1
|
Venkatesagowda B, Dekker RFH. Microbial demethylation of lignin: Evidence of enzymes participating in the removal of methyl/methoxyl groups. Enzyme Microb Technol 2021; 147:109780. [PMID: 33992403 DOI: 10.1016/j.enzmictec.2021.109780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 02/27/2021] [Accepted: 03/11/2021] [Indexed: 11/30/2022]
Abstract
Lignin is an abundant natural plant aromatic biopolymer containing various functional groups that can be exploited for activating lignin for potential commercial applications. Applications are hindered due to the presence of a high content of methyl/methoxyl groups that affects reactiveness. Various chemical and enzymatic approaches have been investigated to increase the functionality in transforming lignin. Among these is demethylation/demethoxylation, which increases the potential numbers of vicinal hydroxyl groups for applications as phenol-formaldehyde resins. Although the chemical route to lignin demethylation is well-studied, the biological route is still poorly explored. Bacteria and fungi have the ability to demethylate lignin and lignin-related compounds. Considering that appropriate microorganisms possess the biochemical machinery to demethylate lignin by cleaving O-methyl groups liberating methanol, and modify lignin by increasing the vicinal diol content that allows lignin to substitute for phenol in organic polymer syntheses. Certain bacteria through the actions of specific O-demethylases can modify various lignin-related compounds generating vicinal diols and liberating methanol or formaldehyde as end-products. The enzymes include: cytochrome P450-aryl-O-demethylase, monooxygenase, veratrate 3-O-demethylase, DDVA O-demethylase (LigX; lignin-related biphenyl 5,5'-dehydrodivanillate (DDVA)), vanillate O-demethylase, syringate O-demethylase, and tetrahydrofolate-dependent-O-demethylase. Although, the fungal counterparts have not been investigated in depth as in bacteria, O-demethylases, nevertheless, have been reported in demethylating various lignin substrates providing evidence of a fungal enzyme system. Few fungi appear to have the ability to secrete O-demethylases. The fungi can mediate lignin demethylation enzymatically (laccase, lignin peroxidase, manganese peroxidase, O-demethylase), or non-enzymatically in brown-rot fungi through the Fenton reaction. This review discusses details on the aspects of microbial (bacterial and fungal) demethylation of lignins and lignin-model compounds and provides evidence of enzymes identified as specific O-demethylases involved in demethylation.
Collapse
Affiliation(s)
- Balaji Venkatesagowda
- Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada.
| | - Robert F H Dekker
- Biorefining Research Institute, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada; Universidade Tecnológica Federal do Paraná, Programa de Pós-Graduação em Engenharia Ambiental, Câmpus Londrina, CEP: 86036-370, Londrina, PR, Brazil.
| |
Collapse
|
2
|
Yang D, Reyes-De-Corcuera JI. Increased activity of alcohol oxidase at high hydrostatic pressure. Enzyme Microb Technol 2021; 145:109751. [PMID: 33750541 DOI: 10.1016/j.enzmictec.2021.109751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/18/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Alcohol oxidase (AOx) from P. pastoris has potential applications in the production of carbonyl compounds and for the detection and quantification of alcohols. However, AOx's poor stability and low activity have hindered its practical application. There are two fractions of AOx in P. pastoris with different thermal stability. High hydrostatic pressure (HHP) increased the activity of the labile (L) + resistant (R) combined fractions but not of the R fraction alone. The activity of the L + R fractions increased 2.4-fold at 160 MPa and 30 °C compared to the activity at 0.1 MPa. At higher temperatures, the increase in activity with pressure was greater due to the combined stabilization and activation effects. The reaction rate of the R fraction at 50 °C was 17.9 ± 3.6 or 17.7 ± 0.8 μM min-1 at 80 or 160 MPa, respectively, and was not significantly different from the activity of the L + R fractions under the same conditions (18.4 ± 2.7 μM min-1). The activation energy of the R fraction was not significantly different between 80 MPa (41.5 ± 10.5 kJ mol-1) and 160 MPa (43.8 ± 7.8 kJ mol-1). The combined increase in the stability of the R fraction at HHP enables the use of the enzyme at 50 °C with little loss of activity and an increased catalytic rate.
