual members of this family have distinct structural and functional activity and are an excellent candidate to highlight how the local membrane physical properties and specific lipid-protein interactions play a vital role in facilitating the structural rearrangements of these proteins necessary for their activity. Hence in this review, we focus on both the general and specific lipid-protein interactions and will mostly discuss the structure-function relationships of the following P2-type ATPases, Na+,K+-ATPase (NKA), gastric H+,K+-ATPase (HKA), and sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), in concurrence with their lipid environment.
Collapse
|
3
|
Yoneda JS, Scanavachi G, Sebinelli HG, Borges JC, Barbosa LRS, Ciancaglini P, Itri R. Multimeric species in equilibrium in detergent-solubilized Na,K-ATPase. Int J Biol Macromol 2016; 89:238-45. [PMID: 27109755 DOI: 10.1016/j.ijbiomac.2016.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 12/29/2022]
Abstract
In this work, we find an equilibrium between different Na,K-ATPase (NKA) oligomeric species solubilized in a non-ionic detergent C12E8 by means of Dynamic Light Scattering (DLS), Analytical Ultracentrifugation (AUC), Small Angle X-ray Scattering (SAXS), Spectrophotometry (absorption at 280/350nm) and enzymatic activity assay. The NKA sample after chromatography purification presented seven different populations as identified by AUC, with monomers and tetramers amounting to ∼55% of the total protein mass in solution. These two species constituted less than 40% of the total protein mass after increasing the NKA concentration. Removal of higher-order oligomer/aggregate species from the NKA solution using 220nm-pore filter resulted in an increase of the specific enzymatic activity. Nevertheless, the enzyme forms new large aggregates over an elapsed time of 20h. The results thus point out that C12E8-solubilized NKA is in a dynamic equilibrium of monomers, tetramers and high-order oligomers/subunit aggregates. These latter have low or null activity. High amount of detergent leads to the dissociation of NKA into smaller aggregates with no enzymatic activity.
Collapse
Affiliation(s)
- Juliana Sakamoto Yoneda
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil; Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, FFCLRP USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Gustavo Scanavachi
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil
| | - Heitor Gobbi Sebinelli
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, FFCLRP USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Júlio Cesar Borges
- Instituto de Química de São Carlos, IQSC-USP, 13560-970 São Carlos, SP, Brazil
| | - Leandro R S Barbosa
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil
| | - Pietro Ciancaglini
- Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, FFCLRP USP, 14040-901 Ribeirão Preto, SP, Brazil
| | - Rosangela Itri
- Instituto de Física da Universidade de São Paulo, IF USP, 05508-090 São Paulo, Brazil.
| |
Collapse
|
4
|
General and specific lipid-protein interactions in Na,K-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1729-43. [PMID: 25791351 DOI: 10.1016/j.bbamem.2015.03.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/20/2015] [Accepted: 03/09/2015] [Indexed: 11/20/2022]
Abstract
The molecular activity of Na,K-ATPase and other P2 ATPases like Ca(2+)-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid-protein interactions. It is a remarkable observation that specific lipid-protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid-protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid-protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled "Lipid-Protein Interactions."
Collapse
|
5
|
Addition of subunit γ, K+ ions, and lipid restores the thermal stability of solubilized Na,K-ATPase. Arch Biochem Biophys 2013; 530:93-100. [DOI: 10.1016/j.abb.2012.12.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/21/2012] [Accepted: 12/23/2012] [Indexed: 11/19/2022]
|
6
|
Dynamic lipid-protein stoichiometry on E1 and E2 conformations of the Na+/K+ -ATPase. FEBS Lett 2011; 585:1153-7. [PMID: 21419126 DOI: 10.1016/j.febslet.2011.03.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/09/2011] [Accepted: 03/10/2011] [Indexed: 11/22/2022]
Abstract
Annular lipid-protein stoichiometry in native pig kidney Na+/K+ -ATPase preparation was studied by [125I]TID-PC/16 labeling. Our data indicate that the transmembrane domain of the Na+/K+ -ATPase in the E1 state is less exposed to the lipids than in E2, i.e., the conformational transitions are accompanied by changes in the number of annular lipids but not in the affinity of these lipids for the protein. The lipid-protein stoichiometry was 23 ± 2 (α subunit) and 5.0 ± 0.4 (β subunit) in the E1 conformation and 32 ± 2 (α subunit) and 7 ± 1 (β subunit) in the E2 conformation.
