1
|
Xu J, Harris-Kawano A, Enriquez JR, Mirmira RG, Sims EK. Proinflammatory stress activates neutral sphingomyelinase 2 based generation of a ceramide-enriched β cell EV subpopulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589943. [PMID: 38659945 PMCID: PMC11042299 DOI: 10.1101/2024.04.17.589943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
β cell extracellular vesicles (EVs) play a role as paracrine effectors in islet health, yet mechanisms connecting β cell stress to changes in EV cargo and potential impacts on diabetes remain poorly defined. We hypothesized that β cell inflammatory stress engages neutral sphingomyelinase 2 (nSMase2)-dependent EV formation pathways, generating ceramide-enriched EVs that could impact surrounding β cells. Consistent with this, proinflammatory cytokine treatment of INS-1 β cells and human islets concurrently increased β cell nSMase2 and ceramide expression, as well as EV ceramide staining. Direct chemical activation or genetic knockdown of nSMase2, or treatment with a GLP-1 receptor agonist also modulated cellular and EV ceramide. Small RNA sequencing of ceramide-enriched EVs identified a distinct set of miRNAs linked to β cell function and identity. Coculture experiments using CD9-GFP tagged INS-1 cell EVs demonstrated that either cytokine treatment or chemical nSMase2 activation increased EV transfer to recipient cells. Children with recent-onset T1D showed no abnormalities in circulating ceramide-enriched EVs, suggesting a localized, rather than systemic phenomenon. These findings highlight nSMase2 as a regulator of β cell EV cargo and identify ceramide-enriched EV populations as a contributor to EV-related paracrine signaling under conditions of β cell inflammatory stress. Article Highlights a. Why did we undertake this study?: Mechanisms connecting β cell stress to changes in extracellular vesicle (EV) cargo and potential impacts on diabetes are poorly defined.b. What is the specific question we wanted to answer?: Does β cell inflammatory stress engage neutral sphingomyelinase 2 (nSMase2)-dependent EV formation pathways to generate ceramide-enriched EVs.c. What did we find?: Proinflammatory cytokine treatment of β cells increased β cell ceramide expression, along with EV ceramide in part via increases in nSMase2. Ceramide-enriched EVs housed a distinct set of miRNAs linked to insulin signaling. Both cytokine treatment and nSMase2 activation increase EV transfer to other β cells.d. What are the implications of our findings?: Our findings highlight nSMase2 as a regulator of β cell EV cargo and identify ceramide-enriched EV populations as a contributor to EV-related paracrine signaling under conditions of β cell inflammatory stress.
Collapse
|
2
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|
3
|
Brügger B. Lipidomics: analysis of the lipid composition of cells and subcellular organelles by electrospray ionization mass spectrometry. Annu Rev Biochem 2014; 83:79-98. [PMID: 24606142 DOI: 10.1146/annurev-biochem-060713-035324] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipidomics aims to quantitatively define lipid classes, including their molecular species, in biological systems. Lipidomics has experienced rapid progress, mainly because of continuous technical advances in instrumentation that are now enabling quantitative lipid analyses with an unprecedented level of sensitivity and precision. The still-growing category of lipids includes a broad diversity of chemical structures with a wide range of physicochemical properties. Reflecting this diversity, different methods and strategies are being applied to the quantification of lipids. Here, I review state-of-the-art electrospray ionization tandem mass spectrometric approaches and direct infusion to quantitatively assess lipid compositions of cells and subcellular fractions. Finally, I discuss a few examples of the power of mass spectrometry-based lipidomics in addressing cell biological questions.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany;
| |
Collapse
|
4
|
Abstract
Recent technical advances have re-invigorated the study of sphingolipid metabolism in general, and helped to highlight the varied and important roles that sphingolipids play in pancreatic β-cells. Sphingolipid metabolites such as ceramide, glycosphingolipids, sphingosine 1-phosphate and gangliosides modulate many β-cell signaling pathways and processes implicated in β-cell diabetic disease such as apoptosis, β-cell cytokine secretion, ER-to-golgi vesicular trafficking, islet autoimmunity and insulin gene expression. They are particularly relevant to lipotoxicity. Moreover, the de novo synthesis of sphingolipids occurs on many subcellular membranes, in parallel to secretory vesicle formation, traffic and granule maturation events. Indeed, the composition of the plasma membrane, determined by the activity of neutral sphingomyelinases, affects β-cell excitability and potentially insulin exocytosis while another glycosphingolipid, sulfatide, determines the stability of insulin crystals in granules. Most importantly, sphingolipid metabolism on internal membranes is also strongly implicated in regulating β-cell apoptosis.