Collapse
Affiliation(s)
- Daoyuan Yang
- Department of Food Science and Technology, University of Georgia, Athens, GA 30602, USA
| | | |
Collapse
|
3
|
|
4
|
Pereira JH, McAndrew RP, Tomaleri GP, Adams PD. Berkeley Screen: a set of 96 solutions for general macromolecular crystallization. J Appl Crystallogr 2017; 50:1352-1358. [PMID: 29021733 PMCID: PMC5627680 DOI: 10.1107/s1600576717011347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/01/2017] [Indexed: 01/29/2023] Open
Abstract
Using statistical analysis of the Biological Macromolecular Crystallization Database, combined with previous knowledge about crystallization reagents, a crystallization screen called the Berkeley Screen has been created. Correlating crystallization conditions and high-resolution protein structures, it is possible to better understand the influence that a particular solution has on protein crystal formation. Ions and small molecules such as buffers and precipitants used in crystallization experiments were identified in electron density maps, highlighting the role of these chemicals in protein crystal packing. The Berkeley Screen has been extensively used to crystallize target proteins from the Joint BioEnergy Institute and the Collaborative Crystallography program at the Berkeley Center for Structural Biology, contributing to several Protein Data Bank entries and related publications. The Berkeley Screen provides the crystallographic community with an efficient set of solutions for general macromolecular crystallization trials, offering a valuable alternative to the existing commercially available screens.
Collapse
Affiliation(s)
- Jose H. Pereira
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Ryan P. McAndrew
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | | | - Paul D. Adams
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Buß O, Jager S, Dold SM, Zimmermann S, Hamacher K, Schmitz K, Rudat J. Statistical Evaluation of HTS Assays for Enzymatic Hydrolysis of β-Keto Esters. PLoS One 2016; 11:e0146104. [PMID: 26730596 PMCID: PMC4711668 DOI: 10.1371/journal.pone.0146104] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/14/2015] [Indexed: 01/15/2023] Open
Abstract
β-keto esters are used as precursors for the synthesis of β-amino acids, which are building blocks for some classes of pharmaceuticals. Here we describe the comparison of screening procedures for hydrolases to be used for the hydrolysis of β-keto esters, the first step in the preparation of β-amino acids. Two of the tested high throughput screening (HTS) assays depend on coupled enzymatic reactions which detect the alcohol released during ester hydrolysis by luminescence or absorption. The third assay detects the pH shift due to acid formation using an indicator dye. To choose the most efficient approach for screening, we assessed these assays with different statistical methods—namely, the classical Z’-factor, standardized mean difference (SSMD), the Kolmogorov-Smirnov-test, and t-statistics. This revealed that all three assays are suitable for HTS, the pH assay performing best. Based on our data we discuss the explanatory power of different statistical measures. Finally, we successfully employed the pH assay to identify a very fast hydrolase in an enzyme-substrate screening.
Collapse
Affiliation(s)
- O. Buß
- Karlsruhe Institute of Technology, Technical Biology, Karlsruhe, Germany
- * E-mail: (OB); (SJ)
| | - S. Jager
- Technische Universität Darmstadt, Computational Biology and Simulation, Darmstadt, Germany
- * E-mail: (OB); (SJ)
| | - S. -M. Dold
- Karlsruhe Institute of Technology, Technical Biology, Karlsruhe, Germany
| | - S. Zimmermann
- Karlsruhe Institute of Technology, Biomolecular Separation Engineering, Karlsruhe, Germany
| | - K. Hamacher
- Technische Universität Darmstadt, Computational Biology and Simulation, Darmstadt, Germany
| | - K. Schmitz
- Technische Universität Darmstadt, Biological Chemistry, Darmstadt, Germany
| | - J. Rudat
- Karlsruhe Institute of Technology, Technical Biology, Karlsruhe, Germany
| |
Collapse
|
6
|
Kirkwood J, Hargreaves D, O’Keefe S, Wilson J. Analysis of crystallization data in the Protein Data Bank. Acta Crystallogr F Struct Biol Commun 2015; 71:1228-34. [PMID: 26457511 PMCID: PMC4601584 DOI: 10.1107/s2053230x15014892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/08/2015] [Indexed: 11/10/2022] Open
Abstract
The Protein Data Bank (PDB) is the largest available repository of solved protein structures and contains a wealth of information on successful crystallization. Many centres have used their own experimental data to draw conclusions about proteins and the conditions in which they crystallize. Here, data from the PDB were used to reanalyse some of these results. The most successful crystallization reagents were identified, the link between solution pH and the isoelectric point of the protein was investigated and the possibility of predicting whether a protein will crystallize was explored.
