Abstract
Between pH approximately 4 and 10 cobaltocytochrome c (Cocyt-c) gives an electron paramagnetic resonance (EPR) spectrum with g parallel = 2.035, g the perpendicular = 2.223, CoA PARALLEL = 61.4 G, CoA the perpendicular = 49.8 G, NA parallel = 15.3 G, and NA THE PERPENDICULAR = 12.5 G. Comparisons with the EPR spectra of deoxycobaltomyoglobin, deoxycobaltohemoglobin, and model compounds and together with other evidence showed cobaltocytochrome c to have Met-80 and His-18 as its axial ligands. The protons of these ligands are seen as resonances shifted by the ring-current field of the porphyrin in the 300-MHZ 1H nuclear magnetic resonance (NMR) spectra of cobalticytochrome c (Cocyt-c+). The methyl and gamma-methylene protons of Met-80 in this molecule occupy positions with respect to heme c which are somewhat different from those in ferrocytochrome c. The 1H NMR spectra also showed that the methyl groups of Leu-32, Ile-75, Thr-63, thioether bridges, and the porphyrin ring in the cobalt protein are in the same state as in native enzyme; the same is also true for Tyr-59, His-26, and His-33 and also possibly Tyr-67, Tyr-74, and Phe-82. Above pH 11, Cocyt-c is converted to a five-coordinated form having g parallel = 2.026, g the perpendicular = 2.325, CoA parallel = 80 G, CoA the perpendicular approximately 10 G, NA parallel = 17.5 G, and NA the perpendicular not resolved. Below pH 1.0 the EPR spectrum of Cocyt-c is also five-coordinated with g parallel = 2.014, g the perpendicular = 2.359, CoA parallel = 93.8 G, and CoA the perpendicular = 38.8 G. The axial ligands in the alkaline and the acidic forms of Cocyt-c are His-18 and Met-80, respectively. New prominent proton resonance peaks are observed in cobalt-cytochrome c which are either absent or weak in native cytochrome c. These are situated at 3.0, 1.7, and 1.44 ppm, attributable, respectively, to the epsilon-CH2, DELTA-CH2 + beta-CH2, and gamma-CH2 of lysyl residues in random-coil-peptides. From the areas of these peaks, it is estimated that one-two lysyl residues in Cocyt-c have been modified; four-five lysyl residues in Cocyt-c+ have been modified. These alterations of surface charged groups are probably responsible for the lowered reactivity of Cocyt-c with cytochrome oxidase and the lack of reactivity of Cocyt-c+ with several cytochrome reductase systems.
Collapse