1
|
Li Q, Wang Y, Chen C, Zeng M, Jia Q, Ding J, Zhang C, Jiao S, Guo X, Wu J, Fan C, Chen Y, Hu Z. Isolation of a novel Bacillus subtilis HF1 strain that is rich in lipopeptide homologs and has strong effects on the resistance of plant fungi and growth improvement of broilers. Front Microbiol 2024; 15:1433598. [PMID: 39411434 PMCID: PMC11474111 DOI: 10.3389/fmicb.2024.1433598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Bacillus subtilis is an important probiotic microorganism that secretes a variety of antimicrobial compounds, including lipopeptides, which are a class of small molecule peptides with important application value in the fields of feed additives, food, biopesticides, biofertilizers, medicine and the biological control of plant diseases. In this study, we isolated a novel B. subtilis HF1 strain that is rich in lipopeptide components and homologs, has a strong antagonistic effect on a variety of plant fungi, and is highly efficient in promoting the growth of broilers. The live B. subtilis HF1 and its fermentation broth without cells showed significant inhibitory effects on 20 species of plant fungi. The crude extracts of lipopeptides in the fermentation supernatant of B. subtilis HF1 were obtained by combining acid precipitation and methanol extraction, and the lipopeptide compositions were analyzed by ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The results showed that HF1 could produce 11 homologs of surfactin and 13 homologs of fengycin. Among the fengycin homologs, C13-C19 fengycin A and C15-C17 fengycin B were identified; among the surfactin homologs, C11-C17 surfactin A and C13-C16 surfactin B were characterized. C13 fengycin A, C11 surfactin A and C17 surfactin A were reported for the first time, and their functions are worthy of further study. In addition, we found that HF1 fermentation broth with and without live cells could be used as a feed additive to promote the growth of broilers by significantly increasing body weight up to 15.84%. HF1 could be a prospective strain for developing a biocontrol agent for plant fungal diseases and an efficient feed additive for green agriculture.
Collapse
Affiliation(s)
- Qianru Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Mingbai Zeng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qingyun Jia
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhao Ding
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenjian Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shanhai Jiao
- AUSCA Oils and Grains Industries Co., Ltd., Fangchenggang, China
| | - Xupeng Guo
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jihua Wu
- The 306th Hospital of PLA, Beijing, China
| | - Chengming Fan
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuhong Chen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zanmin Hu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
A Need for Improved Cellulase Identification from Metagenomic Sequence Data. Appl Environ Microbiol 2020; 87:AEM.01928-20. [PMID: 33067195 DOI: 10.1128/aem.01928-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Improved sequencing technologies and the maturation of metagenomic approaches allow the identification of gene variants with potential industrial applications, including cellulases. Cellulase identification from metagenomic environmental surveys is complicated by inconsistent nomenclature and multiple categorization systems. Here, we summarize the current classification and nomenclature systems, with recommendations for improvements to these systems. Addressing the issues described will strengthen the annotation of cellulose-active enzymes from environmental sequence data sets-a rapidly growing resource in environmental and applied microbiology.
Collapse
|
3
|
Qin Y, Li Q, Luo F, Fu Y, He H. One-step purification of two novel thermotolerant β-1,4-glucosidases from a newly isolated strain of Fusarium chlamydosporum HML278 and their characterization. AMB Express 2020; 10:182. [PMID: 33030626 PMCID: PMC7544787 DOI: 10.1186/s13568-020-01116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/24/2020] [Indexed: 01/07/2023] Open
Abstract
A newly identified cellulase-producing Fusarium chlamydosporum HML278 was cultivated under solid-state fermentation of sugarcane bagasse, and two new β-glucosides enzymes (BG FH1, BG FH2) were recovered from fermentation solution by modified non-denaturing active gel electrophoresis and gel filtration chromatography. SDS-PAGE analysis showed that the molecular weight of BG FH1 and BG FH2 was 93 kDa and 52 kDa, respectively, and the enzyme activity was 5.6 U/mg and 11.5 U/mg, respectively. The optimal reaction temperature of the enzymes was 60 ℃, and the enzymes were stable with a temperature lower than 70 ℃. The optimal pH of the purified enzymes was 6.0, and the enzymes were stable between pH 4–10. Km and Vmax values were 2.76 mg/mL and 20.6 U/mg for pNPG, respectively. Thin-layer chromatography and high-performance liquid chromatography analysis showed that BG FH1and BG FH2 had hydrolysis activity toward cellobiose and could hydrolyze cellobiose into glucose. In addition, both enzymes exhibited transglycoside activity, which could use glucose to synthesize cellobiose and cellotriose, and preferentially synthesize alcohol. In conclusion, our study demonstrated that F. chlamydosporum HML278 produces heat-resistant β-glucosidases with both hydrolytic activity and transglycosidic activity, and these β-glucosidases have potential application in bioethanol and papermaking industries.