Collapse
Affiliation(s)
- Jobie Kirkwood
- Department of Chemistry, University of York, York YO10 5DD, England
| | - David Hargreaves
- AstraZeneca, Darwin Building, Cambridge Science Park, Cambridge CB4 0WG, England
| | - Simon O’Keefe
- Department of Computer Science, University of York, York YO10 5DD, England
| | - Julie Wilson
- Department of Chemistry, University of York, York YO10 5DD, England
- Department of Mathematics, University of York, York YO10 5DD, England
| |
Collapse
|
7
|
Luft JR, Newman J, Snell EH. Crystallization screening: the influence of history on current practice. Acta Crystallogr F Struct Biol Commun 2014; 70:835-53. [PMID: 25005076 PMCID: PMC4089519 DOI: 10.1107/s2053230x1401262x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/30/2014] [Indexed: 11/17/2022] Open
Abstract
While crystallization historically predates crystallography, it is a critical step for the crystallographic process. The rich history of crystallization and how that history influences current practices is described. The tremendous impact of crystallization screens on the field is discussed.
Collapse
Affiliation(s)
- Joseph R. Luft
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
| | - Janet Newman
- CSIRO Collaborative Crystallisation Centre, 343 Royal Parade, Parkville, VIC 3052, Australia
| | - Edward H. Snell
- Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA
- Department of Structural Biology, SUNY Buffalo, 700 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
8
|
Kesik M, Akbulut H, Söylemez S, Cevher ŞC, Hızalan G, Arslan Udum Y, Endo T, Yamada S, Çırpan A, Yağcı Y, Toppare L. Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polym Chem 2014. [DOI: 10.1039/c4py00850b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel approach for the fabrication of a biosensor from a conducting polymer bearing polypeptide segments and ferrocene moieties is reported.
Collapse
Affiliation(s)
- Melis Kesik
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara, Turkey
| | - Huseyin Akbulut
- Department of Chemistry
- Faculty of Science and Letters
- Istanbul Technical University
- 34469 Istanbul, Turkey
| | - Saniye Söylemez
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara, Turkey
| | - Şevki Can Cevher
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara, Turkey
| | - Gönül Hızalan
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara, Turkey
| | - Yasemin Arslan Udum
- Institute of Science and Technology
- Department of Advanced Technologies
- Gazi University
- 06570 Ankara, Turkey
| | - Takeshi Endo
- Molecular Engineering Institute
- Kinki University
- Iizuka, Japan
| | - Shuhei Yamada
- Molecular Engineering Institute
- Kinki University
- Iizuka, Japan
| | - Ali Çırpan
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara, Turkey
- Department of Polymer Science and Technology
- Middle East Technical University
| | - Yusuf Yağcı
- Department of Chemistry
- Faculty of Science and Letters
- Istanbul Technical University
- 34469 Istanbul, Turkey
| | - Levent Toppare
- Department of Chemistry
- Middle East Technical University
- 06800 Ankara, Turkey
- Department of Polymer Science and Technology
- Middle East Technical University
| |
Collapse
|
9
|
Gvozdev AR, Tukhvatullin IA, Gvozdev RI. Quinone-dependent alcohol dehydrogenases and FAD-dependent alcohol oxidases. BIOCHEMISTRY (MOSCOW) 2013; 77:843-56. [PMID: 22860906 DOI: 10.1134/s0006297912080056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers quinone-dependent alcohol dehydrogenases and FAD-dependent alcohol oxidases, enzymes that are present in numerous methylotrophic eu- and prokaryotes and significantly differ in their primary and quaternary structure. The cofactors of the enzymes are bound to the protein polypeptide chain through ionic and hydrophobic interactions. Microorganisms containing these enzymes are described. Methods for purification of the enzymes, their physicochemical properties, and spatial structures are considered. The supposed mechanism of action and practical application of these enzymes as well as their producers are discussed.