Collapse
Affiliation(s)
- Ebru Boslem
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
| | - Peter J. Meikle
- Baker IDI Heart and Diabetes Institute; Melbourne, VIC Australia
| | - Trevor J. Biden
- Diabetes and Obesity Program; Garvan Institute of Medical Research; Darlinghurst, NSW Australia
- St Vincent’s Clinical School; Faculty of Medicine; University of New South Wales; Sydney, NSW Australia
- Correspondence to: Trevor J. Biden,
| |
Collapse
|
5
|
Veluthakal R, Palanivel R, Zhao Y, McDonald P, Gruber S, Kowluru A. Ceramide induces mitochondrial abnormalities in insulin-secreting INS-1 cells: potential mechanisms underlying ceramide-mediated metabolic dysfunction of the beta cell. Apoptosis 2007; 10:841-50. [PMID: 16133874 DOI: 10.1007/s10495-005-0431-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
C2-ceramide, a cell permeable analogue of ceramide [CER] markedly reduced mitochondrial membrane potential [MMP] in insulin-secreting INS cells, which was followed by a significant accumulation of cytochrome c [Cyt c] into the cytosolic compartment. In a manner akin to CER, exposure of these cells to interleukin-1beta [IL-1beta] also resulted in reduction in MMP and cytosolic accumulation of Cyt c. Further, long-term exposure of these cells to either CER [but not its inactive analogue] or IL-1beta caused a marked reduction in their metabolic viability. However, unlike IL-1beta, which increased nitric oxide [NO] release, CER-treatment of INS cells had no effects of CER on NO release were demonstrable. Together, these findings suggest that CER-induced mitochondrial effects may not be mediated via iNOS gene expression and NO production. CER also activated an okadaic acid -sensitive protein phosphatase [CAPP] in the purified mitochondrial fraction, suggesting that CAPP might represent one of the target proteins for CER in the beta cell mitochondria. Together, our findings suggest direct detrimental effects of CER on mitochondrial function in beta cells leading to their dysfunction and demise via apoptosis. Moreover, our findings provide evidence for a potential difference in the mechanisms underlying CER- and IL-1beta-induced mitochondrial defects and apoptotic demise of the effete beta cell.
Collapse
Affiliation(s)
- R Veluthakal
- Department of Pharmaceutical Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI 48201, USA
| | | | | | | | | | | |
Collapse
|
6
|
Postle AD, Wilton DC, Hunt AN, Attard GS. Probing phospholipid dynamics by electrospray ionisation mass spectrometry. Prog Lipid Res 2007; 46:200-24. [PMID: 17540449 DOI: 10.1016/j.plipres.2007.04.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 03/30/2007] [Accepted: 04/04/2007] [Indexed: 11/25/2022]
Abstract
Recent advances in electrospray ionisation mass spectrometry (ESI-MS) have greatly facilitated the analysis of phospholipid molecular species in a growing diversity of biological and clinical settings. The combination of ESI-MS and metabolic labelling employing substrates labelled with stable isotopes is especially exciting, permitting studies of phospholipid synthesis and turnover in vivo. This review will first describe the methodology involved and will then detail dynamic lipidomic studies that have applied the stable isotope incorporation approach. Finally, it will summarise the increasing number of studies that have used ESI-MS to characterise structural and signalling phospholipid molecular species in development and disease.
Collapse
Affiliation(s)
- Anthony D Postle
- School of Medicine, University of Southampton, Southampton SO17 1BJ, UK.
| | | | | | | |
Collapse
|
7
|
Jangati GR, Veluthakal R, Kowluru A. siRNA-mediated depletion of endogenous protein phosphatase 2Acα markedly attenuates ceramide-activated protein phosphatase activity in insulin-secreting INS-832/13 cells. Biochem Biophys Res Commun 2006; 348:649-52. [PMID: 16884689 DOI: 10.1016/j.bbrc.2006.07.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Accepted: 07/20/2006] [Indexed: 11/16/2022]
Abstract
The sphingolipid ceramide (CER) and its metabolites have been recognized as important mediators of signal transduction processes leading to a variety of cellular responses, including survival and demise via apoptosis. Accumulating evidence implicates key regulatory roles for intracellularly generated CER in metabolic dysfunction of the islet beta cell. We have previously reported localization of an okadaic (OKA)-sensitive CER-activated protein phosphatase (CAPP) in the islet beta cell. We have also reported immunological identification of the structural A subunit, the regulatory B56alpha subunit, and the catalytic C subunit for CAPP holoenzyme complex in insulin-secreting INS-1 cells. Herein, we provide the first evidence to suggest that siRNA-mediated knockdown of the alpha isoform of the catalytic subunit of PP2Ac (PP2Acalpha) markedly reduces the CAPP activity in INS 832/13 cells. Potential significance of the functional activation of CAPP holoenzyme in the context of lipid-and glucose-induced metabolic dysfunction of the islet beta cell is discussed.
