1
|
Giambelluca S, Ricci F, Simonato M, Vedovelli L, Traldi U, Correani A, Casiraghi C, Storti M, Mersanne A, Cogo P, Salomone F, Carnielli VP. Tracing exogenous surfactant in vivo in rabbits by the natural variation of 13C. Respir Res 2019; 20:158. [PMID: 31319861 PMCID: PMC6637643 DOI: 10.1186/s12931-019-1124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/03/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Respiratory Distress Syndrome (RDS) is a prematurity-related breathing disorder caused by a quantitative deficiency of pulmonary surfactant. Surfactant replacement therapy is effective for RDS newborns, although treatment failure has been reported. The aim of this study is to trace exogenous surfactant by 13C variation and estimate the amount reaching the lungs at different doses of the drug. METHODS Forty-four surfactant-depleted rabbits were obtained by serial bronchoalveolar lavages (BALs), that were merged into a pool (BAL pool) for each animal. Rabbits were in nasal continuous positive airway pressure and treated with 0, 25, 50, 100 or 200 mg/kg of poractant alfa by InSurE. After 90 min, rabbits were depleted again and a new pool (BAL end experiment) was collected. Disaturated-phosphatidylcholine (DSPC) was measured by gas chromatography. DSPC-Palmitic acid (PA) 13C/12C was analyzed by isotope ratio mass spectrometry. One-way non-parametric ANOVA and post-hoc Dunn's multiple comparison were used to assess differences among experimental groups. RESULTS Based on DSPC-PA 13C/12C in BAL pool and BAL end experiment, the estimated amount of exogenous surfactant ranged from 61 to 87% in dose-dependent way (p < 0.0001) in animals treated with 25 up to 200 mg/kg. Surfactant administration stimulated endogenous surfactant secretion. The percentage of drug recovered from lungs did not depend on the administered dose and accounted for 31% [24-40] of dose. CONCLUSIONS We reported a risk-free method to trace exogenous surfactant in vivo. It could be a valuable tool for assessing, alongside the physiological response, the delivery efficiency of surfactant administration techniques.
Collapse
Affiliation(s)
- Sonia Giambelluca
- Department of Women's and Children's Health, University of Padova, Padova, Italy.,PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti, 4F, Padova, 35121, Italy
| | | | - Manuela Simonato
- PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti, 4F, Padova, 35121, Italy. .,Institute of Anesthesiology and Intensive Care, Department of Medicine - DIMED, University of Padova, Padova, Italy.
| | - Luca Vedovelli
- PCare Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti, 4F, Padova, 35121, Italy
| | | | - Alessio Correani
- Division of Neonatology, Department of Clinical Sciences, Polytechnic University of Marche and Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | | | | | | | - Paola Cogo
- Department of Medicine, University of Udine, Udine, Italy
| | | | - Virgilio P Carnielli
- Division of Neonatology, Department of Clinical Sciences, Polytechnic University of Marche and Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| |
Collapse
|
2
|
Amato M, Petit K, Fiore HH, Doyle CA, Frantz ID, Nielsen HC. Effect of exogenous surfactant on the development of surfactant synthesis in premature rabbit lung. Pediatr Res 2003; 53:671-8. [PMID: 12612208 DOI: 10.1203/01.pdr.0000054655.95452.06] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Surfactant replacement is an effective therapy for neonatal respiratory distress syndrome. Full recovery from respiratory distress syndrome requires development of endogenous surfactant synthesis and metabolism. The influence of exogenous surfactant on the development of surfactant synthesis in premature lungs is not known. We hypothesized that different exogenous surfactants have different effects on the development of endogenous surfactant production in the premature lung. We treated organ cultures of d 25 fetal rabbit lung for 3 d with 100 mg/kg body weight of natural rabbit surfactant, Survanta, and Exosurf and measured their effects on the development of surfactant synthesis. Additional experiments tested how these surfactants and Curosurf affected surfactant protein (SP) SP-A, SP-B, and SP-C mRNA expression. Surfactant synthesis was measured as the incorporation of 3H-choline and 14C-glycerol into disaturated phosphatidylcholine recovered from lamellar bodies. Randomized-block ANOVA showed significant differences among treatments for incorporation of both labels (p < 0.01), with natural rabbit surfactant less than control, Survanta greater than control, and Exosurf unchanged. Additional experiments with natural rabbit surfactant alone showed no significant effects in doses up to 1000 mg/kg. Survanta stimulated disaturated phosphatidylcholine synthesis (173 +/- 41% of control; p = 0.01), increased total lamellar body disaturated phosphatidylcholine by 22% (p < 0.05), and increased 14C-disat-PC specific activity by 35% (p < 0.05). The response to Survanta was dose-dependent up to 1000 mg/kg. Survanta did not affect surfactant release. No surfactant altered the expression of mRNA for SP-A, SP-B, or SP-C. We conclude that surfactant replacement therapy can enhance the maturation of surfactant synthesis, but this potential benefit differs with different surfactant preparations.