Collapse
Affiliation(s)
- A R Gvozdev
- Biosensor AN Ltd., pr. Akademika Semenova 1, 142432 Chernogolovka, Moscow Region, Russia.
| | | | | |
Collapse
|
10
|
An overview on alcohol oxidases and their potential applications. Appl Microbiol Biotechnol 2013; 97:4259-75. [DOI: 10.1007/s00253-013-4842-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 10/27/2022]
|
11
|
Gvozdev AR, Tukhvatullin IA, Gvozdev RI. Purification and properties of alcohol oxidase from Pichia putida. BIOCHEMISTRY (MOSCOW) 2010; 75:242-8. [PMID: 20367612 DOI: 10.1134/s000629791002015x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alcohol oxidase (AO) was extracted from the methylotrophic yeast Pichia putida and purified using various methods. AO purified by crystallization was homogeneous based on analytical centrifugation with subsequent gel filtration and SDS-PAGE. The molecular weight of the enzyme was around 600 kDa. SDS-PAGE revealed a single protein band (74 +/- 4 kDa), and 8-9 bands of native protein with similar specific AO activities and substrate specificities were identified by PAGE without SDS. Electron microscopy of a single molecule revealed eight subunits located on the top of a regular tetragon with dotted symmetry of 422 D4 providing evidence that AO consists of eight subunits. Apparently, each molecule of AO has two types of subunits with very similar molecular weights and differing from each other by the number of acidic and basic amino acid residues. Each subunit includes one molecule of FAD and 2-3 cysteine residues. The pH optimum was within 8.5-9.0. Specific activity of the enzyme varied from 10 to 50 micromol methanol/min per mg protein from batch to batch depending on separation methods and had linear relationship with protein concentration. The AO was quickly inactivated at 20 degrees C and seemed to be stable in phosphate-citrate buffer with 30-50% (w/v) of sucrose. Different forms of 0.1-1 mm crystals of the enzyme were obtained. However the crystals did not yield X-ray reflections, apparently as a result of their molecular microheterogeneity.
Collapse
Affiliation(s)
- A R Gvozdev
- Biosensor AN Ltd., Chernogolovka, Moscow Region, 142432, Russia.
| | | | | |
Collapse
|
12
|
López C, Cavaco‐Paulo A. In‐situ Enzymatic Generation of Hydrogen Peroxide for Bleaching Purposes. Eng Life Sci 2008. [DOI: 10.1002/elsc.200700060] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
13
|
Daniel G, Volc J, Filonova L, Plíhal O, Kubátová E, Halada P. Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood. Appl Environ Microbiol 2007; 73:6241-53. [PMID: 17660304 PMCID: PMC2075019 DOI: 10.1128/aem.00977-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/23/2007] [Indexed: 11/20/2022] Open
Abstract
A novel alcohol oxidase (AOX) has been purified from mycelial pellets of the wood-degrading basidiomycete Gloeophyllum trabeum and characterized as a homooctameric nonglycosylated protein with native and subunit molecular masses of 628 and 72.4 kDa, containing noncovalently bonded flavin adenine dinucleotide. The isolated AOX cDNA contained an open reading frame of 1,953 bp translating into a polypeptide of 651 amino acids displaying 51 to 53% identity with other published fungal AOX amino acid sequences. The enzyme catalyzed the oxidation of short-chain primary aliphatic alcohols with a preference for methanol (K(m) = 2.3 mM, k(cat) = 15.6 s(-1)). Using polyclonal antibodies and immunofluorescence staining, AOX was localized on liquid culture hyphae and extracellular slime in sections from degraded wood and on cotton fibers. Transmission electron microscopy immunogold labeling localized the enzyme in the hyphal periplasmic space and wall and on extracellular tripartite membranes and slime, while there was no labeling of hyphal peroxisomes. AOX was further shown to be associated with membranous or slime structures secreted by hyphae in wood fiber lumina and within the secondary cell walls of degraded wood fibers. The differences in AOX targeting compared to the known yeast peroxisomal localization were traced to a unique C-terminal sequence of the G. trabeum oxidase, which is apparently responsible for the protein's different translocation. The extracellular distribution and the enzyme's abundance and preference for methanol, potentially available from the demethylation of lignin, all point to a possible role for AOX as a major source of H(2)O(2), a component of Fenton's reagent implicated in the generally accepted mechanisms for brown rot through the production of highly destructive hydroxyl radicals.