Collapse
Affiliation(s)
- Giridhar Rao Jangati
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | | | | |
Collapse
|
8
|
Jones JJ, Borgmann S, Wilkins CL, O'Brien RM. Characterizing the Phospholipid Profiles in Mammalian Tissues by MALDI FTMS. Anal Chem 2006; 78:3062-71. [PMID: 16642994 DOI: 10.1021/ac0600858] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Discussed here is an analytical method for profiling lipids and phospholipids directly from mammalian tissues excised from Mus musculus (house mouse). Biochemical analysis was accomplished through the use of matrix-assisted laser desorption/ionization (MALDI) Fourier transform mass spectrometry, where whole tissue sections of mouse brain, heart, and liver were investigated. Lipid and phospholipid ions create complex MALDI mass spectra containing multiple ions with different m/z values corresponding to the same fundamental chemical species. When a computational sorting approach is used to group these ions, the standard deviation for observed relative chemical abundance can be reduced to 6.02%. Relative standard deviations of 10% are commonly accepted for standard chromatographic phospholipid analyses. Average mass measurement accuracy for 232 spectra representing three tissue types from 12 specimens was calculated to be 0.0053 Da. Further it is observed, that the data and the analysis between all the animals have near-identical phospholipid contents in their brain, heart, and liver tissues, respectively. In addition to the need to accurately measure relative abundances of phospholipid species, it is essential to have adequate mass resolution for complete and accurate overall analysis. It is reasonable to make mass composition assignments with spectral resolving power greater than 8000. However, results from the present study reveal 14 instances (C12 carbon isotope) of multiple m/z ions having the same nominal value that require greater resolution in order that overlap will not occur. Spectra measured here have an average resolving power of 12 000. It is established that high mass resolution and mass accuracy coupled with MALDI ionization provide for rapid and accurate phospholipid analysis of mammalian tissue sections.
Collapse
Affiliation(s)
- Jeffrey J Jones
- Department of Chemistry and Biochemistry, University of Arkansas, University of Arkansas, Fayetteville, Arkansas 72701, USA
| | | | | | | |
Collapse
|
9
|
Kowluru A. Novel regulatory roles for protein phosphatase-2A in the islet β cell. Biochem Pharmacol 2005; 69:1681-91. [PMID: 15935144 DOI: 10.1016/j.bcp.2005.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 03/16/2005] [Accepted: 03/16/2005] [Indexed: 10/25/2022]
Abstract
Protein phosphorylation constitutes one of the key signaling steps in physiological insulin secretion. The phosphorylation status of a given protein represents the balance of the activities of protein kinases and phosphatases, which induce the addition and removal of phosphate from that protein, respectively. Although several extant studies were focused on the identification and characterization of protein kinases in islets, relatively little information is available on the localization and regulation of protein phosphatases in beta cells. Emerging evidence implicates protein phosphatase 2A (PP2A) in the phenomenon of insulin secretion. The three principal objectives of this commentary are to: (i) review the existing evidence, which suggests regulation, by glucose and other insulin secretagogues, of PP2A in the beta cell; (ii) discuss the experimental evidence, which implicates PP2A-like enzymes in the dephosphorylation and inactivation of key beta cell phosphoprotein substrates (e.g., Akt and Bcl-2), which may be necessary for beta cell proliferation and survival, culminating in the loss of the beta cell mass; and (iii) highlight potential avenues for future research, including the development of specific pharmacological and therapeutic interventional modalities for the inhibition of specific PP2A-like phosphatases for the prevention of loss of beta cell mass leading to the onset of diabetes.