Collapse
|
4
|
Recombinant thermo-alkali-stable endoglucanase of Myceliopthora thermophila BJA (rMt-egl): Biochemical characteristics and applicability in enzymatic saccharification of agro-residues. Int J Biol Macromol 2017; 104:107-116. [DOI: 10.1016/j.ijbiomac.2017.05.167] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/13/2017] [Accepted: 05/30/2017] [Indexed: 11/17/2022]
|
5
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
6
|
Su Z, Yu Y, Liang C, Li L, Yu S. Properties of chitosan-immobilized cellulase in ionic liquid. Biotechnol Appl Biochem 2013; 60:231-5. [DOI: 10.1002/bab.1057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/24/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Zhongliang Su
- Department of Biology; Qingdao University of Science and Technology; Qingdao; People's Republic of China
| | - Yang Yu
- Department of Biology; Qingdao University of Science and Technology; Qingdao; People's Republic of China
| | - Chengwei Liang
- Department of Biology; Qingdao University of Science and Technology; Qingdao; People's Republic of China
| | - Lu Li
- Department of Biology; Qingdao University of Science and Technology; Qingdao; People's Republic of China
| | - Shitao Yu
- Department of Biology; Qingdao University of Science and Technology; Qingdao; People's Republic of China
| |
Collapse
|
7
|
Two-Step Purification of a Novel β-Glucosidase with High Transglycosylation Activity and Another Hypothetical β-Glucosidase in Aspergillus oryzae HML366 and Enzymatic Characterization. Appl Biochem Biotechnol 2013; 169:870-84. [DOI: 10.1007/s12010-012-9936-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 10/04/2012] [Indexed: 11/25/2022]
|
8
|
Qin Y, Zhang Y, He H, Zhu J, Chen G, Li W, Liang Z. Screening and identification of a fungal β-glucosidase and the enzymatic synthesis of gentiooligosaccharide. Appl Biochem Biotechnol 2010; 163:1012-9. [PMID: 20963514 DOI: 10.1007/s12010-010-9105-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 10/07/2010] [Indexed: 11/25/2022]
Abstract
After screening with 0.1% esculoside and 0.03% FeCl(3), we identified from rotten wood a fungal isolate HML0366 that produces high amount of β-glucosidase. Phenotypic and rDNA internal transcribed spacer sequence analyses indicated that the isolate belongs to Aspergillus oryzae. The β-glucosidase produced by HML0366 had an activity of 128 U/g. high performance liquid chromatography analysis also demonstrated a high transglycosylation activity of the crude enzyme. The β-glucosidase was stable between pH 4-10 at 60 °C. A gentiobiose yield of 30.86 g/L was achieved within 72 h of the enzymatic reaction at pH 5 and 55 °C using 50% glucose as the substrate. For the first time, we report here the isolation of an A. oryzae strain producing β-glucosidase with high hydrolytic activities. The crude enzyme has a high transglycosylation activity, which enables the enzymatic synthesis of gentiooligosaccharides.
Collapse
Affiliation(s)
- Yongling Qin
- College of Life Science and Technology, Guangxi University, Nanning, Guangxi 531005, China
| | | | | | | | | | | | | |
Collapse
|
9
|
White AR, Brown RM. Enzymatic hydrolysis of cellulose: Visual characterization of the process. Proc Natl Acad Sci U S A 2010; 78:1047-51. [PMID: 16592961 PMCID: PMC319943 DOI: 10.1073/pnas.78.2.1047] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cellulose from the Gram-negative bacterium Acetobacter xylinum has been used as a model substrate for visualizing the action of cellulase enzymes from the fungus Trichoderma reesei. High-resolution electron microscopy reveals that A. xylinum normally produces a ribbon of cellulose that is a composite of bundles of crystalline microfibrils. Visual patterns of the process of cellulose degradation have been established. Enzymes are initially observed bound to the cellulose ribbon. Within 10 min, the ribbon is split along its long axis into bundles of microfibrils which are subsequently thinned until they are completely dissolved within 30 min. Incubations with purified components of the cellulase enzyme system produced less dramatic changes in ribbon structure. Purified 1,4-beta-D-glucan cellobiohydrolase I (D) (EC 3.2.1.91) produced no visible change in cellulose structure. Purified endo-1,4-beta-D-glucanase IV (EC 3.2.1.4) produced some splaying of ribbons into microfibril bundles. In both cases, whole ribbons were present even after 60 min of incubation, visually confirming the synergistic mode of action of these enzymes.
Collapse
Affiliation(s)
- A R White
- Department of Botany, University of North Carolina, Chapel Hill, North Carolina 27514
| | | |
Collapse
|
10
|
Enari TM, Niku-paavola ML. Enzymatic Hydrolysis of Cellulose: is the Current Theory of the Mechanisms of Hydrolysis Valid? Crit Rev Biotechnol 2010; 5:67-87. [DOI: 10.3109/07388558709044153] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
11
|
Hostomské Z, MikeŠ O. Separation of the cellulolytic system of Trichoderma viride-reesei mutant using medium pressure liquid chromatography and characterization of a new exo-cellobiohydrolase*. ACTA ACUST UNITED AC 2009. [DOI: 10.1111/j.1399-3011.1984.tb02738.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Marsden WL, Gray PP, Mandels M. Enzymatic Hydrolysis of Cellulose in Lignocellulosic Materials. Crit Rev Biotechnol 2008. [DOI: 10.3109/07388558509150785] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Purification and characterization of a new family 45 endoglucanase, STCE1, from Staphylotrichum coccosporum and its overproduction in Humicola insolens. Appl Environ Microbiol 2008; 74:4210-7. [PMID: 18408068 DOI: 10.1128/aem.02747-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the detergent industry, fungal endoglucanases have been used to release microfibrils (defibrillation) from the surface of dyed cellulosic fabrics to enhance color brightness. Although endoglucanases for laundry use must have various properties, such as a neutral or alkaline optimum pH, resistance to anionic surfactants and oxidizing agents (main components in detergents), and high defibrillation activity, all-purpose endoglucanases have not been obtained yet. As a result of screening of endoglucanases, a new family 45 endoglucanase (family 45 glycoside hydrolase), designated STCE1, was obtained and purified to apparent homogeneity from the culture supernatant of Staphylotrichum coccosporum NBRC 31817. The molecular mass of STCE1 was 49 kDa. The optimum pH for the carboxymethyl cellulase activity of STCE1 was 6.0, and the optimum temperature was 60 degrees C. STCE1 was highly resistant to an anionic surfactant and an oxidizing agent. Furthermore, the defibrillation activities on dyed cotton and lyocell fabrics of STCE1 were higher than those of the other representative endoglucanases tested. These results indicate that STCE1 is an all-purpose enzyme for laundry use. A gene encoding STCE1, designated the stce1 gene, was cloned from S. coccosporum, and the complete sequence was determined. STCE1 consisted of three distinct domains: an N-terminal catalytic domain (family 45), a linker domain, and a C-terminal carbohydrate-binding module (family 1). The amino acid sequences of the catalytic domain of STCE1 were phylogenetically close to those of the family 45 endoglucanases EGL3, EGL4, and EGV from a Humicola sp. Hence, the stce1 gene was transferred into Humicola insolens and expressed. As a result, extremely high levels (0.90 mg protein per ml of culture supernatant, 27% of the total proteins) of the recombinant STCE1 were secreted as a mature form in the culture supernatant.