Collapse
|
7
|
Rigos CF, Nobre TM, Zaniquelli MED, Ward RJ, Ciancaglini P. The association of Na,K-ATPase subunits studied by circular dichroism, surface tension and dilatational elasticity. J Colloid Interface Sci 2008; 325:478-84. [PMID: 18597766 DOI: 10.1016/j.jcis.2008.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/05/2008] [Accepted: 06/06/2008] [Indexed: 11/19/2022]
Abstract
Different stoichiometries are observed between alpha and beta subunits of Na,K-ATPase that depend on the method employed to solubilize and purify the enzyme. It is not known whether this variability is due to loss of protein-protein association, or is a result of the replacement of essential phospholipids by detergent molecules. With the aim of understanding the effect of enzyme/surfactant ratio on both the catalytic activity and the enzyme structure, we have investigated the bulk and surface properties of the enzyme. The circular dichroism (CD) spectra, surface tension and dilatational surface elasticity results were compared with the residual ATPase activity of the Na,K-ATPase in different surfactant and protein concentrations. Na,K-ATPase in the (alphabeta)(2) form dissociated to the alphabeta form on dilution, and associated to the (alphabeta)(4) form when concentrated. These different stoichiometries have similar ATPase activities and are in equilibrium at C(12)E(8) concentrations below the CMC (0.053 mg mL(-1)). At detergent concentrations above the CMC the ATPase activity of all forms was abolished, which is concomitant with the dissociation of the alpha and beta subunits.
Collapse
Affiliation(s)
- Carolina Fortes Rigos
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto SP, Brazil
| | | | | | | | | |
Collapse
|
8
|
Mimura K, Tahara Y, Shinji N, Tokuda E, Takenaka H, Hayashi Y. Isolation of stable (alphabeta)4-Tetraprotomer from Na+/K+-ATPase solubilized in the presence of short-chain fatty acids. Biochemistry 2008; 47:6039-51. [PMID: 18465843 DOI: 10.1021/bi800445f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Previously, it was demonstrated that acetate anions increase the higher oligomer (H), consuming (alphabeta) 2-diprotomer (D) and alphabeta-protomer (P) of solubilized dog kidney Na (+)/K (+)-ATPase [ Kobayashi, T. et al. (2007) J. Biochem. 142, 157-173 ]. Presently, short-chain fatty acids, such as propionate (Prop) and butyrate, have been substituted effectively for acetate. The molecular weight of 6.01 x 10 (5) for H and quantitative Na (+)/K (+)-dependent interconversion among H, D, and P showed that H was an (alphabeta) 4-tetraprotomer (T). T was optimally isolated from the enzyme solubilized in aqueous 40 mM K (+)Prop at pH 5.6 by gel chromatography performed at 0 degrees C with elution buffer containing synthetic dioleoyl phosphatidylserine (PS). K 0.5 values of K (+)-congeners constituting K (+)Prop for the maximal amount of T were NH 4 (+) >> Rb (+) congruent with K (+) > Tl (+), while Na (+) had no effect. The oligomers of T, D, and P were simultaneously assayed for ATPase upon elution from the gel column, resulting in a specific activity ratio of 1:2:2. The activity of the chromatographically isolated T increased with an increasing dioleoyl PS, giving a saturated activity of 2.38 units/mg at pH 5.6 and 25 degrees C, and the active enzyme chromatography of T showed 34% dissociation into D by exposing it at 25 degrees C. On the basis of these data, the specific ATPase activities of T, D, and P were concluded to be 32, 65, and 65 units/mg, respectively, under the conventionally optimal conditions of pH 7.3 and 37 degrees C, suggesting an equivalence to a fully active enzyme for D and P but half activity for T. The physiological significance of the stable form of T remains to be investigated.