Collapse
|
3
|
Müller B, Garn H, Hochscheid R. Impaired recycling of surfactant-like liposomes in type II pneumocytes from injured lungs. Thorax 2003; 58:127-34. [PMID: 12554895 PMCID: PMC1746577 DOI: 10.1136/thorax.58.2.127] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Surfactant synthesis and secretion has been shown to be impaired in type II cells from diseased lungs. The mechanism of surfactant lipid recycling, which is an important physiological process in surfactant treatment, was studied in type II cells isolated from injured lungs. METHODS Different stages of lung injury were induced by exposing rats to 10 ppm nitrogen dioxide (NO(2)) for 3, 20, and 28 days. Type II cells were isolated from these lungs and recycling of (3)H-DPPC labelled surfactant-like liposomes was studied in vitro. RESULTS Uptake of liposomes (150 micro g/ml) for 20 minutes in the absence and presence of surfactant protein-A (SP-A, 5 micro g/ml) was higher in cells from NO(2) injured lungs (63-78%) than in control cells. There was no difference in liposome uptake between the groups with NO(2) exposure of different duration. After liposome uptake, most of the internalised label remained in the phosphatidylcholine (PC) fraction and increased with duration of exposure to NO(2). After 20 minutes internalisation, cells were allowed to resecrete lipids for a further 20 minute period. In cells from controls and from all stages of lung injury, liposomes that had been internalised in the presence of SP-A were resecreted to a greater extent than those internalised without SP-A. However, cells from lungs exposed to NO(2) resecreted less lipid than cells from control lungs. Again, there was no difference in resecretion between the groups with NO(2) exposure of different duration. CONCLUSION Type II cells from injured lungs internalise more surfactant-like liposomes than cells from controls, suggesting a putative therapeutic significance to cope with limited alveolar surfactant pools in lung injury.
Collapse
Affiliation(s)
- B Müller
- Laboratory of Respiratory Cell Biology, Department of Internal Medicine, Philipps University of Marburg, 35033 Marburg, Germany.
| | | | | |
Collapse
|
4
|
Bunt JE, Carnielli VP, Janssen DJ, Wattimena JL, Hop WC, Sauer PJ, Zimmermann LJ. Treatment with exogenous surfactant stimulates endogenous surfactant synthesis in premature infants with respiratory distress syndrome. Crit Care Med 2000; 28:3383-8. [PMID: 11057790 DOI: 10.1097/00003246-200010000-00001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Treatment of preterm infants with respiratory distress syndrome (RDS) with exogenous surfactant has greatly improved clinical outcome. Some infants require multiple doses, and it has not been studied whether these large amounts of exogenous surfactant disturb endogenous surfactant metabolism in humans. We studied endogenous surfactant metabolism in relation to different amounts of exogenous surfactant, administered as rescue therapy for RDS. DESIGN Prospective clinical study. SETTING Neonatal intensive care unit in a university hospital. PATIENTS A total of 27 preterm infants intubated and mechanically ventilated for respiratory insufficiency. INTERVENTIONS Infants received a 24-hr infusion with the stable isotope [U-13C]glucose starting 5.3 +/- 0.5 hrs after birth. The 13C-incorporation into palmitic acid in surfactant phosphatidylcholine (PC) isolated from serial tracheal aspirates was measured. Infants received either zero (n = 5), one (n = 4), two (n = 15), or three (n = 3) doses of Survanta (100 mg/kg) when clinically indicated. MEASUREMENTS AND MAIN RESULTS Using multiple regression analysis, the absolute synthesis rate (ASR) of surfactant PC from plasma glucose increased with 1.3 +/- 0.4 mg/kg/day per dose of Survanta (p = .007) (mean +/- SEM). The ASR of surfactant PC from glucose was increased by prenatal corticosteroid treatment with 1.3 +/- 0.4 mg/kg/day per dose corticosteroid (p = .004), and by the presence of a patent ductus arteriosus with 2.1 +/- 0.7 mg/ kg/day (p = .01). CONCLUSION These data are reassuring and show for the first time in preterm infants that multiple doses of exogenous surfactant for RDS are tolerated well by the developing lung and stimulate endogenous surfactant synthesis.