Collapse
Affiliation(s)
- Geoffrey Daniel
- Department of Forest Products/Wood Science, Swedish University of Agricultural Sciences, P.O. Box 7008, SE-750 07 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
14
|
Szamecz B, Urbán G, Rubiera R, Kucsera J, Dorgai L. Identification of four alcohol oxidases from methylotrophic yeasts. Yeast 2005; 22:669-76. [PMID: 16032762 DOI: 10.1002/yea.1236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Three yeast strains capable of utilizing methanol as sole carbon and energy source were isolated. Two were classified as Candida boidinii, while the third belonged in the genus Pichia. From these three strains, four alcohol oxidases genes were identified and the sequences of the coding regions were determined: one from each Candida boidinii (aox0673 and aox0680) and two from Pichia sp. 159 (aoxA and aoxB). Methanol induces both alcohol oxidases in Pichia sp. 159: the levels of aoxA and aoxB mRNA reach about 100% and 300%, respectively, of that of his4 mRNA. aoxA, but not aoxB, is expressed at a low level in the presence of glucose. The newly described alcohol oxidases have proper dinucleotide binding sites and PTS1-like C-terminal tripeptides, identified as important elements for peroxisomal localization.
Collapse
Affiliation(s)
- Béla Szamecz
- Department of Molecular Biotechnology, Bay Zoltán Institute for Biotechnology, Derkovits Fasor 2, H-6726 Szeged, Hungary
| | | | | | | | | |
Collapse
|
15
|
Mitsubayashi K, Matsunaga H, Nishio G, Toda S, Nakanishi Y. Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking. Biosens Bioelectron 2005; 20:1573-9. [PMID: 15626611 DOI: 10.1016/j.bios.2004.08.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 07/26/2004] [Accepted: 08/04/2004] [Indexed: 11/24/2022]
Abstract
Two kinds of bioelectronic gas sensors (bio-sniffer) incorporating alcohol oxidase (AOD) and aldehyde dehydrogenase (ALDH) were developed for the convenient analysis of ethanol and acetaldehyde in expired gas, respectively. The sniffer devices for gaseous ethanol and acetaldehyde were constructed by immobilizing enzyme on electrodes covered with filter paper and hydrophilic PTFE membrane, respectively. The AOD and ALDH sniffers were used in the gas phase to measure ethanol vapor from 1.0 to 500 ppm, and acetaldehyde from 0.11 to 10 ppm covering the concentration range encountered in breath after alcohol consumption. Both bio-sniffers displayed good gas selectivity which was attributed to the substrate specificity of the relevant enzymes (AOD and ALDH) as gas recognition material. From the results of physiological application, the bio-sniffers could monitor the concentration changes in breath ethanol and acetaldehyde after drinking. The ethanol and acetaldehyde concentrations in expired air from ALDH2 [-] (aldehyde dehydrogenase type 2 negative) subjects were higher than that of the ALDH2 [+] (positive) subjects. The results indicated that the lower activity of ALDH2 induced an adverse effect on ethanol metabolism, leading to ethanol and acetaldehyde remaining in the human body, even human expired air.
