Sener A, Rasschaert J, Malaisse WJ. Hexose metabolism in pancreatic islets. Participation of Ca2(+)-sensitive 2-ketoglutarate dehydrogenase in the regulation of mitochondrial function.
BIOCHIMICA ET BIOPHYSICA ACTA 1990;
1019:42-50. [PMID:
2204425 DOI:
10.1016/0005-2728(90)90122-k]
[Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A rise in extracellular D-glucose concentration results in a preferential and Ca2(+)-dependent stimulation of mitochondrial oxidative events in pancreatic islet cells. The possible participation of Ca2(+)-dependent mitochondrial dehydrogenases, especially 2-ketoglutarate dehydrogenase, in such an unusual metabolic situation was explored in intact islets, islet homogenates and isolated islet mitochondria. In intact islets exposed to a high concentration of D-glucose, the removal of extracellular Ca2+ impaired D-[6-14C]glucose oxidation whilst failing to affect the cytosolic or mitochondrial ATP/ADP ratios. In islet homogenates, the activity of 2-ketoglutarate dehydrogenase displayed exquisite Ca2(+)-dependency, the presence of Ca2+ causing a 10-fold increase in affinity for 2-ketoglutarate. In intact islet mitochondria, the oxidation of 2-[1-14C]ketoglutarate also increased as a function of extramitochondrial Ca2+ availability. Moreover, prior stimulation of intact islets by D-glucose resulted in an increased capacity of mitochondria to oxidize 2-[1-14C]ketoglutarate. The absence of extracellular Ca2+ during the initial stimulation of intact islets impaired but did not entirely suppress such a memory phenomenon. It is proposed that the mitochondrial accumulation of Ca2+ in nutrient-stimulated islets indeed accounts, in part at least, for the preferential stimulation of mitochondrial oxidative events in this fuel-sensor organ.
Collapse