Collapse
|
14
|
Kredics L, Antal Z, Szekeres A, Hatvani L, Manczinger L, Vágvölgyi C, Nagy E. Extracellular proteases of Trichoderma species. A review. Acta Microbiol Immunol Hung 2005; 52:169-84. [PMID: 16003937 DOI: 10.1556/amicr.52.2005.2.3] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cellulolytic, xylanolytic, chitinolytic and beta-1,3-glucanolytic enzyme systems of species belonging to the filamentous fungal genus Trichoderma have been investigated in details and are well characterised. The ability of Trichoderma strains to produce extracellular proteases has also been known for a long time, however, the proteolytic enzyme system is relatively unknown in this genus. Fortunately, in the recent years more and more attention is focused on the research in this field. The role of Trichoderma proteases in the biological control of plant pathogenic fungi and nematodes has been demonstrated, and it is also suspected that they may be important for the competitive saprophytic ability of green mould isolates and may represent potential virulence factors of Trichoderma strains as emerging fungal pathogens of clinical importance. The aim of this review is to summarize the information available about the extracellular proteases of Trichoderma. Numerous studies are available about the extracellular proteolytic enzyme profiles of Trichoderma strains and about the effect of abiotic environmental factors on protease activities. A number of protease enzymes have been purified to homogeneity and some protease encoding genes have been cloned and characterized. These results will be reviewed and the role of Trichoderma proteases in biological control as well as their advantages and disadvantages in biotechnology will be discussed.
Collapse
Affiliation(s)
- L Kredics
- Microbiological Research Group, Hungarian Academy of Sciences and University of Szeged, P.O. Box 533, H-6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
15
|
Tjerneld F, Persson I, Albertsson PÅ, Hahn-Hägerdal B. Enzymatic hydrolysis of cellulose in aqueous two-phase systems. I. partition of cellulases fromTrichoderma reesei. Biotechnol Bioeng 2004; 27:1036-43. [DOI: 10.1002/bit.260270715] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Karlsson J, Siika-aho M, Tenkanen M, Tjerneld F. Enzymatic properties of the low molecular mass endoglucanases Cel12A (EG III) and Cel45A (EG V) of Trichoderma reesei. J Biotechnol 2002; 99:63-78. [PMID: 12204558 DOI: 10.1016/s0168-1656(02)00156-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trichoderma reesei produces five known endoglucanases. The most studied are Cel7B (EG I) and Cel5A (EG II) which are the most abundant of the endoglucanases. We have performed a characterisation of the enzymatic properties of the less well-studied endoglucanases Cel12A (EG III), Cel45A (EG V) and the catalytic core of Cel45A. For comparison, Cel5A and Cel7B were included in the study. Adsorption studies on microcrystalline cellulose (Avicel) and phosphoric acid swollen cellulose (PASC) showed that Cel5A, Cel7B, Cel45A and Cel45Acore adsorbed to these substrates. In contrast, Cel12A adsorbed weakly to both Avicel and PASC. The products formed on Avicel, PASC and carboxymethylcellulose (CMC) were analysed. Cel7B produced glucose and cellobiose from all substrates. Cel5A and Cel12A also produced cellotriose, in addition to glucose and cellobiose, on the substrates. Cel45A showed a clearly different product pattern by having cellotetraose as the main product, with practically no glucose and cellobiose formation. The kinetic constants were determined on cellotriose, cellotetraose and cellopentaose for the enzymes. Cel12A did not hydrolyse cellotriose. The k(Cat) values for Cel12A on cellotetraose and cellopentaose were significantly lower compared with Cel5A and Cel7B. Cel7B was the only endoglucanase which rapidly hydrolysed cellotriose. Cel45Acore did not show activity on any of the three studied cello-oligosaccharides. The four endoglucanases' capacity to hydrolyse beta-glucan and glucomannan were studied. Cel12A hydrolysed beta-glucan and glucomannan slightly less compared with Cel5A and Cel7B. Cel45A was able to hydrolyse glucomannan significantly more compared with beta-glucan. The capability of Cel45A to hydrolyse glucomannan was higher than that observed for Cel12A, Cel5A and Cel7B. The results indicate that Cel45A is a glucomannanase rather than a strict endoglucanase.
Collapse
Affiliation(s)
- Johan Karlsson
- Department of Biochemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
17
|
Calza RE, Irwin DC, Wilson DB. Purification and characterization of two .beta.-1,4-endoglucanases from Thermomonospora fusca. Biochemistry 2002. [DOI: 10.1021/bi00347a044] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Kono H, Kawano S, Erata T, Takai M. Regioselective Syntheses of New Tri-and Tetrasaccharides by Transglycosylation of Trichoderma Viride β-Glucosidase. J Carbohydr Chem 2000. [DOI: 10.1080/07328300008544070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Kono H, Waelchili MR, Fujiwara M, Erata T, Takai M. Regioselective syntheses of new tri- and tetrasaccharides from β-glucobioses by Trichoderma viride β-glucosidase and their structural analyses by NMR spectroscopy. Carbohydr Res 1999. [DOI: 10.1016/s0008-6215(99)00166-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Kono H, Kawano S, Tajima K, Erata T, Takai M. Structural analyses of new tri- and tetrasaccharides produced from disaccharides by transglycosylation of purified Trichoderma viride beta-glucosidase. Glycoconj J 1999; 16:415-23. [PMID: 10737327 DOI: 10.1023/a:1007034728857] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A new beta-glucosidase was partially purified from Trichoderma viride cellulase. This beta-glucosidase catalyzed a transglycosylation reaction of cellobiose to give beta-D-Glc-(1-->6)-beta-D-Glc-(1-->4)-D-Glc (1, yield: 18.8%) and beta-D-Glc-(1-->6)-beta-D-Glc-(1-->6)-beta-D-Glc-(1-->4)-D-Glc (2, 3.7%), regioselectively. Furthermore, the enzyme regioselectively converted laminaribiose and gentiobiose into beta-D-Glc-(1-->6)-beta-D-Glc-(1-->3)-D-Glc (3, 15.3%) and beta-D-Glc-(1-->6)-beta-D-Glc-(1-->6)-D-Glc (4, 20.2%), respectively. The structures (1-4) of the products were determined by 1H and 13C NMR spectroscopies. This high regio- and stereoselectively of the beta-glucosidase could be applied for oligosaccharide synthesis.
