1
|
Koebke KJ, Pinter TBJ, Pitts WC, Pecoraro VL. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chem Rev 2022; 122:12046-12109. [PMID: 35763791 PMCID: PMC10735231 DOI: 10.1021/acs.chemrev.1c01025] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One of the hallmark advances in our understanding of metalloprotein function is showcased in our ability to design new, non-native, catalytically active protein scaffolds. This review highlights progress and milestone achievements in the field of de novo metalloprotein design focused on reports from the past decade with special emphasis on de novo designs couched within common subfields of bioinorganic study: heme binding proteins, monometal- and dimetal-containing catalytic sites, and metal-containing electron transfer sites. Within each subfield, we highlight several of what we have identified as significant and important contributions to either our understanding of that subfield or de novo metalloprotein design as a discipline. These reports are placed in context both historically and scientifically. General suggestions for future directions that we feel will be important to advance our understanding or accelerate discovery are discussed.
Collapse
Affiliation(s)
- Karl J. Koebke
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | | - Winston C. Pitts
- Department of Chemistry, University of Michigan Ann Arbor, MI 48109 USA
| | | |
Collapse
|
2
|
Oki K, Takase M, Kobayashi N, Uno H. Synthesis and Characterization of Peralkylated Pyrrole-Fused Azacoronene. J Org Chem 2021; 86:5102-5109. [PMID: 33621082 DOI: 10.1021/acs.joc.0c03042] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A hexapyrrolohexaazacoronene (HPHAC) with 12 less-bulky peripheral ethyl groups than its aryl-containing HPHAC counterpart was synthesized to investigate the innate character of HPHAC. X-ray diffraction analysis revealed that HPHAC had a planar structure and close packing because of CH-π interactions between the alkyl groups and the HPHAC core. Compared to the previously reported HPHAC decorated with 12 peripheral aryl groups, this electron-rich π-system exhibited reversible multistep oxidations at low potentials and easily formed mono- and dicationic salts and charge-transfer (CT) complexes with 7,7,8,8-tetracyano-p-quinodimethane. These oxidized species exhibited clear changes in the bond-length alternation of the pyrrole units in the crystal state, indicating charge and spin delocalization. The distinct upfield shift of the central carbon signal of the dication in the 13C NMR spectrum affirms the global aromaticity from the viewpoint of a magnetic criterion. In the UV-vis/NIR spectra, broad absorption in the NIR region was observed only for HPHAC2+ and not the structurally similar cyclo[6]pyrrole. Magnetic circular dichroism measurements and time-dependent density functional theory calculations revealed that the broad absorption was assigned to the CT transition from the central benzene ring to the outer pyrrole rings.
Collapse
Affiliation(s)
- Kosuke Oki
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Masayoshi Takase
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| | - Nagao Kobayashi
- Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | - Hidemitsu Uno
- Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan
| |
Collapse
|
3
|
Influence of the heme distal pocket on nitrite binding orientation and reactivity in Sperm Whale myoglobin. Biochem J 2021; 478:927-942. [PMID: 33543749 PMCID: PMC7925009 DOI: 10.1042/bcj20200596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/30/2021] [Accepted: 02/05/2021] [Indexed: 12/05/2022]
Abstract
Nitrite binding to recombinant wild-type Sperm Whale myoglobin (SWMb) was studied using a combination of spectroscopic methods including room-temperature magnetic circular dichroism. These revealed that the reactive species is free nitrous acid and the product of the reaction contains a nitrite ion bound to the ferric heme iron in the nitrito- (O-bound) orientation. This exists in a thermal equilibrium with a low-spin ground state and a high-spin excited state and is spectroscopically distinct from the purely low-spin nitro- (N-bound) species observed in the H64V SWMb variant. Substitution of the proximal heme ligand, histidine-93, with lysine yields a novel form of myoglobin (H93K) with enhanced reactivity towards nitrite. The nitrito-mode of binding to the ferric heme iron is retained in the H93K variant again as a thermal equilibrium of spin-states. This proximal substitution influences the heme distal pocket causing the pKa of the alkaline transition to be lowered relative to wild-type SWMb. This change in the environment of the distal pocket coupled with nitrito-binding is the most likely explanation for the 8-fold increase in the rate of nitrite reduction by H93K relative to WT SWMb.