Collapse
Affiliation(s)
- Kohji Mitsubayashi
- Department of Biomedical Devices and Instrumentation, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 2-3-10, Japan.
| | | | | | | | | |
Collapse
|
16
|
Du XY, Anzai JI, Osa T, Motohashi R. Amperometric alcohol sensors based on protein multilayers composed of avidin and biotin-labeled alcohol oxidase. ELECTROANAL 1996. [DOI: 10.1002/elan.1140080820] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Nakagawa T, Uchimura T, Komagata K. Isozymes of methanol oxidase in a methanol-utilizing yeast, Pichia methanolica IAM 12901. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0922-338x(96)81469-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
18
|
Large AT, Connock MJ. Hydrogen peroxide generating alcohol and aldehyde oxidases in the giant African land snail,Achatina fulica. ACTA ACUST UNITED AC 1994. [DOI: 10.1002/jez.1402700505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
19
|
Danneel HJ, Reichert A, Giffhorn F. Production, purification and characterization of an alcohol oxidase of the ligninolytic fungus Peniophora gigantea. J Biotechnol 1994. [DOI: 10.1016/0168-1656(94)90096-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Danneel HJ, Ullrich M, Giffhorn F. Goal-oriented screening method for carbohydrate oxidases produced by filamentous fungi. Enzyme Microb Technol 1992. [DOI: 10.1016/0141-0229(92)90053-q] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Ortín A, Cebrian JA, Johansson G. Large scale extraction of alpha-lactalbumin and beta-lactoglobulin from bovine whey by precipitation with polyethylene glycol and partitioning in aqueous two-phase systems. PREPARATIVE BIOCHEMISTRY 1992; 22:53-66. [PMID: 1620687 DOI: 10.1080/10826069208018019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The milk proteins alpha-lactalbumin and beta-lactoglobulin have been isolated from bovine whey by fractional precipitation with polyethylene glycol (PEG) and hydrophobic partitioning in aqueous PEG-hydroxypropylstarch two-phase systems using PEG-bound palmitate as hydrophobic ligand. The possible use of this combination for large scale purification of these whey proteins is discussed.
Collapse
Affiliation(s)
- A Ortín
- Department of Biochemistry, University of Lund, Sweden
| | | | | |
Collapse
|
22
|
Pacáková V, Štulík K, Le K, Hladík J. Hydroxyethylmethacrylate column reactors with immobilized glucose oxidase or alcohol oxidase. Liquid chromatographic determination of ethanol in serum. Anal Chim Acta 1992. [DOI: 10.1016/0003-2670(92)80152-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Duine JA, van Dijken JP. Enzymes of industrial potential from methylotrophs. BIOTECHNOLOGY (READING, MASS.) 1991; 18:233-52. [PMID: 1909915 DOI: 10.1016/b978-0-7506-9188-8.50017-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Becker K, Hopkins TR, Schirmer RH. Antimalarial activity of the ethanol/alcohol oxidase system in vitro. FREE RADICAL RESEARCH COMMUNICATIONS 1990; 9:33-8. [PMID: 2186976 DOI: 10.3109/10715769009148570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Among other macrophage secretory products, H2O2 plays an important role in the host's defense against malaria (Wozencraft et al., Infect. Immun., 43, 664, (1984]. In our in vitro studies on the human malaria parasite Plasmodium falciparum, hydrogen peroxide was produced by the alcohol oxidase-catalyzed reaction ethanol + O2----acetaldehyde + H2O2 (EC 1.1.3.13). At concentrations of 8.7 mM (= 0.5%) ethanol and 0.1 U alcohol oxidase per ml culture, more than 95% of the parasites were irreversibly damaged. Acetaldehyde was found to be parasiticidal per se--probably by releasing immature forms of P. falciparum from erythrocytes--but CH3CHO concentrations as high as 90 mM were required for complete elimination of the parasites. Ethanol (less than 20 mM) or alcohol oxidase alone had no significant effect on parasite viability. As discussed, the ethanol/alcohol oxidase system might be of interest as a potential chemotherapeutic principle, especially since metabolism and pharmacology of the substrates and products are well understood.