Collapse
Affiliation(s)
- H Kono
- Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
21
|
Kono H, Waelchli MR, Fujiwara M, Erata T, Takai M. Transglycosylation of cellobiose by partially purified Trichoderma viride cellulase. Carbohydr Res 1999; 319:29-37. [PMID: 10520254 DOI: 10.1016/s0008-6215(99)00105-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A commercial cellulase from Trichoderma viride was fractionated into three fractions, F1, F2, and F3, in order to investigate transglycosylation activities. Among these fractions, F3, which demonstrated highly hydrolytic activity toward p-nitrophenyl beta-D-glucopyranoside and Avicel, most effectively catalyzed the transglycosylation of cellobiose and converted cellobiose into beta-Glc-(1-->6)-beta-glc-(1-->4)-Glc and beta-Glc-(1-->6)-beta-Glc-(1-->6)-beta-Glc(1-->4)-Glc. The F3 fraction contained the enzyme to catalyze beta-glucosyl transfer toward only the C-6 position of the sugar acceptor, and thus it is expected to be of use for syntheses of functional oligosaccharides.
Collapse
Affiliation(s)
- H Kono
- Division of Molecular Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
22
|
Vlasenko EY, Ryan AI, Shoemaker CF, Shoemaker SP. The use of capillary viscometry, reducing end-group analysis, and size exclusion chromatography combined with multi-angle laser light scattering to characterize endo-1,4-β-d-glucanases on carboxymethylcellulose: a comparative evaluation of the three methods. Enzyme Microb Technol 1998. [DOI: 10.1016/s0141-0229(98)00052-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
23
|
|
24
|
Ruohonen L, Toikkanen J, Tieaho V, Outola M, Soderlund H, Keranen S. Enhancement of protein secretion in Saccharomyces cerevisiae by overproduction of Sso protein, a late-acting component of the secretory machinery. Yeast 1997; 13:337-51. [PMID: 9133737 DOI: 10.1002/(sici)1097-0061(19970330)13:4<337::aid-yea98>3.0.co;2-k] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Increased production of secreted proteins in Saccharomyces cerevisiae was achieved by overexpressing the yeast syntaxins. Sso1 or Sso2 protein, the t-SNAREs functioning at the targeting/fusion of the Golgi-derived secretory vesicles to the plasma membrane. Up to four- or six-fold yields of a heterologous secreted protein, Bacillus alpha-amylase, or an endogenous secreted protein, invertase, were obtained respectively when expressing either one of the SSO genes, SSO1 or SSO2, from the ADH1 promoter on a multicopy plasmid. Direct correlation between the Sso protein level and the amount of secreted alpha-amylase was demonstrated by modulating the expression level of the SSO2 gene. Quantitation of the alpha-amylase activity in the culture medium, periplasmic space and cytoplasm suggests that secretion into the periplasmic space is the primary stage at which the SSO genes exert the secretion-enhancing function. Pulse-chase data also support enhanced secretion efficiently obtained by SSO overexpression. Our data suggest that the Sso proteins may be rate-limiting components of the protein secretion machinery at the exocytosis step in yeast.
Collapse
Affiliation(s)
- L Ruohonen
- VTT Biotechnology and Food Research, Espoo, Finland
| | | | | | | | | | | |
Collapse
|
25
|
Tashpulatov ZT, Baibaev BG, Shul'man TS. Purification and characteristics of the endo-1,4-?--glucanase formed by the hybrid fungusTrichoderma harzianum-G-1. Chem Nat Compd 1996. [DOI: 10.1007/bf01374023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Singh A, Hayashi K. Microbial cellulases: protein architecture, molecular properties, and biosynthesis. ADVANCES IN APPLIED MICROBIOLOGY 1995; 40:1-44. [PMID: 7604736 DOI: 10.1016/s0065-2164(08)70362-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A Singh
- Biomaterials Conversion Laboratory, National Food Research Institute, Ibaraki, Japan
| | | |
Collapse
|
27
|
Song SC, Akaike T, Hatanaka K. Gel Filtration Fractionation of Cellulase from Trichoderma viride and Its Application to the Synthesis of the Branched Polysaccharide. Polym J 1994. [DOI: 10.1295/polymj.26.387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Kim DW, Jeong YK, Jang YH, Lee JK. Purification and characterization of endoglucanase and exoglucanase components from Trichoderma viride. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/0922-338x(94)90005-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Bühler R. Double-antibody sandwich enzyme-linked immunosorbent assay for quantitation of endoglucanase I of Trichoderma reesei. Appl Environ Microbiol 1991; 57:3317-21. [PMID: 1781689 PMCID: PMC183965 DOI: 10.1128/aem.57.11.3317-3321.1991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A sensitive and specific enzyme-liked immunosorbent assay for endoglucanase I (EG-I) has been developed. The monoclonal antibody a-EG-I 2, directed against an epitope on the core part of the enzyme, was used to capture the antigen in microtiter plate wells. A second, polyclonal antibody against the enzyme was then used to detect and quantitate the bound antigen. The test was specific for EG-I; neither endoglucanase II nor cellobiohydrolase I or II interfered. As little as 20 pg of EG-I protein could be detected. The coefficients of variation were 3.8% within plates and 6% between plates for a diluted Trichoderma reesei culture supernatant that contained 31 ng of EG-I per ml. Binding of the antigen to the monoclonal antibody was pH dependent and restricted to values between pH 6.5 and 10.5 with a maximum around pH 9. Standard solutions of EG-I were very stable at concentrations as low as 5 ng/ml when prepared in buffer that contained 1% bovine serum albumin and that was stored at -20 degrees C. After 37 weeks the antigenicity was still 97%. With this test it was possible to monitor the production of EG-I in a cellulase-producing strain of T. reesei and to demonstrate the apparent absence of the enzyme in a strain with the eglI gene deleted.