Collapse
|
4
|
Takashina A, Tiedemann MT, Unno M, Yamaguchi T, Stillman MJ, Kohzuma T. The pH Dependent Protein Structure Transitions and Related Spin-State Transition of Cytochrome c′ from Alcaligenes xylosoxidansNCIMB 11015. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20160316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Pandiscia LA, Schweitzer-Stenner R. Coexistence of Native-like and Non-Native Partially Unfolded Ferricytochrome c on the Surface of Cardiolipin-Containing Liposomes. J Phys Chem B 2015; 119:1334-49. [DOI: 10.1021/jp5104752] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Leah A. Pandiscia
- Department
of Chemistry, Drexel University, Philadelphia, PA 19104, United States
| | | |
Collapse
|
6
|
Vitale R, Lista L, Cerrone C, Caserta G, Chino M, Maglio O, Nastri F, Pavone V, Lombardi A. An artificial heme-enzyme with enhanced catalytic activity: evolution, functional screening and structural characterization. Org Biomol Chem 2015; 13:4859-68. [DOI: 10.1039/c5ob00257e] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational refinement of function into the heme-protein model Mimochrome VI (MC6) resulted in a new analogue, FeIII-E2L(TD)-MC6, with an improved peroxidase activity.
Collapse
Affiliation(s)
- Rosa Vitale
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
| | - Liliana Lista
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
| | - Corinne Cerrone
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
| | | | - Marco Chino
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
| | - Ornella Maglio
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
- IBB
| | - Flavia Nastri
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
| | - Vincenzo Pavone
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
- IMAST Scarl
| | - Angela Lombardi
- Department of Chemical Sciences
- University of Naples “Federico II”
- 80126 Naples
- Italy
- IMAST Scarl
| |
Collapse
|
7
|
Faiella M, Maglio O, Nastri F, Lombardi A, Lista L, Hagen WR, Pavone V. De novo design, synthesis and characterisation of MP3, a new catalytic four-helix bundle hemeprotein. Chemistry 2012; 18:15960-71. [PMID: 23150230 DOI: 10.1002/chem.201201404] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 09/12/2012] [Indexed: 12/31/2022]
Abstract
A new artificial metalloenzyme, MP3 (MiniPeroxidase 3), designed by combining the excellent structural properties of four-helix bundle protein scaffolds with the activity of natural peroxidases, was synthesised and characterised. This new hemeprotein model was developed by covalently linking the deuteroporphyrin to two peptide chains of different compositions to obtain an asymmetric helix-loop-helix/heme/helix-loop-helix sandwich arrangement, characterised by 1) a His residue on one chain that acts as an axial ligand to the iron ion; 2) a vacant distal site that is able to accommodate exogenous ligands or substrates; and 3) an Arg residue in the distal site that should assist in hydrogen peroxide activation to give an HRP-like catalytic process. MP3 was synthesised and characterised as its iron complex. CD measurements revealed the high helix-forming propensity of the peptide, confirming the appropriateness of the model procedure; UV/Vis, MCD and EPR experiments gave insights into the coordination geometry and the spin state of the metal. Kinetic experiments showed that Fe(III)-MP3 possesses peroxidase-like activity comparable to R38A-hHRP, highlighting the possibility of mimicking the functional features of natural enzymes. The synergistic application of de novo design methods, synthetic procedures, and spectroscopic characterisation, described herein, demonstrates a method by which to implement and optimise catalytic activity for an enzyme mimetic.