Collapse
Affiliation(s)
- K Becker
- Institut für Biochemie II, Universität Heidelberg, West Germany
| | | | | |
Collapse
|
25
|
|
26
|
|
27
|
|
28
|
Herzberg GR, Rogerson M. Use of alcohol oxidase to measure the methanol produced during the hydrolysis of D- and L-methyl-3-hydroxybutyric acid. Anal Biochem 1985; 149:354-7. [PMID: 3907408 DOI: 10.1016/0003-2697(85)90582-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An enzymatic assay for the measurement of methanol has been developed. The assay uses alcohol oxidase and peroxidase coupled to the oxidation of 2,2'-azino-di-(3-ethyl)-benzthiazoline-6-sulfonic acid as the chromogen. The assay is linear up to 50 nmol of methanol in a 200-microliters sample and sensitive; 1.25 nmol of methanol in a 200-microliters sample can be measured. The assay is rapid and measurements can be made at any convenient time between 15 min and 4 h after initiation of the reaction. The assay shows highest activity with methanol but significant activity with other primary alcohols up to 1-butanol. Little activity is shown with secondary alcohols and diols. We have used this assay to follow the hydrolysis of the two isomers of the methyl ester of 3-hydroxybutyric acid.
Collapse
|
29
|
Veenhuis M, Van Dijken JP, Harder W. The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol 1983; 24:1-82. [PMID: 6364725 DOI: 10.1016/s0065-2911(08)60384-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
|
31
|
Patel RN, Hou CT, Laskin AI, Derelanko P. Microbial oxidation of methanol: properties of crystallized alcohol oxidase from a yeast, Pichia sp. Arch Biochem Biophys 1981; 210:481-8. [PMID: 7030206 DOI: 10.1016/0003-9861(81)90212-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Tachibana S, Oka M. Occurrence of a vitamin B2-aldehyde-forming enzyme in Schizophyllum commune. J Biol Chem 1981. [DOI: 10.1016/s0021-9258(19)69045-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
33
|
Majkić-Singh N, Berkeš I. Spectrophotometric determination of ethanol by an enzymatic method with 2, 2'-azino-di(3-ethylbenzthiazo- line-6-sulfonate). Anal Chim Acta 1980. [DOI: 10.1016/s0003-2670(01)93186-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Bringer S, Sprey B, Sahm H. Purification and properties of alcohol oxidase from Poria contigua. EUROPEAN JOURNAL OF BIOCHEMISTRY 1979; 101:563-70. [PMID: 118005 DOI: 10.1111/j.1432-1033.1979.tb19751.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Alcohol oxidase (alcohol:oxygen oxidoreductase) was purified 22-fold from the brown rot fungus Poria contigua. The final enzyme preparation was homogeneous as judged by polyacrylamide gel electrophoresis, and by sedimentation in an ultracentrifuge. The molecular weight was calculated to be 610000 +/- 5000 from sedimentation equilibrium experiments. Electrophoresis in sodium dodecylsulfate gels and electron microscopic analysis indicate that the enzyme is an octamer composed of eight probably identical subunits, each having a molecular weight of 79 000. The enzyme contains eight mol FAD/mol as the prosthetic group. 2. This alcohol oxidase oxidizes not only methanol but also lower primary alcohols (C2-C4), 2-propin-1-ol and formaldehyde. The apparent Km value for methanol is 0.2 mM, and that for formaldehyde 6.1 mM. Sodium azide was found to be a competitive inhibitor with respect to methanol. 3. The enzyme from the fungus Poria contigua is immunologically different from the alcohol oxidase isolated from the methanol-utilizing yeast Candida boidinii. Furthermore antiserum raised against this enzyme did not cross-react with the alcohol oxidase from the white rot fungus Polyporus obtusus.