Collapse
Affiliation(s)
- R Bühler
- Research Laboratories, Alko Ltd., Helsinki, Finland
| |
Collapse
|
30
|
Zurbriggen BD, Penttilä ME, Viikari L, Bailey MJ. Pilot scale production of a Trichoderma reesei endo-beta-glucanase by brewer's yeast. J Biotechnol 1991; 17:133-46. [PMID: 1366983 DOI: 10.1016/0168-1656(91)90004-f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Endo-beta-glucanase I (EGI) of Trichoderma reesei was produced in laboratory and pilot scale using recombinant strains of "bottom-fermenting" Saccharomyces cerevisiae. The gene eg/1 was integrated in the chromosome or an expression cassette was inserted on a multicopy plasmid. Expression levels were compared in a laboratory scale bioreactor. The best EGI-producing strain was cultivated in pilot scale. Adsorbent treatment was used to remove endogenous yeast proteins and other impurities from the culture filtrate during concentration. Effective pilot scale one-step purification of the EGI protein was obtained using DEAE-Sepharose, on which EGI was weakly bound. The purified enzyme reacted with antibodies prepared against T. reesei EGI and catalyzed the hydrolysis of both insoluble and soluble substrates.
Collapse
|
31
|
Luderer ME, Hofer F, Hagspiel K, Allmaier G, Blaas D, Kubicek CP. A re-appraisal of multiplicity of endoglucanase I from Trichoderma reesei using monoclonal antibodies and plasma desorption mass spectrometry. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1076:427-34. [PMID: 2001391 DOI: 10.1016/0167-4838(91)90487-k] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An endo beta-1,4-glucanase (EC 3.2.1.4, 1.4-(1,3;1,4)-beta-D-glucan 4 glucanhydrolase) was purified to apparent homogeneity from culture filtrates of Trichoderma reesei QM 9414. Identity of the protein with endoglucanase I (EG I) was examined by subjecting CNBr fragments of the protein to analysis by plasma desorption mass spectrometry. Seven non-glycosylated fragments, mapped on the eg1 gene sequence, could be identified, hence proving at least 39.4% identity of the amino acid sequence. No sign for microheterogeneity was observed. Purified EG I was used to prepare monoclonal antibodies. 17 stable clones were obtained, of which one--Mab EG 3--was used to analyze several commercial T. reesei cellulase preparations as well as culture filtrates from T. pseudokoningii and T. longibrachiatum for the presence of EG I. Most of them contained immunoreactive material migrating as a prominent 50-55 kDa band on SDS-PAGE, resembling EG I, but in some instances additional lower molecular weight bands were also observed. Cultivation of T. reesei at low pH led to an increase of these lower molecular weight bands. EG I was rather stable against proteolysis by papain in vitro, but after prolonged treatment, immunopositive products of 50 and 45 kDa were produced at the expense of the 55 kDa band. Our monoclonal antibodies failed to react with a low-molecular-weight endoglucanase, which was previously shown to be detectable with polyclonal antiserum against EG I. However, all monoclonals reacted with a 118 kDa protein which is most probably a dimer of EG I. These results are discussed with respect to the occurrence of multiple forms of EG I in T. reesei cellulase preparations.
Collapse
Affiliation(s)
- M E Luderer
- Abteilung für Mikrobielle Biochemie, Institut für Biochemische Technologie und Mikrobiologie, Wien, Austria
| | | | | | | | | | | |
Collapse
|
32
|
Waksman G. Purification and characterization of two endo-beta-1,4-D-glucanases from Sclerotinia sclerotiorum. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:49-55. [PMID: 1991146 DOI: 10.1016/0304-4165(91)90181-f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The endo-beta-1,4-D-glucanase (EC 3.2.1.4) enzymes produced in vitro by Sclerotinia sclerotiorum consisted of numerous isoforms with pI ranging from 3.5 to 6.2. The two dominant isoforms, labelled EG1 and EG2, were purified. The pI of EG1 and EG2 were 6.2 and 3.7, respectively. Their molecular weights were, respectively, 48,000 and 34,000. EG1 and EG2 were both active towards carboxymethyl cellulose. However, EG1 was also active towards 4-methylumbelliferyl cellobioside. The amino acid compositions of EG1 and EG2 were different. The N-terminal amino acid sequences of the two enzymes showed little homology. However, the N-terminal sequence of EG1 showed considerable homology to the published N-terminal sequence of an endoglucanase (EG1) from Schizohyllum commune.