Collapse
Affiliation(s)
- J E Bunt
- Department of Pediatrics, Sophia Children's Hospital/University Hospital Rotterdam/Erasmus University, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
5
|
Chu AJ, Nguyen CT, Moore J. Differential effects of unsaturated fatty acids on phospholipid synthesis in human leukemia monocytic U937 cells. Cell Biochem Funct 1993; 11:201-9. [PMID: 8403234 DOI: 10.1002/cbf.290110308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The biosynthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in monocyte-like leukemia U937 cells was monitored by adding [3H]choline, [14C]ethanolamine or [14C]glycerol to the culture media; incorporation into phospholipid (PL) increased with time. The effect of unsaturated fatty acids (UFA) on PC and PE synthesis was investigated by pretreating U937 cells for 72h with 10 microM 18:1 (n - 9), 18:2 (n - 6), 18:3 (n - 3), 20:4 (n - 6) and 20:5 (n - 3). The UFA caused no alteration in cell growth, as evidenced by light microscopy and the incorporation of [3H]thymidine and [3H]leucine. Total cellular uptake of radioactive precursors remained unaffected by all the treatments. Pretreatment with 20:5 resulted in approximately 25 per cent reduction in the incorporation of [3H]choline into PL, while no significant effect was detected with the other UFAs. 18:3, 20:4 and 20:5 depressed the incorporation of [14C]ethanolamine into PL by 34 per cent, 28 per cent and 49 per cent respectively. However, there was no redistribution of label with any of the treatments. 18:3, 20:4 and 20:5 also antagonized the stimulatory effect of endotoxin (LPS) on PC and PE synthesis. In addition, the incorporation from [14C]glycerol into PC and PE was reduced by 18:3, 20:4 and 20:5. Although the PL composition of the cells remained essentially unaffected, our study shows that chronic treatment of U937 cells with n - 3 PUFA (20:5) depressed PC and PE synthesis, and 18:3 and 20:4 also caused inhibition of PE synthesis.
Collapse
Affiliation(s)
- A J Chu
- Research Division, Miami Heart Institute, Miami Beach, FL 33140-2999
| | | | | |
Collapse
|
6
|
Rosenberg IL, Smart DA, Gilfillan AM, Rooney SA. Effect of 1-oleoyl-2-acetylglycerol and other lipids on phosphatidylcholine synthesis and cholinephosphate cytidylyltransferase activity in cultured type II pneumocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 921:473-80. [PMID: 2822130 DOI: 10.1016/0005-2760(87)90074-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We previously reported that addition of phosphatidylglycerol to the culture medium stimulates phosphatidylcholine synthesis and cholinephosphate cytidylyltransferase activity in type II pneumocytes. In view of the known biological effects of diacylglycerols and since phosphatidylglycerol could be metabolized to diacylglycerol, we now examined the effects of diacylglycerols on the same parameters. The rate of choline incorporation into phosphatidylcholine was increased 30-60% by 10 microM phosphatidylglycerol, diolein, mixed diacylglycerols and 1-oleoyl-2-acetylglycerol (OAG). The effects of phosphatidylglycerol and OAG were not additive, suggesting a similar mechanism of action. The diacylglycerols and phosphatidylglycerol increased the activity of cholinephosphate cytidylyltransferase in type II cell sonicates by 35-50%, but had no effect on the activities of choline kinase, cholinephosphotransferase or 1-acylglycerophosphocholine acyltransferase. Again, the effects of OAG and phosphatidylglycerol on cytidylyltransferase were not additive. It is known that addition of lipids to the assay mixture increases the activity of cholinephosphate cytidylyltransferase in vitro and inclusion of the above lipids (1.1 mM) in the in vitro assay mixture increased cytidylyltransferase activity in type II cell sonicates. In addition, the stimulatory effects of OAG and of diolein, as well as of phosphatidylglycerol as reported previously, in the culture medium on cytidylyltransferase activity in type II cells were diminished or abolished when the assay was carried out in the presence of sufficient amounts of the same lipids to stimulate maximally the activity in vitro. These data show that lipids in the culture medium stimulate phosphatidylcholine biosynthesis in type II cells by direct activation of cholinephosphate cytidylyltransferase.