Collapse
Affiliation(s)
- Kunihiro Mimura
- Department of Environment System Science, Faculty of Risk and Crisis Management, Chiba Institute of Science, Choshi, Chiba 288-0025, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Lindzen M, Gottschalk KE, Füzesi M, Garty H, Karlish SJD. Structural interactions between FXYD proteins and Na+,K+-ATPase: alpha/beta/FXYD subunit stoichiometry and cross-linking. J Biol Chem 2005; 281:5947-55. [PMID: 16373350 DOI: 10.1074/jbc.m512063200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interactions of rat FXYD4 (corticosteroid hormone-induced factor (CHIF)), FXYD2 (gamma), or FXYD1 (phospholemman (PLM)) proteins with rat alpha1 subunits of Na(+),K(+)-ATPase have been analyzed by co-immunoprecipitation and covalent cross-linking. In detergent-solubilized membranes from HeLa cells expressing both gamma and CHIF or CHIF and hemagglutinin A-tagged CHIF, mixed complexes of CHIF and gamma or CHIF and hemagglutinin A-tagged CHIF with alpha/beta subunits are undetectable. This implies that the alpha/beta/FXYD protomer is the major species in detergent solution. A lipid-soluble cysteine-cysteine bifunctional reagent, dibromobimane, cross-links CHIF to alpha in colonic membranes but not gamma or PLM to alpha in kidney or heart membranes, respectively. Sequence comparisons of the FXYD proteins suggested that Cys-49 in the trans-membrane segment of CHIF could be involved. In detergent-solubilized HeLa cell membranes, dibromobimane cross-links wild-type CHIF to alpha but not the C49F mutant, and also the corresponding F36C mutant but not wild-type gammab, and F48C but not wild-type PLM. C140S, C338A, C804A, and C966S mutants of the alpha subunit have been expressed. Only the C140S mutant prevents cross-linking with CHIF. The data demonstrated the proximity of trans-membrane segments of CHIF, gamma, and PLM to M2 of alpha. Molecular modeling is consistent with location of the trans-membrane segment of all FXYD proteins between M2, M6, and M9 and the proximity of Cys-49 of CHIF or Phe-36 of gamma with Cys-140 of M2. Cross-linking also demonstrated CHIF-alpha and CHIF-beta proximities in extra-membrane regions, similar to the evidence for gamma-alpha and gamma-beta cross-links.
Collapse
Affiliation(s)
- Moshit Lindzen
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
10
|
Mitsui K, Yasui H, Nakamura N, Kanazawa H. Oligomerization of the Saccharomyces cerevisiae Na+/H+ antiporter Nha1p: Implications for its antiporter activity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1720:125-36. [PMID: 16360116 DOI: 10.1016/j.bbamem.2005.11.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2005] [Revised: 11/04/2005] [Accepted: 11/04/2005] [Indexed: 10/25/2022]
Abstract
The Na(+)/H(+) antiporter (Nha1p) from the budding yeast Saccharomyces cerevisiae plays an important role in intracellular pH and Na(+) homeostasis. Here, we show by co-precipitation of differently tagged Nha1p proteins expressed in the same cell that the yeast Nha1p l forms an oligomer. In vitro cross-linking experiments then revealed that Nha1p-FLAG is present in the membranes as a dimer. Differently tagged Nha1p proteins were also co-precipitated from sec18-1 mutant cells in which ER-to-Golgi traffic is blocked under non-permissive temperatures, suggesting that Nha1p may already dimerize in the ER membrane. When we over-expressed a mutant Nha1p with defective antiporter activity in cells that also express the wild-type Nha1p-EGFP fusion protein, we found impaired cell growth in highly saline conditions, even though the wild-type protein was appropriately expressed and localized correctly. Co-immunoprecipitation assays then showed the inactive Nha1p-FLAG mutant interacted with the wild-type Nha1p-EGFP protein. These results support the notion that Nha1p exists in membranes as a dimer and that the interaction of its monomers is important for its antiporter activity.