Collapse
Affiliation(s)
- G Waksman
- Department of Microbiology, University of Bristol, The Medical School, U.K
| |
Collapse
|
33
|
Haab D, Hagspiel K, Szakmary K, Kubicek CP. Formation of the extracellular proteases from Trichoderma reesei QM 9414 involved in cellulase degradation. J Biotechnol 1990. [DOI: 10.1016/0168-1656(90)90035-a] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Studies of the cellulolytic system of the filamentous fungus Trichoderma reesei QM 9414. Substrate specificity and transfer activity of endoglucanase I. Biochem J 1990; 270:251-6. [PMID: 2396985 PMCID: PMC1131706 DOI: 10.1042/bj2700251] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Endoglucanase I from the filamentous fungus Trichoderma reesei catalyses hydrolysis and glycosyl-transfer reactions of cello-oligosaccharides. Initial bond-cleaving frequencies determined with 1-3H-labelled cello-oligosaccharides proved to be substrate-concentration-dependent. Using chromophoric glycosides and analysing the reaction products by h.p.l.c., kinetic data are obtained and, as typical for an endo-type depolymerase, apparent hydrolytic parameters (kcat., kcat./Km) increase steadily as a function of the number of glucose residues. At high substrate concentrations, and for both free cellodextrins and their aromatic glycosides, complex patterns (transfer reactions) are, however, evident. In contrast with the corresponding lactosides and 1-thiocellobiosides, and in conflict with the expected specificity, aromatic 1-O-beta-cellobiosides are apparently hydrolysed at both scissile bonds, yielding the glucoside as one of the main reaction products. Its formation rate is clearly non-hyperbolically related to the substrate concentration and, since the rate of D-glucose formation is substantially lower, strong indications for dismutation reactions (self-transfer) are again obtained. Evidence for transfer reactions catalysed by endoglucanase I further results from experiments using different acceptor and donor substrates. A main transfer product accumulating in a digest containing a chromophoric 1-thioxyloside was isolated and its structure elucidated by proton n.m.r. spectrometry (500 MHz). The beta 1-4 configuration of the newly formed bond was proved.
Collapse
|
35
|
Doerner KC, White BA. Assessment of the endo-1,4-beta-glucanase components of Ruminococcus flavefaciens FD-1. Appl Environ Microbiol 1990; 56:1844-50. [PMID: 2383014 PMCID: PMC184520 DOI: 10.1128/aem.56.6.1844-1850.1990] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The extracellular endo-1,4-beta-glucanase components of Ruminococcus flavefaciens FD-1 were analyzed by high-performance liquid chromatography (HPLC) by using DEAE ion-exchange, hydroxylapatite, and gel filtration chromatography and polyacrylamide gel electrophoresis (PAGE). Two endo-1,4-beta-glucanase peaks were resolved by DEAE-HPLC and termed endoglucanases A and B. Carboxymethyl cellulose (CMC) zymograms were achieved by enzyme separation using nondenaturing PAGE followed by incubation of the gel on top of a CMC-agarose gel. This revealed no less than 13 and 5 endo-1,4-beta-glucanase components present in endoglucanases A and B, respectively. Hydroxylapatite chromatography of endoglucanases A and B revealed one activity peak for each preparation, which contained 4 and 5 endo-1,4-beta-glucanase components, respectively. Gel filtration chromatography of endoglucanase A following hydroxylapatite chromatography resolved the most active carboxymethylcellulase (CMCase) component from other endo-1,4-beta-glucanase activities. Gel filtration of endoglucanase B following hydroxylapatite chromatography showed one CMCase activity peak. Protein stains of sodium dodecyl sulfate-PAGE and nondenaturing PAGE gels of endoglucanases A and B from hydroxylapatite and gel filtration chromatography revealed multiple protein components. When xylan was substituted for CMC in zymograms, identical separation patterns for CMCase and xylanase activities were observed for both endoglucanases A and B. These data suggest that both 1,4-beta linkage-hydrolyzing activities reside on the same polypeptide or protein complex. The highest endo-1,4-beta-glucanase-specific activities were observed following DEAE-HPLC chromatography, with 16.2 and 7.5 mumol of glucose equivalents per min per mg of protein for endoglucanases A and B, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K C Doerner
- Department of Animal Sciences, University of Illinois, Urbana-Champaign 61801
| | | |
Collapse
|
36
|
Nieves RA, Himmel ME, Todd RJ, Ellis RP. Cross-reactive and specific monoclonal antibodies against cellobiohydrolases I and II and endoglucanases I and II of Trichoderma reesei. Appl Environ Microbiol 1990; 56:1103-8. [PMID: 2339871 PMCID: PMC184349 DOI: 10.1128/aem.56.4.1103-1108.1990] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Splenocytes derived from mice inoculated with a commercial cellulase preparation or purified cellulases were fused with a stable myeloma cell line (SP2/0). Specific monoclonal antibodies to cellobiohydrolases I and II and endoglucanases I and II were established. In addition to specific monoclonal antibodies, we were also able to establish stable hybridoma cell lines which produced monoclonal antibodies that recognized similar epitopes possessed by two or more of the above cellulases. By obtaining monospecific antibodies for all four individual cellulases, the role and function of the individual cellulases can thus be studied in greater detail.
Collapse
Affiliation(s)
- R A Nieves
- Department of Microbiology, Colorado State University, Fort Collins 80525
| | | | | | | |
Collapse
|
37
|
Blanchette RA, Abad AR, Cease KR, Lovrien RE, Leathers TD. Colloidal Gold Cytochemistry of Endo-1,4-β-Glucanase, 1,4-β-
D
-Glucan Cellobiohydrolase, and Endo-1,4-β-Xylanase: Ultrastructure of Sound and Decayed Birch Wood. Appl Environ Microbiol 1989; 55:2293-301. [PMID: 16348009 PMCID: PMC203071 DOI: 10.1128/aem.55.9.2293-2301.1989] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colloidal gold coupled to endo-1,4-β-glucanase II (EG II) and 1,4-β-
D
-glucan cellobiohydrolase I (CBH I), isolated from
Trichoderma reesei
(QM9414), and endo-1,4-β-xylanase from
Aureobasium pullulans
(NRRLY-2311-1) was used successfully to determine the ultrastructural localization of cellulose and xylan in sound birch wood. In addition, these enzyme-gold complexes demonstrated the distribution of cellulose and xylan after decay by three white rot fungi,
Phanerochaete chrysosporium, Phellinus pini
, and
Trametes versicolor
, and one brown rot fungus,
Fomitopis pinicola.