Collapse
Affiliation(s)
- Anjaneyulu Kowluru
- Department of Pharmaceutical Sciences, Wayne State University and Beta Cell Biochemistry Research Laboratory, John D. Dingell VA Medical Center, Detroit, MI 48201, USA.
| |
Collapse
|
10
|
Spickett CM, Dever G. Studies of phospholipid oxidation by electrospray mass spectrometry: from analysis in cells to biological effects. Biofactors 2005; 24:17-31. [PMID: 16403960 DOI: 10.1002/biof.5520240103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The oxidation of lipids is important in many pathological conditions and lipid peroxidation products such as 4-hydroxynonenal (HNE) and other aldehydes are commonly measured as biomarkers of oxidative stress. However, it is often useful to complement this with analysis of the original oxidized phospholipid. Electrospray mass spectrometry (ESMS) provides an informative method for detecting oxidative alterations to phospholipids, and has been used to investigate oxidative damage to cells, and low-density lipoprotein, as well as for the analysis of oxidized phosphatidylcholines present in atherosclerotic plaque material. There is increasing evidence that intact oxidized phospholipids have biological effects; in particular, oxidation products of 1-palmitoyl-2-arachidonoyl-sn-glycerophosphocholine (PAPC) have been found to cause inflammatory responses, which could be potentially important in the progression of atherosclerosis. The effects of chlorohydrin derivatives of lipids have been much less studied, but it is clear that free fatty acid chlorohydrins and phosphatidylcholine chlorohydrins are toxic to cells at concentrations above 10 micromolar, a range comparable to that of HNE and oxidized PAPC. There is some evidence that chlorohydrins have biological effects that may be relevant to atherosclerosis, but further work is needed to elucidate their pro-inflammatory properties, and to understand the mechanisms and balance of biological effects that could result from oxidation of complex mixtures of lipids in a pathophysiological situation.
Collapse
|
11
|
Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V. Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J Biol Chem 2003; 278:30015-21. [PMID: 12771145 DOI: 10.1074/jbc.m302548200] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Chronic exposure to elevated levels of fatty acids impairs pancreatic beta cell function, a phenomenon thought to contribute to the progressive deterioration of insulin secretion in type 2 diabetes. We have previously demonstrated that prolonged exposure of isolated islets to elevated levels of palmitate inhibits preproinsulin mRNA levels in the presence of high glucose concentrations. However, whether this occurs via transcriptional or post-transcriptional mechanisms has not been determined. In addition, the nature of the lipid metabolites involved in palmitate inhibition of insulin gene expression is unknown. In this study, we show that palmitate decreases glucose-stimulated preproinsulin mRNA levels in isolated rat islets, an effect that is not mediated by changes in preproinsulin mRNA stability, but is associated with inhibition of glucose-stimulated insulin promoter activity. Prolonged culture of isolated islets with palmitate is associated with increased levels of intracellular ceramide. Palmitate-induced ceramide generation is prevented by inhibitors of de novo ceramide synthesis. Further, exogenous ceramide inhibits insulin mRNA levels, whereas blockade of de novo ceramide synthesis prevents palmitate inhibition of insulin gene expression. We conclude that prolonged exposure to elevated levels of palmitate affects glucose-stimulated insulin gene expression via transcriptional mechanisms and ceramide synthesis.
Collapse
Affiliation(s)
- Cynthia L Kelpe
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | | | | | | | | | | |
Collapse
|
12
|
Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH. Lipoapoptosis in beta-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J Biol Chem 1998; 273:32487-90. [PMID: 9829981 DOI: 10.1074/jbc.273.49.32487] [Citation(s) in RCA: 316] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We reported that the lipoapoptosis of beta-cells observed in fat-laden islets of obese fa/fa Zucker Diabetic Fatty (ZDF) rats results from overproduction of ceramide, an initiator of the apoptotic cascade and is induced by long-chain fatty acids (FA). Whereas the ceramide of cytokine-induced apoptosis may be derived from sphingomyelin hydrolysis, FA-induced ceramide overproduction seems to be derived from FA. We therefore semiquantified mRNA of serine palmitoyltransferase (SPT), which catalyzes the first step in ceramide synthesis. It was 2-3-fold higher in fa/fa islets than in +/+ controls. [3H]Ceramide formation from [3H]serine was 2.2-4. 5-fold higher in fa/fa islets. Triacsin-C, which blocks palmitoyl-CoA synthesis, and L-cycloserine, which blocks SPT activity, completely blocked [3H]ceramide formation from [3H]serine. Islets of fa/fa rats are unresponsive to the lipopenic action of leptin, which normally depletes fat and prevents FA up-regulation of SPT. To determine the role of leptin unresponsiveness in the SPT overexpression, we transferred wild type OB-Rb cDNA to their islets; now leptin completely blocked the exaggerated FA-induced increase of SPT mRNA while reducing the fat content. Beta-cell lipoapoptosis was partially prevented in vivo by treating prediabetic ZDF rats with L-cycloserine for 2 weeks. Ceramide content and DNA fragmentation both declined 40-50%. We conclude that lipoapoptosis of ZDF rats is mediated by enhanced ceramide synthesis from FA and that blockade by SPT inhibitors prevents lipoapoptosis.