Collapse
|
35
|
Eriksson B, Ersson B, Kierkegaard P, Larsson LO, Skoglund U, Ludwig M, Yonetani T. A method for the preparation of heavy-atom derivatives of yeast cytochrome c peroxidase. J Mol Biol 1979; 127:225-7. [PMID: 219200 DOI: 10.1016/0022-2836(79)90243-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Lees G, Jago G. Role of Acetaldehyde in Metabolism: A Review 1. Enzymes Catalyzing Reactions Involving Acetaldehyde. J Dairy Sci 1978. [DOI: 10.3168/jds.s0022-0302(78)83708-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Hirt W, Papoutsakis E, Krug E, Lim HC, Tsao GT. Formaldehyde incorporation by a new methylotroph (L3). Appl Environ Microbiol 1978; 36:56-62. [PMID: 567956 PMCID: PMC243034 DOI: 10.1128/aem.36.1.56-62.1978] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A number of bacterial strains have been isolated and investigated in our search for a promising organism in the production of single-cell protein from methanol. Strain L3 among these isolates was identified as an obligate methylotroph which grew only on methanol and formaldehyde as the sole sources of carbon and energy. The organism also grew well in batch and chemostat mixed-substrate cultures containing methanol, formaldehyde, and formate. Although formate was not utilized as a sole carbon and energy source, it was readily taken up and oxidized by either formaldehyde- or methanol-grown cells. The organism incorporated carbon by means of the ribulose monophosphate pathway when growing on either methanol, formaldehyde, or various mixtures of C1 compounds. Its C1-oxidation enzymes included phenazine methosulfate-linked methanol and formaldehyde dehydrogenase and a nicotinamide adenine dinucleotide-linked formate dehydrogenase. Identical inhibition by formaldehyde of the first two dehydrogenases suggested that they are actually the same enzyme. The organism had a rapid growth rate, a high cell yield in the chemostat, a high protein content, and a favorable amino acid distribution for use as a source of single-cell protein. Of special interest was the ability of the organism to utilize formaldehyde via the ribulose monophosphate cycle.
Collapse
|
38
|
Papoutsakis E, Lim HC, Tsao GT. Role of formaldehyde in the utilization of C1 compounds via the ribulose monophosphate cycle. Biotechnol Bioeng 1978. [DOI: 10.1002/bit.260200307] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Arnone A, Rogers PH, Schmidt J, Han C, Harris CM, Metzler DE. Preliminary crystallographic study of aspartate: 2-oxoglutarate aminotransferase from pig heart. J Mol Biol 1977; 112:509-13. [PMID: 875028 DOI: 10.1016/s0022-2836(77)80196-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Hönig W, Kula MR. Selectivity of protein precipitation with polyethylene glycol fractions of various molecular weights. Anal Biochem 1976; 72:502-12. [PMID: 942070 DOI: 10.1016/0003-2697(76)90560-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Cardemil E. The stereospecificity of alcohol oxidases from Tanacetum vulgare and Candida boidinii. Biochem Biophys Res Commun 1975; 67:1093-9. [PMID: 1201060 DOI: 10.1016/0006-291x(75)90786-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
42
|
Ward KB, Wishner BC, Lattman EE, Love WE. Structure of deoxyhemoglobin A crystals grown from polyethylene glycol solutions. J Mol Biol 1975; 98:161-77. [PMID: 1195376 DOI: 10.1016/s0022-2836(75)80107-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
43
|
Guilbault GG, Nanjo M. A phosphate-selective electrode based on immobilized alkaline phosphatase and glucose oxidase. Anal Chim Acta 1975; 78:69-80. [PMID: 1147284 DOI: 10.1016/s0003-2670(01)84753-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
44
|
|
45
|
Purification and characterization of 2-alkyne-1-ol dehydrogenase induced by 2-butyne-1,4-diol in Fusarium merismoides B11. ACTA ACUST UNITED AC 1974. [DOI: 10.1016/0005-2744(74)90452-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
|
47
|
The precipitation of enzymes from cell extracts of Saccharomyces cerevisiae by polyethyleneglycol. ACTA ACUST UNITED AC 1973; 317:505-16. [DOI: 10.1016/0005-2795(73)90243-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Sahm H, Wagner F. Microbial assimilation of methanol. The ethanol- and methanol-oxidizing enzymes of the yeast Candida boidinii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1973; 36:250-6. [PMID: 4354620 DOI: 10.1111/j.1432-1033.1973.tb02907.x] [Citation(s) in RCA: 120] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
49
|
|
50
|
|