Collapse
Affiliation(s)
- Keiji Mitsui
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka City, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
11
|
Homareda H, Ushimaru M. Stimulation of p-nitrophenylphosphatase activity of Na+/K+-ATPase by NaCl with oligomycin or ATP. FEBS J 2005; 272:673-84. [PMID: 15670149 DOI: 10.1111/j.1742-4658.2004.04496.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It is known that the addition of NaCl with oligomycin or ATP stimulates ouabain-sensitive and K+-dependent p-nitrophenylphosphatase (pNPPase) activity of Na+/K+-ATPase. We investigated the mechanism of the stimulation. The combination of oligomycin and NaCl increased the affinity of pNPPase activity for K+. When the ratio of Na+ to Rb+ was 10 in the presence of oligomycin, Rb+-binding and pNPPase activity reached a maximal level and Na+ was occluded. Phosphorylation of Na+/K+-ATPase by p-nitrophenylphosphate (pNPP) was not affected by oligomycin. Because oligomycin stabilizes the Na+-occluded E1 state of Na+/K+-ATPase, it seemed that the Na+-occluded E1 state increased the affinity of the phosphoenzyme formed from pNPP for K+. On the other hand, the combination of ATP and NaCl also increased the affinity of pNPPase for K+ and activated ATPase activity. Both activities were affected by the ligand conditions. Oligomycin noncompetitively affected the activation of pNPPase by NaCl and ATP. Nonhydrolyzable ATP analogues could not substitute for ATP. As NaE1P, which is the high-energy phosphoenzyme formed from ATP with Na+, is also the Na+-occluded E1 state, it is suggested that the Na+-occluded E1 state increases the affinity of the phosphoenzyme from pNPP for K+ through the interaction between alpha subunits. Therefore, membrane-bound Na+/K+-ATPase would function as at least an (alphabeta)2-diprotomer with interacting alpha subunits at the phosphorylation step.
Collapse
Affiliation(s)
- Haruo Homareda
- Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | | |
Collapse
|
12
|
Abstract
Because nearly all structure/function studies on Na(+)/K(+)-ATPase have been done on enzymes prepared in the presence of SDS, we have studied previously unrecognized consequences of SDS interaction with the enzyme. When the purified membrane-bound kidney enzyme was solubilized with SDS or TDS concentrations just sufficient to cause complete solubilization, but not at concentrations severalfold higher, the enzyme retained quaternary structure, exhibiting alpha,alpha-, alpha,beta-, beta,beta-, and alpha,gamma-associations as detected by chemical cross-linking. The presence of solubilized oligomers was confirmed by sucrose density gradient centrifugation. This solubilized enzyme had no ATPase activity and was not phosphorylated by ATP, but it retained the ability to occlude Rb(+) and Na(+). This, and comparison of cross-linking patterns obtained with different reagents, suggested that the transmembrane domains of the enzyme are more resistant to SDS-induced unfolding than its other domains. These findings (a). indicate that the partially unfolded oligomer(s) retaining partial function is the intermediate in the SDS-induced denaturation of the native membrane enzyme having the minimum oligomeric structure of (alpha,beta,gamma)(2) and (b). suggest potential functions for Na(+)/K(+)-ATPase with intrinsically unfolded domains. Mixtures of solubilized/partially unfolded enzyme and membrane-bound enzyme exhibited cross-linking patterns and Na(+) occlusion capacities different from those of either enzyme species, suggesting that the two interact. Formation of the partially unfolded enzyme during standard purification procedure for the preparation of the membrane-bound enzyme was shown, indicating that it is necessary to ensure the separation of the partially unfolded enzyme from the membrane-bound enzyme to avoid the distortion of the properties of the latter.
Collapse
Affiliation(s)
- Alexander V Ivanov
- Department of Pharmacology, Medical College of Ohio, Toledo, Ohio 43614-5804, USA
| | | | | |
Collapse
|
13
|
Kaya S, Abe K, Taniguchi K, Yazawa M, Katoh T, Kikumoto M, Oiwa K, Hayashi Y. Oligomeric structure of P-type ATPases observed by single molecule detection technique. Ann N Y Acad Sci 2003; 986:278-80. [PMID: 12763821 DOI: 10.1111/j.1749-6632.2003.tb07185.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shunji Kaya
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Arystarkhova E, Wetzel RK, Sweadner KJ. Distribution and oligomeric association of splice forms of Na(+)-K(+)-ATPase regulatory gamma-subunit in rat kidney. Am J Physiol Renal Physiol 2002; 282:F393-407. [PMID: 11832419 DOI: 10.1152/ajprenal.00146.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Renal Na(+)-K(+)-ATPase is associated with the gamma-subunit (FXYD2), a single-span membrane protein that modifies ATPase properties. There are two splice variants with different amino termini, gamma(a) and gamma(b). Both were found in the inner stripe of the outer medulla in the thick ascending limb. Coimmunoprecipitation with each other and the alpha-subunit indicated that they were associated in macromolecular complexes. Association was controlled by ligands that affect Na(+)-K(+)-ATPase conformation. In the cortex, the proportion of the gamma(b)-subunit was markedly lower, and the gamma(a)-subunit predominated in isolated proximal tubule cells. By immunofluorescence, the gamma(b)-subunit was detected in the superficial cortex only in the distal convoluted tubule and connecting tubule, which are rich in Na(+)-K(+)-ATPase but comprise a minor fraction of cortex mass. In the outer stripe of the outer medulla and for a short distance in the deep cortex, the thick ascending limb predominantly expressed the gamma(b)-subunit. Because different mechanisms maintain and regulate Na(+) homeostasis in different nephron segments, the splice forms of the gamma-subunit may have evolved to control the renal Na(+) pump through pump properties, gene expression, or both.