Collapse
Affiliation(s)
- M Shimabukuro
- Gifford Laboratories for Diabetes Research, Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|
13
|
Inhibition of Protein Synthesis by Nitric Oxide Correlates with Cytostatic Activity: Nitric Oxide Induces Phosphorylation of Initiation Factor eIF-2α. Mol Med 1998. [DOI: 10.1007/bf03401915] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Abstract
Okadaic acid (OKA)-sensitive phosphatase (PP2A) activity may modulate nutrient-induced insulin secretion from pancreatic beta cells [Kowluru et al., Endocrinology 137 (1996) 2315-2323]. Ceramides, a new class of lipid second messengers may regulate PP2A [Dobrowsky and Hannun, J. Biol. Chem. (1992) 267, 5048-5051], and might play a role in cytokine-mediated apoptosis in beta cells [Sjöholm, FEBS Lett. 367 (1995) 283-286]. Therefore, we investigated the regulation of PP2A-like activity by ceramides in isolated beta (HIT-T15 or INS-1) cells. Cell-permeable (C2, C6 or C18) ceramides stimulated OKA-sensitive (but not -insensitive) phosphatase activity in a concentration-dependent manner (0-12.5 microM), with maximal stimulation (+50-100%) at < 12.5 microM. C2-dihydroceramide (a biologically inactive analog of C2 ceramide) failed to augment PP2A-like activity. Stimulatory effects of ceramides do not appear to be mediated via activation of the carboxyl methylation of the catalytic subunit of protein phosphatase 2A, since no effects of ceramides (up to 25 microM) were demonstrable on this parameter. These data identify a ceramide-activated protein phosphatase as a possible locus at which ceramides might exert their effects on beta cells leading to altered insulin secretion, and decreased cell viability followed by apoptotic cell demise.
Collapse
Affiliation(s)
- A Kowluru
- Research and Medical Services, William S. Middleton Memorial VA Medical Center, Madison, WI 57305, USA.
| | | |
Collapse
|
15
|
Spitzer JA. Ceramide inhibits nitric oxide production in alveolar macrophages of endotoxin and ethanol plus endotoxin-treated rats. Biochem Biophys Res Commun 1997; 234:738-41. [PMID: 9175785 DOI: 10.1006/bbrc.1997.6691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of ceramide on nitric oxide (NO) formation was studied in rat alveolar macrophages (AMs). Rats were infused with ethanol (EtOH) for 3 h, or the EtOH infusion was combined with i.v. injection of endotoxin (ET) 90 min into the infusion. Controls were infused with saline. Alveolar macrophages were obtained by bronchoalveolar lavage and were cultured for 20 h in the presence and absence of ET, interferon-gamma (IFN), C6 ceramide (N-hexanoylsphingosine), and C2 dihydroceramide. Nitric oxide formation was assessed by measurement of nitrites in the medium. C6 ceramide significantly suppressed NO formation in response to in vitro addition of ET, but not IFN. C2 dihydroceramide caused no inhibition. The ceramide effect appears to be not only stimulus specific, but also specific to AMs, since NO formation by Kupffer cells and liver infiltrated neutrophils was not affected. The results suggest involvement of the sphingomyelin cycle in ET-stimulated NO formation in rat AMs.