Collapse
Affiliation(s)
- Marina Faiella
- Department of Chemical Sciences, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Via Cintia, 80126 Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
8
|
Papadopoulou ND, Mewies M, McLean KJ, Seward HE, Svistunenko DA, Munro AW, Raven EL. Redox and spectroscopic properties of human indoleamine 2,3-dioxygenase and a His303Ala variant: implications for catalysis. Biochemistry 2005; 44:14318-28. [PMID: 16245948 DOI: 10.1021/bi0513958] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Indoleamine 2,3-dioxygenase is an important mammalian target that catalyses the oxidative cleavage of l-tryptophan to N-formylkynurenine. In this work, the redox properties of recombinant human indoleamine 2,3-dioxygenase (rhIDO) and its H303A variant have been examined for the first time and the spectroscopic and substrate-binding properties of rhIDO and H303A in the presence and absence of substrate are reported. The Fe(3+)/Fe(2+) reduction potential of H303A was found to be -30 +/- 4 mV; in the presence of l-Trp, this value increases to +16 +/- 3 mV. A variety of spectroscopies indicate that ferric rhIDO at pH 6.6 exists as a mixture of six-coordinate, high-spin, water-bound heme and a low-spin species that contains a second nitrogenous ligand; parallel experiments on H303A are consistent either with His303 as the sixth ligand or with His303 linked to a conformational change that affects this transition. There is an increase in the low-spin component at alkaline pH for rhIDO, but this is not due to hydroxide-bound heme. Substrate binding induces a conformational rearrangement and formation of low-spin, hydroxide-bound heme; analysis of the H303A variant indicates that His303 is not required for this conversion and is not essential for substrate binding. The Fe(3+)/Fe(2+) reduction potential of H303A variant is approximately 70 mV lower than that of rhIDO, leading to a destabilization of the ferrous-oxy complex, which is an obligate intermediate in the catalytic process. In comparison with the properties of other heme enzymes, the data can be used to build a more detailed picture of substrate binding and catalysis in indoleamine 2,3-dioxygenase. The wider implications of these results are discussed in the context of our current understanding of the catalytic mechanism of the enzyme.
Collapse
Affiliation(s)
- Nektaria D Papadopoulou
- Department of Chemistry, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
9
|
Field SJ, Prior L, Roldan MD, Cheesman MR, Thomson AJ, Spiro S, Butt JN, Watmough NJ, Richardson DJ. Spectral properties of bacterial nitric-oxide reductase: resolution of pH-dependent forms of the active site heme b3. J Biol Chem 2002; 277:20146-50. [PMID: 11901154 DOI: 10.1074/jbc.m112202200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial nitric-oxide reductase catalyzes the two electron reduction of nitric oxide to nitrous oxide. In the oxidized form the active site non-heme Fe(B) and high spin heme b(3) are mu-oxo bridged. The heme b(3) has a ligand-to-metal charge transfer band centered at 595 nm, which is insensitive to pH over the range of 6.0-8.5. Partial reduction of nitric-oxide reductase yields a three electron-reduced state where only the heme b(3) remains oxidized. This results in a shift of the heme b(3) charge transfer band lambda(max) to longer wavelengths. At pH 6.0 the charge transfer band lambda(max) is 605 nm, whereas at pH 8.5 it is 635 nm. At pH 6.5 and 7.5 the nitric-oxide reductase ferric heme b(3) population is a mixture of both 605- and 635-nm forms. Magnetic circular dichroism spectroscopy suggests that at all pH values examined the proximal ligand to the ferric heme b(3) in the three electron-reduced form is histidine. At pH 8.5 the distal ligand is hydroxide, whereas at pH 6.0, when the enzyme is most active, it is water.