Collapse
Affiliation(s)
- Elena Arystarkhova
- Laboratory of Membrane Biology, Neuroscience Center, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
15
|
Kato M, Hayashi R, Tsuda T, Taniguchi K. High pressure-induced changes of biological membrane. Study on the membrane-bound Na(+)/K(+)-ATPase as a model system. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:110-8. [PMID: 11784304 DOI: 10.1046/j.0014-2956.2002.02621.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to study the pressure-induced changes of biological membrane, hydrostatic pressures of from 0.1 to 400 MPa were applied to membrane-bound Na(+)/K(+)-ATPase from pig kidney as a model system of protein and lipid membrane. The activity showed at least a three-step change induced by pressures of 0.1-100 MPa, 100-220 MPa, and 220 MPa or higher. At pressures of 100 MPa or lower a decrease in the fluidity of lipid bilayer and a reversible conformational change in transmembrane protein is induced, leading to the functional disorder of membrane-associated ATPase activity. A pressure of 100-220 MPa causes a reversible phase transition in parts of the lipid bilayer from the liquid crystalline to the gel phase and the dissociation of and/or conformational changes in the protein subunits. These changes could cause a separation of the interface between alpha and beta subunits and between protein and the lipid bilayer to create transmembrane tunnels at the interface. Tunnels would be filled with water from the aqueous environment and take up tritiated water. A pressure of 220 MPa or higher irreversibly destroys and fragments the gross membrane structure, due to protein unfolding and interface separation, which is amplified by the increased pressure. These findings provide an explanation for the high pressure-induced membrane-damage to subcellular organelles.
Collapse
Affiliation(s)
- Michiko Kato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Japan.
| | | | | | | |
Collapse
|
16
|
Donnet C, Arystarkhova E, Sweadner KJ. Thermal denaturation of the Na,K-ATPase provides evidence for alpha-alpha oligomeric interaction and gamma subunit association with the C-terminal domain. J Biol Chem 2001; 276:7357-65. [PMID: 11099502 DOI: 10.1074/jbc.m009131200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thermal denaturation can help elucidate protein domain substructure. We previously showed that the Na,K-ATPase partially unfolded when heated to 55 degrees C (Arystarkhova, E., Gibbons, D. L., and Sweadner, K. J. (1995) J. Biol. Chem. 270, 8785-8796). The beta subunit unfolded without leaving the membrane, but three transmembrane spans (M8-M10) and the C terminus of the alpha subunit were extruded, while the rest of alpha retained its normal topology with respect to the lipid bilayer. Here we investigated thermal denaturation further, with several salient results. First, trypsin sensitivity at both surfaces of alpha was increased, but not sensitivity to V8 protease, suggesting that the cytoplasmic domains and extruded domain were less tightly packed but still retained secondary structure. Second, thermal denaturation was accompanied by SDS-resistant aggregation of alpha subunits as dimers, trimers, and tetramers without beta or gamma subunits. This implies specific alpha-alpha contact. Third, the gamma subunit, like the C-terminal spans of alpha, was selectively lost from the membrane. This suggests its association with M8-M10 rather than the more firmly anchored transmembrane spans. The picture that emerges is of a Na,K-ATPase complex of alpha, beta, and gamma subunits in which alpha can associate in assemblies as large as tetramers via its cytoplasmic domain, while beta and gamma subunits associate with alpha primarily in its C-terminal portion, which has a unique structure and thermal instability.