Collapse
Affiliation(s)
- J A Spitzer
- Department of Physiology and Alcohol Research Center, Louisiana State University Medical Center, New Orleans 70119, USA
| |
Collapse
|
16
|
Wiesner DA, Kilkus JP, Gottschalk AR, Quintáns J, Dawson G. Anti-immunoglobulin-induced apoptosis in WEHI 231 cells involves the slow formation of ceramide from sphingomyelin and is blocked by bcl-XL. J Biol Chem 1997; 272:9868-76. [PMID: 9092523 DOI: 10.1074/jbc.272.15.9868] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Prolonged (>24 h) exposure to anti-IgM (an antigen surrogate that induces membrane cross-linking and apoptosis) induced a 3-fold increase in the mass of endogenous ceramide measured by 32P labeling by diacylglycerol kinase and a 4-fold increase in ceramide as measured by metabolic labeling with [3H]palmitate in a B-lymphocyte cell line, WEHI 231. This correlated with the induction of apoptosis. Shorter exposure times to anti-IgM (up to 8 h) failed to elicit apoptosis and did not elicit increased ceramide formation. After 8 h, apoptosis occurs concomitantly with ceramide formation over the next 40 h. Further, we showed that exogenous ceramide mimicked anti-IgM-induced apoptosis and that apoptosis was potentiated in serum-free media. Treatment of cells with an inhibitor of ceramide catabolism, N-oleoylethanolamine, increased both ceramide formation and apoptosis and accelerated apoptosis induced by anti-IgM. To examine further how ceramide metabolism is involved in apoptosis, we derived cell lines from a small population of cells resistant to N-oleoylethanolamine. These cell lines were selected based on an altered ceramide metabolic pathway, were resistant to apoptosis induced by anti-IgM, and showed no significant increase in ceramide when challenged with anti-IgM. The basis of this resistance was shown to be the failure to activate neutral sphingomyelinase activity following 24-h treatment with anti-IgM, in contrast to the 2-fold increase in neutral sphingomyelinase activity observed in wild type cells. We have shown previously that transfection of WEHI cells with bcl-xL conferred resistance to anti-IgM-induced apoptosis, whereas transfection with bcl-2 did not (Gottschalk, A., Boise, L., Thompson, C., and Quintans, J. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 7350-7354). In this study, these bcl-xL transfectants also displayed increased resistance to exogenous N-acetylsphingosine (C2-ceramide) or N-hexanoylsphingosine (C6-ceramide). However, when challenged with anti-IgM the bcl-xL transfectants produced levels of ceramide similar to wild type cells, suggesting that ceramide formation is upstream of bcl-xL and that it is a major determinant of B-cell death.
Collapse
Affiliation(s)
- D A Wiesner
- Department of Pediatrics, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | |
Collapse
|
17
|
Brügger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc Natl Acad Sci U S A 1997; 94:2339-44. [PMID: 9122196 PMCID: PMC20089 DOI: 10.1073/pnas.94.6.2339] [Citation(s) in RCA: 740] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/1996] [Accepted: 12/31/1996] [Indexed: 02/04/2023] Open
Abstract
Nano-electrospray tandem mass spectrometry allows qualitative and quantitative analysis of complex membrane lipid mixtures at the subpicomole level. We have exploited this technique to selectively detect individual classes of phospholipids from unprocessed total cellular lipid extracts by either precursor ion or neutral loss scanning. This way phosphatidylcholine, sphingomyelin, phosphatidylinositol and -phosphates, phosphatidylethanolamine, phosphatidylserine, phosphatidylglycerol, phosphatidic acid, and their plasmalogen analogues can be detected. The optimized ionization and fragmentation conditions described together with the principle of internal standardization by nonnatural analogues allow the rapid and quantitative determination of membrane lipid compositions down to sample amounts of 1000 cells.
Collapse
Affiliation(s)
- B Brügger
- Biochemiezentrum Heidelberg, University of Heidelberg, Germany
| | | | | | | | | |
Collapse
|
18
|
Bleich D, Chen S, Wen Y, Nadler JL. The stress-activated c-Jun protein kinase (JNK) is stimulated by lipoxygenase pathway product 12-HETE in RIN m5F cells. Biochem Biophys Res Commun 1997; 230:448-51. [PMID: 9016800 DOI: 10.1006/bbrc.1996.5981] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cytokine induced pancreatic beta-cell destruction seen in Type 1 diabetes and islet graft rejection involves multiple intracellular signaling pathways that directly or indirectly lead to inflammatory damage or programmed cell death. IL-1beta has been shown to stimulate the 12-lipoxygenase pathway product 12-HETE, in RIN m5F cells; however, the precise role of 12-LO activation in mediating cytokine effects is not clear. Since the stress-activated protein kinase, JNK, has been linked to cytokine mediated inflammatory actions, we studied the effect of two LO products, 12-HETE and 15-HETE, on JNK activity. We demonstrate that 1 nM 12-HETE stimulates JNK activity, while 1 nM 15-HETE, the 15-lipoxygenase pathway product, does not. These results suggest 12-HETE is a novel upstream signal for IL-1beta induced JNK activation in RIN m5F cells.
Collapse
Affiliation(s)
- D Bleich
- Division of Diabetes, Endocrinology, and Metabolism, City of Hope National Medical Center, Duarte, California 91010, USA.
| | | | | | | |
Collapse
|