Collapse
Affiliation(s)
- I L Rosenberg
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06510
| | | | | | | |
Collapse
|
7
|
Gilfillan AM, Lewis AJ, Rooney SA. Effects of thiazinamium chloride and other antihistamines on phosphatidylcholine secretion in rat type II pneumocyte cultures. Biochem Pharmacol 1987; 36:277-81. [PMID: 2880592 DOI: 10.1016/0006-2952(87)90701-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Thiazinamium chloride (TCl) stimulated phosphatidylcholine secretion in cultures of adult rat type II pneumocytes in a concentration-dependent manner in the range 10(-9)-10(-6) M. At the optimal concentration, secretion was stimulated by 46% which is approximately half the stimulatory effect of the beta-agonists terbutaline and isoproterenol. TCl did not increase the rate of choline incorporation into cellular phosphatidylcholine or of lactate dehydrogenase release so its effect on secretion was not secondary to phosphatidylcholine synthesis or cell injury. Since TCl has antihistaminic properties, we examined the effects of other antihistamines. The H-1 antagonists promethazine, which is structurally similar to thiazinamium, and pyrilamine, which has a different structure, also stimulated secretion but the H-2 antagonist, cimetidine, did not. The effects of TCl and pyrilamine were additive to those of terbutaline, suggesting that the mechanisms of action of the antihistamines and the beta-agonist were different. Although we were unable to demonstrate an inhibitory effect of histamine itself on either basal or terbutaline-stimulated phosphatidylcholine secretion, it is possible that histamine plays a regulatory role in lung surfactant secretion.
Collapse
|
8
|
Gilfillan AM, Rooney SA. Purinoceptor agonists stimulate phosphatidylcholine secretion in primary cultures of adult rat type II pneumocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1987; 917:18-23. [PMID: 3790606 DOI: 10.1016/0005-2760(87)90278-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We examined the effect of purinoceptor agonists on phosphatidylcholine secretion in primary cultures of type II pneumocytes from adult rats. Surfactant is a major product of the type II cell and phosphatidylcholine is its principal component. Adenosine, AMP, ADP and ATP stimulated phosphatidylcholine secretion in a concentration-dependent manner. At the optimum concentration (1 mM), adenosine and AMP stimulated phosphatidylcholine secretion more than 2-fold, while ATP stimulated 5-fold and ADP almost 7-fold. Because of the magnitude of the response it is tempting to speculate that secretion of surfactant may be under purinoceptor regulation. None of these agents influenced cellular phosphatidylcholine synthesis or lactate dehydrogenase release into the medium, so the effects were primarily on secretion and were not secondary to effects on synthesis or cell damage. Non-metabolizable analogs of adenosine, 5'-N-ethyl-carboxyamidoadensoine (NECA) and L-N6-phenylisopropyladenosine (L-PIA), stimulated secretion to the same extent as adenosine and the effect of NECA was antagonized by 8-phenyltheophylline, suggesting a P1 purinoceptor-mediated mechanism. The stimulatory effect of ATP was diminished by alpha, beta-methylene ATP but only slightly by 8-phenyltheophylline, suggesting that, although part of the ATP effect could be explained by catabolism to adenosine, the P2 purinoceptor may also be involved in regulation of surfactant secretion.