Collapse
Affiliation(s)
- C Donnet
- Laboratory of Membrane Biology, Neuroscience Center, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | |
Collapse
|
17
|
Troiano GC, Tung L, Sharma V, Stebe KJ. The reduction in electroporation voltages by the addition of a surfactant to planar lipid bilayers. Biophys J 1998; 75:880-8. [PMID: 9675188 PMCID: PMC1299761 DOI: 10.1016/s0006-3495(98)77576-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The effects of a nonionic surfactant, octaethyleneglycol mono n-dodecyl ether (C12E8), on the electroporation of planar bilayer lipid membranes made of the synthetic lipid 1-pamitoyl 2-oleoyl phosphatidylcholine (POPC), was studied. High-amplitude ( approximately 100-450 mV) rectangular voltage pulses were used to electroporate the bilayers, followed by a prolonged, low-amplitude ( approximately 65 mV) voltage clamp to monitor the ensuing changes in transmembrane conductance. The electroporation thresholds of the membranes were found for rectangular voltage pulses of given durations. The strength-duration relationship was determined over a range from 10 micros to 10 s. The addition of C12E8 at concentrations of 0.1, 1, and 10 microM to the bath surrounding the membranes decreased the electroporation threshold monotonically with concentration for all durations (p < 0.0001). The decrease from control values ranged from 10% to 40%, depending on surfactant concentration and pulse duration. For a 10-micros pulse, the transmembrane conductance 150 micros after electroporation (G150) increased monotonically with the surfactant concentration (p = 0.007 for 10 microM C12E8). These findings suggest that C12E8 incorporates into POPC bilayers, allowing electroporation at lower intensities and/or shorter durations, and demonstrate that surfactants can be used to manipulate the electroporation threshold of lipid bilayers.
Collapse
Affiliation(s)
- G C Troiano
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
18
|
Hayashi Y, Kameyama K, Kobayashi T, Hagiwara E, Shinji N, Takagi T. Oligomeric structure of solubilized Na+/K(+)-ATPase linked to E1/E2 conformation. Ann N Y Acad Sci 1997; 834:19-29. [PMID: 9405782 DOI: 10.1111/j.1749-6632.1997.tb52222.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Y Hayashi
- First Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Tsuda T, Kaya S, Yokoyama T, Taniguchi K. Are pyridoxal and fluorescein probes in lysine residues of alpha-chain in Na+,K(+)-ATPase sensing ATP binding? Ann N Y Acad Sci 1997; 834:186-93. [PMID: 9405807 DOI: 10.1111/j.1749-6632.1997.tb52250.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Na+,K(+)-ATPase preparations from pig kidneys were treated with 50 microM pyridoxal 5'-diphospho-5'-adenosine (AP2PL) in the presence of NaCl. The resulting preparations contained 0.5 mol of the AP2PL probe at the Lys-480/mol alpha-chain. This modification reduced both Na+,K(+)-ATPase activity and the amount of Na(+)-dependent phosphoenzyme from ATP to around 50% but not that from acetyl phosphate (AcP). The addition of 1 mM AcP to the modified enzyme in the presence of Mg2+ and Na+ induced phosphorylation (3.0/s) followed by an AP2PL fluorescence increase (1.2/s). The addition of 10 microM ATP instead of AcP induced rapid phosphorylation (28/s) followed by a slow increase in fluorescence (1.0/s). When modified enzyme preparations were treated with fluorescein 5'-isothiocyanate (FITC), the phosphorylation capacity from ATP was reduced to around 5% with little influence on either the AP2PL fluorescence change by ATP or phosphorylation from AcP. The addition of increasing concentrations of ATP with 160 mM NaCl to the K(+)-bound AP2PL-FITC-labeled enzyme showed different rates for each fluorescence change and different affinities for ATP of the changes. These data and others indicate that the AP2PL probe at Lys-480 can monitor ATP binding to high- and low-affinity sites and suggest the simultaneous presence of two different low-affinity sites for ATP detected by an AP2PL probe at Lys-480 and an FITC probe at Lys-501.