Transverse sections of sound wood showed that EG II was localized primarily on the S
1
layer of the secondary wall, whereas CBH I labeled all layers of the secondary wall. Oblique sections showed a high concentration of gold labeling, using EG II or CBH I. Preference for the sides of the microfibrillar structure was observed for both EG II and CBH I, whereas only CBH I had a specificity for the cut ends of microfibrils. Labeling with the xylanase-gold complex occurred primarily in the inner regions of the S
2
layer, S
1
, and the middle lamella. In contrast, little labeling occurred in the middle lamella with EG II or CBH I. Intercellular regions within the cell corners of the middle lamella were less electron dense and labeled positively when EG II- and xylanase-gold were used. Wood decayed by
P. chrysosporium
or
P. pini
was delignified, and extensive degradation of the middle lamella was evident. The remaining secondary walls labeled with EG II and CBH I, but little labeling was found with the xylanase-gold complex. Wood decayed by
T. versicolor
was nonselective, and erosion of all cell wall layers was apparent. Remaining wall layers near sites of erosion labeled with both EG II and CBH I. Erosion troughs that reached the S
1
layer or the middle lamella had less xylanase-gold labeling in the adjacent cell wall that remained. Brown-rotted wood had very low levels of gold particles present in sections treated with EG II or xylanase. Labeling with CBH I had the lowest concentrations in the S
2
layer near cell lumina and corresponded to sites with the most extensive degradation.
Collapse
Affiliation(s)
- R A Blanchette
- Department of Plant Pathology and Department of Biochemistry, University of Minnesota, St. Paul, Minnesota 55108, and Northern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois 61604
| | | | | | | | | |
Collapse
|
38
|
Abstract
The cellulase enzyme system consists of cellobiohydrolase, endoglucanase, and beta-glucosidase and has been extensively studied with respect to its biosynthesis, properties, mode of action, application, and, most recently, secretion mechanisms. A knowledge of the factors governing the biosynthesis and secretion of these enzymes at the molecular level will be useful in maximizing enzyme productivity in extracellular fluid. Among other topics, the regulatory effects of sorbose (a noninducing sugar which is not a product of cellulose hydrolysis) on cellulase synthesis and release are described. Cellulase genes have recently been cloned into a number of microorganisms with a view to understanding the gene structure and expression and to obtaining the enzyme components in pure form. The factors governing biosynthesis and secretion of cellulases in recombinant cells are also discussed. Cellulases are known to be glycoproteins, therefore, the role of O- and N-linked glycosylation on enzyme stability and secretion is also detailed.
Collapse
Affiliation(s)
- V S Bisaria
- Biochemical Engineering Research Centre, Indian Institute of Technology-Delhi
| | | |
Collapse
|
39
|
Greene RV, Griffin HL, Freer SN. Purification and characterization of an extracellular endoglucanase from the marine shipworm bacterium. Arch Biochem Biophys 1988; 267:334-41. [PMID: 3196031 DOI: 10.1016/0003-9861(88)90039-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bacterial cultures isolated from the gland of Deshayes of marine shipworm (Psiloteredo healdi) produced extracellular endoglucanase activity when cultured with 1% cellulose. An endoglucanase of subunit relative molecular mass 58,000, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was purified to homogeneity from cell-free culture medium. Similarly, the relative molecular mass of the native enzyme was 60,100 as determined by gel permeation chromatography. No carbohydrate appeared to be associated with the purified protein. The action of the purified enzyme on various cellodextrins was also studied. Only interior glucosyl linkages of cellodextrin chains larger than cellotriose were cleaved by the enzyme and the centermost bond of cellohexaose was preferentially cleaved. The Km values of the purified endoglucanase were 0.12 mM for cellotetraose, 0.05 mM for cellopentaose, and 0.11 mM for cellohexaose. Glucose, cellobiose, and cellotriose did not inhibit enzymatic activity.
Collapse
Affiliation(s)
- R V Greene
- U.S. Department of Agriculture, Northern Regional Research Center, Peoria, Illinois 61604
| | | | | |
Collapse
|
40
|
Tamada M, Kasai N, Kaetsu I. Estimation of cellulase activity based on glucose productivity. Biotechnol Bioeng 1988; 32:920-2. [PMID: 18587805 DOI: 10.1002/bit.260320712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
|
42
|
Messner R, Gruber F, Kubicek CP. Differential regulation of synthesis of multiple forms of specific endoglucanases by Trichoderma reesei QM9414. J Bacteriol 1988; 170:3689-93. [PMID: 3403510 PMCID: PMC211346 DOI: 10.1128/jb.170.8.3689-3693.1988] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A method consisting of sodium dodecyl sulfate-polyacrylamide gel electrophoresis and subsequent detection of endoglucanases by blotting with a polyclonal antibody against endoglucanase I was used to investigate the effect of induction and carbon catabolite derepression on the synthesis of multiple forms of endoglucanase I by Trichoderma reesei. Five forms appeared upon growth on cellulose, whereas four and only two appeared upon growth on lactose (carbon catabolite derepression) and induction by sophorose in a resting cell system, respectively. All endoglucanases detected resembled endoglucanase I in their specificity, since they exhibited no activity toward xylan or paranitrophenyl-beta-D-lactobioside. A small (25-kilodalton) endoglucanase only appeared during growth on cellulose. None of the multiple forms arose by postsecretional modification. The results indicate that sophorose may not be the only compound mediating cellulose induction of the specific endoglucanases in T. reesei.