Collapse
Affiliation(s)
- Sarah J Field
- Centre for Metalloprotein Spectroscopy and Biology, Schools of Biological Sciences and Chemical Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Little RH, Cheesman MR, Thomson AJ, Greenwood C, Watmough NJ. Cytochrome bo from Escherichia coli: binding of azide to CuB. Biochemistry 1996; 35:13780-7. [PMID: 8901520 DOI: 10.1021/bi961221d] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Azide binds to fast cytochrome bo with a stoichiometry of 1:1, the dissociation constant for this reaction being approximately 2 x 10(-5) M. The changes induced in the electronic absorption are very slight and are consistent with heme o remaining hexacoordinate high-spin, an observation confirmed by room temperature MCD spectroscopy in the region 350-2000 nm. X-band EPR spectroscopy of the azide-bound form shows heme o remains coupled to CuB, but that the integer spin signal (g = 3.7) that we have previously reported to be associated with the binuclear center of fast cytochrome bo [Watmough et al. (1993) FEBS Lett. 319, 151-154], is shifted to higher field. The kinetics of azide binding are an order of magnitude faster than those observed for the binding of cyanide. Unlike cyanide, the observed rate constants do not saturate in the range 0.05-25 mM. The value of Kon shows a marked dependence on pH, indicating that the active species is hydrazoic acid. It is argued that these data are consistent with the binding of azide ion as a terminal ligand to CuB yielding a binuclear center in the form FeIII-OH2:: CuBII-N3. The binding of azide in heme-copper oxidases may cause displacement of another nitrogenous ligand from CuB which might explain the absence of electron density associated with histidine-325 in the structure of the Paracoccus denitrificans CCO [Iwata et al. (1995) Nature 376, 660-669]. Formate appears to act as a bidentate ligand to the binuclear center-, blocking not only the binding of azide to CuB but also the binding of cyanide to heme o.
Collapse
Affiliation(s)
- R H Little
- Centre for Metalloprotein Spectroscopy and Biology, School of Biological Sciences, University of East Anglia, Norfolk, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Zhang J, Chi Q, Dong S, Wang E. In situ electrochemical scanning tunnelling microscopy investigation of structure for horseradish peroxidase and its electricatalytic property. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0302-4598(95)01893-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
12
|
Das TK, Mazumdar S. pH-induced conformational perturbation in horseradish peroxidase. Picosecond tryptophan fluorescence studies on native and cyanide-modified enzymes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:823-8. [PMID: 7867643 DOI: 10.1111/j.1432-1033.1995.tb20207.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The fluorescence-decay characteristics of the single tryptophan present in horseradish peroxidase (HRP) have been studied using dye-laser pulses and single-photon counting techniques. The decay was found to be dominated by a picosecond-lifetime component, with small contributions from two other lifetime components in the nanosecond range. The distance of the tryptophan residue was estimated from the fluorescence-energy transfer to the heme moiety using Förster's theory. The tryptophan residue was found to be approximately 1.2 nm from the heme moiety at neutral pH. Detailed analysis of the fluorescence-decay profiles using the maximum-entropy method (MEM) has been carried out. The results of the MEM analysis also showed a maximum amplitude peak at approximately 45 ps (at pH approximately 7) with a very small (< 5%) contribution from two other components. Similar results were obtained with the cyanide derivative of the enzyme (HRPCN) where the major lifetime component was found to be 58 ps at neutral pH. The picosecond component of fluorescence lifetimes of native HRP as well as of HRPCN were found to increase with decrease in pH in the range pH 6-3.5. Moreover, the native enzyme showed significant increase in the magnitude of this fast lifetime component at pH above 8. Such increase in the major lifetime component possibly indicated a conformational perturbation caused by pH change in the enzyme. However, the pH dependence of HRPCN, which is devoid of alkaline transition, showed that the shortest lifetime component remains almost unchanged over the pH range 6-11. This result showed that the alkaline transition in native HRP is associated with a structural change in the distal region of the heme center, which is absent in the cyanide-ligated enzyme. The results have been discussed with respect to understanding the pH-induced effects associated with salt bridge and hydrogen-bonding network in HRP.