Collapse
Affiliation(s)
- T Tsuda
- Graduate School of Science, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
20
|
Kobayashi T, Hagiwara E, Shinji N, Hayashi Y. pH-dependent change in the oligomeric structure of the solubilized Na+/K(+)-ATPase. Ann N Y Acad Sci 1997; 834:132-4. [PMID: 9405798 DOI: 10.1111/j.1749-6632.1997.tb52239.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- T Kobayashi
- First Department of Biochemistry, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
21
|
Rao GV, Rao KS. Modulation of K+ transport across synaptosomes of rat brain by synthetic pyrethroids. J Neurol Sci 1997; 147:127-33. [PMID: 9106117 DOI: 10.1016/s0022-510x(96)05327-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Potassium transport across synaptosomes was studied under the influence of two synthetic pyrethroids, (Permethrin, without the cyano group) and Cypermethrin (CPM, with the cyano group). Synaptosomes were isolated from rat brain cerebral cortex and incubated with 40 microM of PM and CPM for 15 min at 37 degrees C. K+ release was monitored by a K(+)-sensitive electrode. CPM caused more K+ release from synaptosomes compared to PM. K+ transport is regulated by Na(+)-K(+)-ATPase, K(+)-ATPase and K+ channels. To understand the mode of action, synaptosomes were preincubated with 9.5 x 10(-3) M ouabain (inhibitor of Na(+)-K(+)-ATPase), 1.7 x 10(-2) M N-ethylmaleamide (K(+)-ATPase inhibitor), and 9.5 x 10(-5) M quinine sulfate (K(+)-channel blocker) for 15 min at 37 degrees C. In the presence of ouabain and N-ethylmaleamide, PM- and CPM-induced K+ release was decreased and in the presence of quinine sulfate, there was no release of K+. Furthermore, the studies indicated that PM and CPM significantly decreased K+ uptake.
Collapse
Affiliation(s)
- G V Rao
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute, Mysore, India
| | | |
Collapse
|
22
|
Repke KR, Sweadner KJ, Weiland J, Megges R, Schön R. In search of ideal inotropic steroids: recent progress. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1996; 47:9-52. [PMID: 8961763 DOI: 10.1007/978-3-0348-8998-8_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- K R Repke
- Max Delbrück Center of Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
23
|
Asami M, Sekihara T, Hanaoka T, Goya T, Matsui H, Hayashi Y. Quantification of the Na+/K(+)-pump in solubilized tissue by the ouabain binding method coupled with high-performance gel chromatography. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1240:55-64. [PMID: 7495849 DOI: 10.1016/0005-2736(95)00146-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Membrane-bound Na+/K(+)-ATPase purified from dog kidney outer medulla was solubilized with octaethylene glycol n-dodecyl ether (C12E8) and incubated with [3H]ouabain in the presence of NaCl. ATP and MgCl2 for 10 min at 0 degrees C. The resulting enzyme was separated, by high-performance gel chromatography executed at 0.2 degrees C. Mainly into its (alpha beta)2-diprotomer and alpha beta-protomer, which both bound stoichiometrically to [3H]ouabain. The amounts of ouabain that bound to the tissue itself and its microsomes could be estimated in the same way, as [3H]ouabain was found to bind only to the diprotomer and protomer they possessed. The amounts of ouabain that bound to them in the solubilized state were at least 5-times higher than those that did so when they were non-solubilized, suggesting that the surfactant rendered the enzyme accessible to ouabain. When the solubilized tissue (138 mg ml-1 wet tissue) was reacted with ouabain in the presence of 0.1 M NaCl and 4.8 mM MgCl2 for 10 min at 0 degrees C, maximal ouabain binding was attained in the presence of 18.3 microM [3H]ouabain, 1.2 mM ATP and 3 to 5 mg ml-1 C12E8, which was common to the outer medulla and human colon cancer cells. The present method enabled the pump number in protein and tissue samples in the range 7.2 x 10(-9) (purified pump) to 1.5 x 10(-12) (cancer tissue) mol/mg protein to be estimated within 2 h.
Collapse
Affiliation(s)
- M Asami
- Second Department of Surgery, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Ganjeizadeh M, Zolotarjova N, Huang WH, Askari A. Interactions of phosphorylation and dimerizing domains of the alpha-subunits of Na+/K(+)-ATPase. J Biol Chem 1995; 270:15707-10. [PMID: 7797572 DOI: 10.1074/jbc.270.26.15707] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Chemical cross-linking studies are among a number of experimental approaches that have suggested the functional significance of higher association states of alpha,beta-protomers of Na+/K(+)-ATPase. Formation of the phosphointermediate of the enzyme on Asp369 of the alpha-subunit is known to induce oxidative cross-linking of the alpha-subunits catalyzed by Cu(2+)-phenanthroline. To localize the phosphorylation-induced alpha,alpha-interface, we cleaved alpha at Arg438-Ala439 by controlled proteolysis and exposed the partially cleaved enzyme to the cross-linking reagent. In addition to the alpha,alpha-dimer, two other phosphorylation-induced cross-linked products were obtained. Using gel electrophoretic resolution of the cross-linked 32P-labeled enzyme, N-terminal analyses of the products, and their reactivities with sequence-specific antibodies, the two products were identified as a homodimer of the C-terminal 64-kDa fragment of alpha and a heterodimer of alpha and the 64-kDa peptide. The latter dimer was also obtained when the cross-linked alpha,alpha-dimer was formed first and then subjected to proteolysis. The findings localize the dimerizing domain to the C-terminal side of Ala439 and indicate that intersubunit proximities of dimerizing domains are regulated by phosphorylation-dephosphorylation of Asp369 during the reaction cycle of the enzyme.