Collapse
|
9
|
Thakur NR, Tesan M, Tyler NE, Bleasdale JE. Altered lipid synthesis in type II pneumonocytes exposed to lung surfactant. Biochem J 1986; 240:679-90. [PMID: 3827860 PMCID: PMC1147474 DOI: 10.1042/bj2400679] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
When type II pneumonocytes were exposed to purified lung surfactant that contained 1-palmitoyl-2-[3H]palmitoyl-glycero-3-phosphocholine, radiolabelled surfactant was apparently taken up by the cells since it could not be removed by either repeated washing or exchange with non-radiolabelled surfactant, but was released when the cells were lysed. After 4 h of exposure to [3H]surfactant, more than half of the 3H within cells remained in disaturated phosphatidylcholine. Incorporation of [3H]choline, [14C]palmitate and [14C]acetate into glycerophospholipids was decreased in type II cells exposed to surfactant and this inhibition, like surfactant uptake, was half-maximal when the extracellular concentration of surfactant was approx. 0.1 mumol of lipid P/ml. Inhibition of incorporation of radiolabelled precursors by surfactant occurred rapidly and reversibly and was not due solely to dilution of the specific radioactivity of intracellular precursors. Activity of dihydroxyacetone-phosphate acyltransferase, but not glycerol-3-phosphate acyltransferase, was decreased in type II cells exposed to surfactant and this was reflected by a decrease in the 14C/3H ratio of total lipids synthesized when cells incubated with [U-14C]glycerol and [2-3H]glycerol were exposed to surfactant. Phosphatidylcholine, phosphatidylglycerol and cholesterol, either individually or mixed in the molar ratio found in surfactant, did not mimic purified surfactant in the inhibition of glycerophospholipid synthesis. In contrast, an apoprotein fraction isolated from surfactant inhibited greatly the incorporation of [3H]choline into lipids and this inhibitory activity was labile to heat and to trypsin. It is concluded that the apparent uptake of surfactant by type II cells in vitro is accompanied by an inhibition of glycerophospholipid synthesis via a mechanism that involves a surfactant apoprotein.
Collapse
|
10
|
Gilfillan AM, Smart DA, Rooney SA. Comparison of the enzyme activities of phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol synthesis in freshly isolated type II pneumocytes and whole lung from the adult rat. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 877:151-7. [PMID: 3013315 DOI: 10.1016/0005-2760(86)90130-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We compared the activities of enzymes of phosphatidylcholine, phosphatidylglycerol and phosphatidylinositol synthesis in whole lung tissue and freshly isolated type II pneumocytes from adult rats. The activities of 1-acylglycerophosphocholine acyltransferase and CDPdiacylglycerol-glycerol-3-phosphate 3-phosphatidyltransferase were 2.9- and 4.4-fold higher, respectively, in type II cell sonicates than in whole lung homogenates. There was little difference between the type II cells and whole lung in the activities of choline kinase, choline-phosphate cytidyltransferase, cholinephosphotransferase, phosphatidate phosphatase, phosphatidate cytidylytransferase or CDPdiacylglycerol-inositol 3-phosphatidyltransferase. Since the type II cell is the source of pulmonary surfactant, and disaturated phosphatidylcholine and phosphatidylglycerol are major components of surfactant, it is of interest that this cell is enriched in the activities of enzymes exclusively involved in the synthesis of these lipids. In view of possible proteolytic damage during isolation we compared freshly isolated type II cells with those cultured for 1 day. The rates of incorporation of [methyl-3H]choline and [2-3H]glycerol into phospholipids, L-[U-14C]phenylalanine into protein and [methyl-3H]thymidine into DNA were the same in the freshly isolated and cultured cells. The composition of the phospholipids synthesized from [2-3H]glycerol and sodium [1-14C]acetate were also the same. The freshly isolated cells were at least 90% pure and did not release significant amounts of lactate dehydrogenase. Since use of freshly isolated cells avoids cell loss during culture they provide an attractive alternative, particularly in studies requiring large amounts of material.