Collapse
Affiliation(s)
- T K Das
- Chemical Physics Group, Tata Institute of Fundamental Research, Bombay, India
| | | |
Collapse
|
13
|
Sanders SA, Bray RC, Smith AT. pH-dependent properties of a mutant horseradish peroxidase isoenzyme C in which Arg38 has been replaced with lysine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 224:1029-37. [PMID: 7925400 DOI: 10.1111/j.1432-1033.1994.01029.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Arg38 in the active site of horseradish peroxidase isoenzyme C (HRP-C) has been replaced with lysine by site-directed mutagenesis. As a preclude to a detailed kinetic analysis of this variant, the present study characterizes a pH-dependent cycle of reactions for recombinant horseradish peroxidase isoenzyme C with Arg38 replaced by lysine ([R38K]HRP-C*), which involves time-dependent changes in both specific activity and the electronic absorption spectrum of the enzyme. This pH-dependent cycle resembles that previously suggested for a cytochrome-c peroxidase variant in which Asp235 was replaced with asparagine. When the pH of a solution of resting [R38K]HRP-C* at pH 6.6 (form AH) is raised to pH 8.6, a rapid alkaline transition occurs. This results in spectral changes characteristic of a shift from a predominantly pentacoordinate to a completely hexacoordinate high-spin haem iron (form A-) with a pKa of 7.5. When the pH of a solution of form A- is raised from 8.7 to 12.0, no further spectral changes are observed. The reaction is reversible, but when the high-pH form of the enzyme (A-) is allowed to stand at pH 8.6, it slowly becomes converted into a third enzyme form (form I-) at a rate which is independent of pH (k = 0.56 h-1). When the pH of a sample of form I- is lowered from 8.6 to 6.6, the original low-pH form (AH) of the enzyme is recovered. Recovery of form AH from form I- does not occur via form A-, but via at least one further intermediate, form X. Following a downward pH jump, the rate constant for the formation of form X from form I- shows a small dependence on pH, changing from 48 s-1 at pH 6.8 to 39 s-1 at pH 7.4. The rate of formation of form AH from form X is also pH dependent and biphasic in nature, with measured rate constants ranging from 11.9-2.1 h-1. The possible structures of the different forms of [R38K]HRP-C* are discussed in the light of similar data in the literature for variants of cytochrome-c peroxidase. The properties may be indicative of a greater degree of conformational flexibility within the active site of this mutant caused by the smaller bulk of the lysine side-chain and the probable disruption of a part of the haem-linked hydrogen-bonding network in the distal haem pocket. The wild-type enzyme undergoes no such pH induced changes.
Collapse
Affiliation(s)
- S A Sanders
- Biochemistry Laboratory, School of Biological Sciences, University of Sussex, Brighton, England
| | | | | |
Collapse
|
14
|
Cheesman MR, Watmough NJ, Gennis RB, Greenwood C, Thomson AJ. Magnetic-circular-dichroism studies of Escherichia coli cytochrome bo. Identification of high-spin ferric, low-spin ferric and ferryl [Fe(IV)] forms of heme o. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 219:595-602. [PMID: 8307024 DOI: 10.1111/j.1432-1033.1994.tb19975.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Room-temperature (295 K) magnetic-circular-dichroism spectra at 280-2500 nm have been recorded for Escherichia coli cytochrome bo in its fast form (which has a g = 3.7 EPR signal and reacts rapidly with cyanide) and for its formate, fluoride, cyanide and hydrogen-peroxide derivatives. The spectra of all forms are dominated by signals from low-spin ferric heme b. These include a porphyrin-to-ferric ion charge-transfer transition in the near-infrared region (the near-infrared charge-transfer band) at 1610 nm. High-spin ferric heme o gives rise to a negative magnetic-circular-dichroism feature at 635, 642 and 625 nm (corresponding to a shoulder observed in the electronic absorption spectra) and a derivative charge-transfer feature at 1100, 1180 and 940 nm for the fast, formate and fluoride forms, respectively. The energies of these bands confirm that fluoride and formate are ligands to heme o. The energies of the analogous bands in the spectrum of fast cytochrome bo are typical for high-spin ferric hemes with histidine and water axial ligands. Addition of cyanide ion to fast cytochrome bo causes a red shift in