Collapse
Affiliation(s)
- M Ganjeizadeh
- Department of Pharmacology, Medical College of Ohio, Toledo 43699-0008, USA
| | | | | | | |
Collapse
|
25
|
Repke KR, Megges R, Weiland J, Schön R. Location and properties of the digitalis receptor site in Na+/K(+)-ATPase. FEBS Lett 1995; 359:107-9. [PMID: 7867778 DOI: 10.1016/0014-5793(95)00020-a] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Since 1985, several research groups have shown that a number of amino acids in the catalytic alpha-subunit of Na+/K(+)-ATPase more or less strongly modulate the affinity of a digitalis compound like ouabain to the enzyme. However, scrutiny of these findings by means of chimeric Na+/K(+)-ATPase constructs and monoclonal antibodies has recently revealed that the modulatory effect of most of these amino acids does not at all result from direct interaction with ouabain, but rather originates from long-range effects on the properties of the digitalis binding matrix. Starting from this knowledge, the present review brings together the various pieces of evidence pointing to the conclusion that the interface between two interacting alpha-subunits in the Na+/K(+)-ATPase protodimer (alpha beta)2 provides the cleft for inhibitory digitalis intercalation.
Collapse
Affiliation(s)
- K R Repke
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | |
Collapse
|
26
|
Stekhoven FM, Tijmes J, Umeda M, Inoue K, De Pont JJ. Monoclonal antibody to phosphatidylserine inhibits Na+/K(+)-ATPase activity. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1194:155-65. [PMID: 8075130 DOI: 10.1016/0005-2736(94)90215-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A monoclonal IgG, directed to phosphatidylserine (PS1G3), partially (40-50%) inhibited Na+/K(+)-ATPase activity (forward running reaction cycle) without affecting the K0.5 values for Na+,K+ and MgATP. The Hill or interaction coefficients (nH) for Na+ and K+ for this reaction were reduced from 3.0 to 1.6 and from 1.6 to 0.8, respectively. The K(+)-stimulated p-nitrophenylphosphatase activity (p-NPPase), which is a partial reaction sequence of the Na+/K(+)-ATPase system (but in the backward running mode), was inhibited more strongly (about 70%) due to an increase in K+/substrate antagonism. In this system K0.5 and nH values for both p-nitrophenyl phosphate (p-NPP) and K+ were increased by the mAb. At the maximally inhibitory concentration of PS1G3 the Vmax of the p-NPPase was also reduced. Partial reactions, which were inhibited by PS1G3, are: (1) the Na(+)-activated phosphorylation (non-competitive vs. Na+), (2) the Rb+ occlusion (competitive vs. Rb+). Partial reactions not harmed by PS1G3 are: (3) the K(+)-dependent dephosphorylation, (4) the K(+)-dependent E1 + K+<-->E2K transition. We conclude that PtdSer is involved in cation occlusion, possibly by forming part of the access gate.
Collapse
Affiliation(s)
- F M Stekhoven
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Cserhåti T, Szögyi M. Interaction of phospholipids with proteins and peptides. New advances IV. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:1-18. [PMID: 8138037 DOI: 10.1016/0020-711x(94)90189-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
1. The review deals with the newest achievements in the field of the various interactions between phospholipids and proteins and peptides. 2. Interactions are classified according to the hydrophobic, hydrophilic or mixed character of the interactive forces. 3. The effect of the interaction on the structure and biological activity of the interacting molecular assemblies is also discussed.
Collapse
Affiliation(s)
- T Cserhåti
- Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest
| | | |
Collapse
|