Collapse
|
11
|
Gilfillan AM, Rooney SA. Leukotrienes stimulate phosphatidylcholine secretion in cultured type II pneumocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 876:22-7. [PMID: 3004594 DOI: 10.1016/0005-2760(86)90313-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We previously reported that arachidonic acid stimulates secretion of phosphatidylcholine in cultures of type II pneumocytes and, based on studies with cyclooxygenase and lipoxygenase inhibitors, suggested that this effect was mediated by lipoxygenase products of arachidonic acid metabolism (Gilfillan, A.M. and Rooney, S.A. (1985) Biochim. Biophys. Acta 833, 336-341). We have now examined the effect of leukotrienes on phosphatidylcholine secretion in type II cells as well as the effect of a leukotriene antagonist, FPL55712, on the stimulatory effect of arachidonic acid. Leukotrienes C4, D4 and E4 stimulated phosphatidylcholine secretion and this effect was dependent on concentration in the range 10(-12)-10(-6) M. Leukotriene E4 was the most stimulatory, followed by D4 and C4. Leukotriene B4 had no effect. Incubation of the cells with 10(-7) M leukotriene E4 for 90 min resulted in a 107% increase in the rate of phosphatidylcholine secretion. Incubation with 10(-6) M leukotrienes D4 and C4 for the same period resulted in 81% and 63% stimulation, respectively. The leukotrienes had no effect on cellular phosphatidylcholine synthesis or on lactate dehydrogenase release. The stimulatory effects of leukotrienes E4 and D4 were abolished by FPL55712. Similarly, the stimulatory effect of 6 X 10(-6) M arachidonic acid on phosphatidylcholine secretion was reduced from 74% to 25% by 10(-5) M FPL55712. Thus, the stimulatory effect of arachidonic acid on surfactant phospholipid secretion in type II cells is mediated at least in part by leukotrienes.
Collapse
|
12
|
|
13
|
Gilfillan AM, Smart DA, Rooney SA. Phosphatidylglycerol stimulates cholinephosphate cytidylyltransferase activity and phosphatidylcholine synthesis in type II pneumocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 835:141-6. [PMID: 2988633 DOI: 10.1016/0005-2760(85)90040-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phosphatidylcholine synthesis in type II pneumocytes is stimulated by inclusion of phosphatidylglycerol and other phospholipids in the culture medium (Gilfillan, A.M., Chu, A.J. and Rooney, S.A. (1984) Biochim. Biophys. Acta 794, 269-273). We have now examined the effect of phosphatidylglycerol in the medium on enzymes of de novo phosphatidylcholine synthesis in adult rat type II cells. Activities of choline kinase, cholinephosphate cytidylyltransferase and cholinephosphotransferase in homogenates of whole lung and type II cells were generally similar. Phosphatidate phosphatase activity in type II cells, however, was only 16% that in whole lung. Addition of phosphatidylglycerol (10 microM) to the culture medium had no effect on choline kinase, cholinephosphotransferase or phosphatidate phosphatase activities in type II cells but it increased the activity of cholinephosphate cytidylyltransferase by 56%. Since it is known that cholinephosphate cytidylyltransferase is stimulated in vitro by addition of phospholipids to the assay mixture, we also measured its activity in the presence of sufficient phosphatidylglycerol (1.1 mM) to maximally stimulate in vitro. Even under these conditions cholinephosphate cytidylyltransferase activity in type II cells cultured in the presence of phosphatidylglycerol was 32% greater than in control cells. These data show that the stimulatory effect of phospholipid in the culture medium on phosphatidylcholine synthesis in type II cells is mediated by increased cholinephosphate cytidylyltransferase activity. The mechanism of increased cytidylyltransferase activity remains to be elucidated but it is not due to direct in vitro activation by the phospholipid.