the position of the Soret absorption peak, from 406.5 nm to 413 nm, and results in the loss of the 635-nm feature from the magnetic-circular-dichroism spectrum and of the corresponding shoulder in the electronic absorption spectrum. In the magnetic-circular-dichroism spectrum, the intensities of the Soret and alpha, beta bands are significantly increased. New near-infrared charge-transfer intensity is observed at 1000-2300 nm with a peak near 2050 nm. These changes are interpreted as resulting from a high-spin to low-spin transition at ferric heme o brought about by the binding of cyanide ion. The energy of the near-infrared charge-transfer band suggests that the cyanide ion is bridged to the CuB of the binuclear site. Treatment of fast cytochrome bo with hydrogen peroxide also causes a red shift in the position of the Soret absorbance, to 412 nm, and a loss of the 625-nm absorption shoulder. Changes in the magnetic-circular-dichroism spectrum at 450-600 nm are observed, but there is no significant increase in the intensity of the magnetic-circular-dichroism Soret band and no new near-infrared charge-transfer bands are detected, ruling out a similar high-spin to low-spin transition at heme o.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M R Cheesman
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences, University of East Anglia, England
| | | | | | | | | |
Collapse
|
15
|
Temperature- and pH-dependent changes in the coordination sphere of the heme c group in the model peroxidase N alpha-acetyl microperoxidase-8. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49535-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
Schweizer M, Peter MA, Filipovic D, Tinner R, Bosshard HR, Oertle M. Mechanism of monoclonal antibody inhibition/stimulation of reactions catalyzed by cytochrome P450IIB1. Arch Biochem Biophys 1991; 288:64-70. [PMID: 1898025 DOI: 10.1016/0003-9861(91)90165-f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We describe two monoclonal antibodies (MAbs) against rat cytochrome P450IIB1 and investigate the mechanisms by which they influence P450IIB1-mediated catalysis. MAb ce9 partially inhibits the activities toward p-nitroanisole, 7-ethoxycoumarin, and benzphetamine as well as NADPH oxidation. These findings can be explained by the observation that ce9 cross-links P450 to form large aggregates resulting in the inhibition of the functional interaction with NADPH cytochrome P450 reductase. Binding of ce9 to P450IIB1 does not affect the spin state of the P450 heme, as revealed by comparing the magnetic circular dichroism (MCD) spectra of free and antibody-bound P450IIB1. On the other hand, the second antibody tested, MAb 14E10, induces a remarkable low to high spin transition upon binding to P450IIB1, as shown by MCD difference spectroscopy. This MAb stimulates activities toward p-nitroanisole and 7-ethoxycoumarin without affecting the rate of NADPH oxidation. This observation indicates that MAb 14E10 may increase the efficiency of electron utilization by P450IIB1. Benzphetamine metabolism remains unchanged in the presence of MAb 14E10.
Collapse
Affiliation(s)
- M Schweizer
- Biochemisches Institut Universität Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Resonance Raman spectroscopic evidence for heme iron-hydroxide ligation in peroxidase alkaline forms. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37667-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
18
|
Foote N, Gadsby PM, Berry MJ, Greenwood C, Thomson AJ. The formation of ferric haem during low-temperature photolysis of horseradish peroxidase Compound I. Biochem J 1987; 246:659-68. [PMID: 2825645 PMCID: PMC1148330 DOI: 10.1042/bj2460659] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Illumination at low temperature of the peroxide compound of horseradish peroxidase (HRP-I) causes partial conversion of the haem electronic structure from a ferryl-porphyrin radical species into a low-spin ferric state. Magnetic-c.d. (m.c.d.) and e.p.r. spectral features of the photolysis product are almost identical with those of the alkaline form of ferric HRP, proposed on the basis of its near-i.r. m.c.d. spectrum to be a Fe(III)-OH species. The ferric product of HRP-I photolysis also contains free-radical e.p.r. signals. Conversion of HRP-I into the Fe(III)-OH species, which requires transfer of a proton and two electrons from the protein, is shown to be a two-step process.