Collapse
Affiliation(s)
- R Messner
- Institut für Biochemische Technologie und Mikrobiologie, TU Wien, Austria
| | | | | |
Collapse
|
43
|
Saloheimo M, Lehtovaara P, Penttilä M, Teeri TT, Ståhlberg J, Johansson G, Pettersson G, Claeyssens M, Tomme P, Knowles JK. EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 1988; 63:11-22. [PMID: 3384334 DOI: 10.1016/0378-1119(88)90541-0] [Citation(s) in RCA: 255] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A novel endoglucanase from Trichoderma reesei, EGIII, has been purified and its catalytic properties have been studied. The gene for that enzyme (egl3) and cDNA have been cloned and sequenced. The deduced EGIII protein shows clear sequence homology to a Schizophyllum commune enzyme (M. Yaguchi, personal communication), but is very different from the three other T. reesei cellulases with known structure. Nevertheless, all the four T. reesei cellulases share two common, adjacent sequence domains, which apparently can be removed by proteolysis. These homologous sequences reside at the N termini of EGIII and the cellobiohydrolase CBHII, but at the C termini of EGI and CBHI. Comparison of the fungal cellulase structures has led to re-evaluation of hypotheses concerning the localization of the active sites.
Collapse
Affiliation(s)
- M Saloheimo
- Biotechnical Laboratory, VTT, Espoo, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Beldman G, Voragen AGJ, Rombouts FM, Pilnik W. Synergism in cellulose hydrolysis by endoglucanases and exoglucanases purified from Trichoderma viride. Biotechnol Bioeng 1988; 31:173-8. [DOI: 10.1002/bit.260310211] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Kundu RK, Dube S, Dube DK. Extracellular cellulolytic enzyme system of Aspergillus japonicus: 3. Isolation, purification and characterization of multiple forms of endoglucanase. Enzyme Microb Technol 1988. [DOI: 10.1016/0141-0229(88)90005-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Voragen A, Beldman G, Rombouts F. Cellulases of a mutant strain of Trichoderma viride QM 9414. Methods Enzymol 1988. [DOI: 10.1016/0076-6879(88)60126-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
47
|
Penttilä ME, André L, Saloheimo M, Lehtovaara P, Knowles JK. Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 1987; 3:175-85. [PMID: 3332972 DOI: 10.1002/yea.320030305] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The cDNA copies of the two endo-beta-1,4-glucanase genes, egl1 and egl3, from the filamentous fungus Trichoderma reesei were expressed in yeast Saccharomyces cerevisiae under the control of the yeast phosphoglycerate kinase gene promoter. Active EGI and EGIII enzyme was produced and secreted by yeast into the growth medium. The recombinant EGI enzyme was larger and more heterogeneous in size than the native enzyme secreted by Trichoderma, due to differences in the extent of N-glycosylation between these two organisms. The morphology of the yeast cells producing EGI or EGIII was clearly different from control strain.
Collapse
|
48
|
Chirico WJ, Brown RD. Purification and characterization of a beta-glucosidase from Trichoderma reesei. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:333-41. [PMID: 3109900 DOI: 10.1111/j.1432-1033.1987.tb11446.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A beta-glucosidase has been purified from culture filtrates of the fungus Trichoderma reesei QM9414 grown on microcrystalline cellulose. The beta-glucosidase was purified using two successive DEAE-Sephadex anion-exchange chromatography steps, followed by SP-Sephadex cation-exchange chromatography and concanavalin-A--agarose chromatography. Evidence for homogeneity is provided by polyacrylamide disc gel electrophoretic patterns, which show a single protein band. Sedimentation equilibrium analysis yielded a molecular mass of 74.6 +/- 2.4 kDa. Sodium dodecyl sulfate/polyacrylamide gel electrophoresis yielded a single protein band with a molecular mass of 81.6 kDa. Thus, the enzyme appears to be a single, monomeric polypeptide. The beta-glucosidase is isoelectric at pH 8.5. The enzyme is rich in basic amino acids and contains few half-cystine and methionine residues. The purified beta-glucosidase contains less than 1% by weight of neutral carbohydrate. The beta-glucosidase catalyzes the hydrolysis of cellobiose, p-nitrophenyl beta-D-glucopyranoside and 4-methylumbelliferyl beta-D-glucopyranoside; the values of V/Km for each substrate were determined to be 2.3 X 10(4), 6.9 X 10(5) and 2.9 X 10(6) M-1 S-1 respectively. The enzyme is optimally active from pH 4.5 to 5.0 and is labile at higher hydrogen ion concentrations. The beta-glucosidase has an unusually high affinity for D-glucose (Ki = 700 microM). Comparison of inhibition constants for cello-oligosaccharides suggests that the substrate-binding region of the beta-glucosidase comprises multiple subsites.
Collapse
|
49
|
Effects of tunicamycin on secretion and enzymatic activities of cellulase fromTrichoderma reesei. Appl Microbiol Biotechnol 1985. [DOI: 10.1007/bf02660119] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Niku-Paavola ML, Lappalainen A, Enari TM, Nummi M. A new appraisal of the endoglucanases of the fungus Trichoderma reesei. Biochem J 1985; 231:75-81. [PMID: 4062894 PMCID: PMC1152705 DOI: 10.1042/bj2310075] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The properties and enzymic activity of endoglucanases (EC 3.2.1.4) of the fungus Trichoderma reesei were studied by means of immunological methods and by using polyglycosidic substrates. Endoglucanases exist in the culture liquid as a series of immunologically related components. The most active endoglucanase component has an Mr of 43 000 and pI value of 4.0. The most abundant components have a value of pI about 5.0, an Mr of 56 000-67 000 and specific activity only one-fifth of that of the pI-4.0 component. During purification and storage the endoglucanases are spontaneously modified; the relative proportion of components having greater Mr values, more alkaline pI values and lower specific activities is increased. The hexose content of the endoglucanase components is 2-7%. Endoglucanases hydrolyse soluble beta-1,4 glycans. The enzymes described here differ from endoglucanase preparations described previously in not showing activity towards insoluble substrates. The role of endoglucanases in wood hydrolysis is consequently limited to the stage where wood constituents are already in soluble form.
Collapse
|