Collapse
|
14
|
Chu AJ, Rooney SA. Developmental differences in activation of cholinephosphate cytidylyltransferase by lipids in rabbit lung cytosol. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 835:132-40. [PMID: 2988632 DOI: 10.1016/0005-2760(85)90039-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lung cytosolic cholinephosphate cytidylyltransferase is activated by lipids. We examined the lipid activation pattern as a function of development in rabbit lung from 27 days gestation through term (31 days) and in the adult. The enzyme in both the fetal and adult cytosol was dependent on lipids for activity. Extraction of the cytosol with acetone/butanol virtually abolished cytidylyltransferase activity, but the activity could be restored on addition of lipids extracted with chloroform/methanol from additional cytosol. Cytosolic phospholipids from the fetal lung reactivated cytidylyltransferase but both neutral lipids and phospholipids from the adult were required. The lipids had the same effect on cytidylyltransferase activity in delipidated cytosol from either the fetus or adult so the difference in activation pattern was attributable to the lipids rather than the protein. There was a shift from the fetal to the adult lipid activation pattern as development progressed. Further, there was a significant correlation between cytidylyltransferase activities in intact cytosols from developing lung and activities in delipidated cytosol in the presence of lipids from the same animals. Although these data suggest that lipids regulate cytosolic cytidylyltransferase activity in developing lung their physiological significance remains to be established.
Collapse
|
15
|
Chu AJ, Rooney SA. Stimulation of cholinephosphate cytidylyltransferase activity by estrogen in fetal rabbit lung is mediated by phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 834:346-56. [PMID: 2986705 DOI: 10.1016/0005-2760(85)90008-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We have investigated the mechanism by which estrogen stimulates phosphatidylcholine synthesis in fetal rabbit lung. The hormone increased the activity of cholinephosphate cytidylyltransferase in the 105 000 X g supernatant fraction but had no effect on the activities of this enzyme in the homogenate or other subcellular fractions. Although microsomal cytidylyltransferase has been reported to regulate phosphatidylcholine synthesis in other systems, and translocation of the enzyme from cytosol to microsomes has been reported in association with increased phosphatidylcholine synthesis, we found no evidence of this in the case of estrogen-stimulated phosphatidylcholine synthesis in the fetal lung. Cytosolic cytidylyltransferase activity was dependent on phospholipids. Extraction with acetone/butanol drastically reduced its activity as well as the stimulatory effect of estrogen. The activity and the effect of estrogen were restored on re-addition of lipids extracted with chloroform/methanol from additional supernatants. Fractionation of the total lipids revealed that the stimulatory effect was entirely associated with the phospholipids; neutral lipids and glycolipids did not stimulate. Treatment of the phospholipid fraction with phospholipase C abolished the stimulatory effect. The stimulatory effect of estrogen, however, could not be attributed to any individual phospholipid species but appeared to require the entire phospholipid mixture. We conclude that estrogen stimulates fetal lung phosphatidylcholine synthesis by increasing the activity of cytosolic cytidylyltransferase and this activation in turn is mediated by cytosolic phospholipids.
Collapse
|
16
|
Gilfillan AM, Rooney SA. Arachidonic acid metabolites stimulate phosphatidylcholine secretion in primary cultures of type II pneumocytes. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 833:336-41. [PMID: 3970959 DOI: 10.1016/0005-2760(85)90207-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is evidence from whole animal and intact lung studies that prostaglandins are involved in the regulation of surfactant secretion. To explore this further we examined the effect of arachidonic acid on secretion of phosphatidylcholine in primary cultures of adult rat type II pneumocytes. Arachidonic acid stimulated phosphatidylcholine secretion and this effect was dependent on concentration in the range 1-8 microM. Arachidonic acid (8 microM) stimulated secretion by 79% from a basal rate of 1.17% total cellular phosphatidylcholine secreted in 90 min to 2.09%. We examined the effects of inhibitors of arachidonic acid metabolism on the stimulatory effect. Nordihydroguairaretic acid (0.1 microM), a lipoxygenase inhibitor, reduced the stimulatory effect by 64%. The same concentration of cyclooxygenase inhibitors had no effect. We conclude that arachidonic acid metabolites stimulate surfactant secretion in type II cells. Whether this effect is mediated by leukotrienes or other products remains to be established.
Collapse
|