Collapse
Affiliation(s)
- N Foote
- School of Biological Sciences, University of East Anglia, Norwich, U.K
| | | | | | | | | |
Collapse
|
19
|
Foote N, Peterson J, Gadsby PM, Greenwood C, Thomson AJ. Redox-linked spin-state changes in the di-haem cytochrome c-551 peroxidase from Pseudomonas aeruginosa. Biochem J 1985; 230:227-37. [PMID: 2996492 PMCID: PMC1152606 DOI: 10.1042/bj2300227] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic-c.d., e.p.r. and optical-absorption spectra are reported for the half-reduced form of Pseudomonas aeruginosa cytochrome c-551 peroxidase, a di-haem protein, and its fluoride derivative. Comparison of this enzyme species with oxidized peroxidase shows the occurrence of spin-state changes at both haem sites. The high-potential haem changes its state from partially high-spin to low-spin upon reduction. This is linked to a structural alteration at the ferric low-potential haem group, causing it to change from low-spin to high-spin. Low-temperature spectra demonstrate photolysis of an endogenous ligand of the high-potential haem. In addition, an inactive form of enzyme is examined in which the structural change at the ferric low-potential haem does not occur on reduction of the high-potential haem.
Collapse
|
20
|
Dhaliwal BK, Erman JE. A kinetic study of the alkaline transitions in cytochrome c peroxidase. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 827:174-82. [PMID: 2981557 DOI: 10.1016/0167-4838(85)90087-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cytochrome c peroxidase undergoes a complex series of transitions between pH 8 and 14. Seven distinct spectral transitions occur between 4 ms and 24 h after exposure to alkaline pH. The fastest transition occurs within the mixing time of a stopped-flow instrument and converts the native high-spin ferric form of the enzyme to a low-spin form which may be the hydroxy complex of the enzyme. An apparent pKa of 9.7 +/- 0.2 relates the native and initial alkaline form of the enzyme. Three other low-spin enzyme forms are evident from the experimental data prior to denaturation of the enzyme and complete exposure of the heme to the solvent. The final denaturation process occurs with an apparent pKa of 10.3 +/- 0.3.
Collapse
|
21
|
Foote N, Peterson J, Gadsby PM, Greenwood C, Thomson AJ. A study of the oxidized form of Pseudomonas aeruginosa cytochrome c-551 peroxidase with the use of magnetic circular dichroism. Biochem J 1984; 223:369-78. [PMID: 6093773 PMCID: PMC1144309 DOI: 10.1042/bj2230369] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The magnetic properties at different temperatures of oxidized Pseudomonas aeruginosa cytochrome c-551 peroxidase were studied, with the use of the technique of magnetic-circular-dichroism spectroscopy. At 4.2K, both constituent haems were found to be low-spin, and the axial ligand pairs were identified as histidine-histidine and histidine-methionine. At room temperature high-spin signals were observed, amounting to less than 25% of the total haem present. These signals are concluded to arise mainly from a temperature-dependent spin-state equilibrium in the methionine-ligated haem.
Collapse
|
22
|
Kobayashi N, Koshiyama M, Ishikawa Y, Osa T, Shirai H, Hojo N. ELECTROLYTE-INDUCED SPIN-STATE TRANSITION OF IRON IN IRON(III) PHTHALOCYANINE. CHEM LETT 1984. [DOI: 10.1246/cl.1984.1633] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Terner J, Reed DE. Resonance raman spectroscopic characterization of the heme coordination and spin state in the alkaline form of horseradis peroxidase. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/0167-4838(84)90064-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Sievers G, Gadsby PM, Peterson J, Thomson AJ. Magnetic circular dichroism spectra of soybean leghaemoglocin a at room temperature and 4.2 K. ACTA ACUST UNITED AC 1983. [DOI: 10.1016/0167-4838(83)90283-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
Uchida K, Shimizu T, Makino R, Sakaguchi K, Iizuka T, Ishimura Y, Nozawa T, Hatano M. Magnetic and natural circular dichroism of L-tryptophan 2,3-dioxygenases and indoleamine 2,3-dioxygenase. I. Spectra of ferric and ferrous high spin forms. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32957-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Yamamoto T, Nozawa T, Kobayashi N, Hatano M. Origins and Spin Dependence of Near Infrared Magnetic Circular Dichroism of Iron(III) Hemoproteins. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1982. [DOI: 10.1246/bcsj.55.3059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Eglinton DG, Barber D, Thomson AJ, Greenwood C, Segal AW. Studies of cyanide binding to myeloperoxidase by electron paramagnetic resonance and magnetic circular dichroism spectroscopies. ACTA ACUST UNITED AC 1982. [DOI: 10.1016/0167-4838(82)90047-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Kobayashi N, Nozawa T, Hatano M. Near-infrared Magnetic Circular Dichroism Studies on Iron(III) Horse Heart Cytochrome c. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 1981. [DOI: 10.1246/bcsj.54.919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Nozawa T, Ookubo S, Hatano M. Visible and near-infrared magnetic circular dichroism spectra of high spin iron(III) complexes of protoporphyrin-IX-dimethylester. Characterization of charge-transfer bands of high spin heme [Fe(III)]. J Inorg Biochem 1980. [DOI: 10.1016/s0162-0134(00)80206-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Sievers G, Osterlund K, Ellfolk N. Resonance Raman study on yeast cytochrome c peroxidase. Effect of coordination and axial ligands. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 581:1-14. [PMID: 228743 DOI: 10.1016/0005-2795(79)90215-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Resonance Raman spectra are reported for native ferric cytochrome c peroxidase, its cyanide and fluoride compounds, those of the ferrous enzyme and its cyanide and carbonyl compounds, and the spectrum of the hydrogen peroxide compound, compound I. Band frequencies of ferric horseradish peroxidase isoenzyme C2 and its derivatives are also given. Comparison of the frequencies of the bands around 1400, 1500, 1560-1580, and 1610-1640 cm-1 with those of other hemoproteins and heme model compounds showed that in ferric highspin compounds in particular the bands are not only spin and oxidation sensitive, as has previously been reported, but that they also reflect the coordination of the heme iron. It is suggested that ferric cytochrome c peroxidase and horseradish peroxidase are pentacoordinated. In the hexacoordinated fluoride, cyanide and carbon monoxide derivatives the bands reflect the spin state and the out-of-plane position of the heme iron. The spectrum of cytochrome c peroxidase compound I supports previous studies that suggest that it has a lowspin heme iron in the Fe(IV) oxidation state.
Collapse
|
31
|
Maltempo MM, Ohlsson PI, Paul KG, Petersson L, Ehrenberg A. Electron paramagnetic resonance analyses of horseradish peroxidase in situ and after purification. Biochemistry 1979; 18:2935-41. [PMID: 37888 DOI: 10.1021/bi00581a003] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Sievers G. Circular dichroism studies on cytochrome c peroxidase from baker's yeast (Saccharomyces cerevisiae). BIOCHIMICA ET BIOPHYSICA ACTA 1978; 536:212-25. [PMID: 213122 DOI: 10.1016/0005-2795(78)90067-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Circular dichroism spectra of cytochrome c peroxidase from baker's yeast, those of the reduced enzyme, the carbonyl, cyanide and fluoride derivatives and the hydrogen peroxide compound, Compound I, have been recorded in the wavelength range 200 to 660 nm. All derivatives show negative Soret Cotton effects. The results suggest that the heme group is surrounded by tightly packed amino acid sidechains and that there is a histidine residue bound to the fifth coordination site of the heme iron. The native ferric enzyme is probably pentacoordinated. The circular dichroism spectra of the ligand compounds indicate that the ligands form a nonlinear bond to the heme iron as a result of steric hindrance in the vicinity of the heme. The spectrum of Compound I shows no perturbation of the porphyrin symmetry. The dichroic spectrum of the native enzyme in the far-ultraviolet wave-length region suggests that the secondary structure consists of roughly equal amounts of alpha-helical, beta-structure and unordered structure. After the removal of the heme group no great changes in the secondary structure can be observed.
Collapse
|
33
|
Vuk-Pavlović S, Siderer Y. Probing axial ligands in ferric haemoproteins: an ESR study of myoglobin and horseradish peroxidase in H217O. Biochem Biophys Res Commun 1977; 79:885-9. [PMID: 202277 DOI: 10.1016/0006-291x(77)91193-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|