1
|
Heinnickel M, Agalarov R, Svensen N, Krebs C, Golbeck JH. Identification of FX in the Heliobacterial Reaction Center as a [4Fe-4S] Cluster with an S = 3/2 Ground Spin State. Biochemistry 2006; 45:6756-64. [PMID: 16716087 DOI: 10.1021/bi060031s] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type I homodimeric reaction centers, particularly the class present in heliobacteria, are not well understood. Even though the primary amino acid sequence of PshA in Heliobacillus mobilis has been shown to contain an F(X) binding site, a functional Fe-S cluster has not been detected by EPR spectroscopy. Recently, we reported that PshB, which contains F(A)- and F(B)-like Fe-S clusters, could be removed from the Heliobacterium modesticaldum reaction center (HbRC), resulting in 15 ms lifetime charge recombination between P798(+) and an unidentified electron acceptor [Heinnickel, M., Shen, G., Agalarov, R., and Golbeck, J. H. (2005) Biochemistry 44, 9950-9960]. We report here that when a HbRC core is incubated with sodium dithionite in the presence of light, the 15 ms charge recombination is replaced with a kinetic transient in the sub-microsecond time domain, consistent with the reduction of this electron acceptor. Concomitantly, a broad and intense EPR signal arises around g = 5 along with a minor set of resonances around g = 2 similar to the spectrum of the [4Fe-4S](+) cluster in the Fe protein of Azotobacter vinelandii nitrogenase, which exists in two conformations having S = (3)/(2) and S = (1)/(2) ground spin states. The Mössbauer spectrum in the as-isolated HbRC core shows that all of the Fe is present in the form of a [4Fe-4S](2+) cluster. After reduction with sodium dithionite in the presence of light, approximately 65% of the Fe appears in the form of a [4Fe-4S](+) cluster; the remainder is in the [4Fe-4S](2+) state. Analysis of the non-heme iron content of HbRC cores indicates an antenna size of 21.6 +/- 1.1 BChl g molecules/P798. The evidence indicates that the HbRC contains a [4Fe-4S] cluster identified as F(X) that is coordinated between the PshA homodimer; in contrast to F(X) in other type I reaction centers, this [4Fe-4S] cluster exhibits an S = (3)/(2) ground spin state.
Collapse
Affiliation(s)
- Mark Heinnickel
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
2
|
Teschner T, Yatsunyk L, Schünemann V, Paulsen H, Winkler H, Hu C, Scheidt WR, Walker FA, Trautwein AX. Models of the membrane-bound cytochromes: mössbauer spectra of crystalline low-spin ferriheme complexes having axial ligand plane dihedral angles ranging from 0 degree to 90 degrees. J Am Chem Soc 2006; 128:1379-89. [PMID: 16433558 PMCID: PMC1525297 DOI: 10.1021/ja056343k] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystalline samples of four low-spin Fe(III) octaalkyltetraphenylporphyrinate and two low-spin Fe(III) tetramesitylporphyrinate complexes, all of which are models of the bis-histidine-coordinated cytochromes of mitochondrial complexes II, III, and IV and chloroplast complex b(6)f, and whose molecular structures and EPR spectra have been reported previously, have been investigated in detail by Mössbauer spectroscopy. The six complexes and the dihedral angles between axial ligand planes of each are [(TMP)Fe(1-MeIm)(2)]ClO(4) (0 degree), paral-[(OMTPP)Fe(1-MeIm)(2)]Cl (19.5 degrees), paral-[(TMP)Fe(5-MeHIm)(2)]ClO(4) (26 degrees, 30 degrees for two molecules in the unit cell whose EPR spectra overlap), [(OETPP)Fe(4-Me(2)NPy)(2)]Cl (70 degrees), perp-[(OETPP)Fe(1-MeIm)(2)]Cl (73 degrees), and perp-[(OMTPP)Fe(1-MeIm)(2)]Cl (90 degrees). Of these, the first three have been shown to exhibit normal rhombic EPR spectra, each with three clearly resolved g-values, while the last three have been shown to exhibit "large g(max)" EPR spectra at 4.2 K. It is found that the hyperfine coupling constants of the complexes are consistent with those reported previously for low-spin ferriheme systems, with the largest-magnitude hyperfine coupling constant, A(zz), being considerably smaller for the "parallel" complexes (400-540 kG) than for the strictly perpendicular complex (902 kG), A(xx) being negative for all six complexes, and A(zz) and A(xx) being of similar magnitude for the "parallel" complexes (for example, for [(TMP)Fe(1-MeIm)(2)]Cl, A(zz) = 400 kG, A(xx) = -400 kG). In all cases, A(yy) is small but difficult to estimate with accuracy. With results for six structurally characterized model systems, we find for the first time qualitative correlations of g(zz), A(zz), and DeltaE(Q) with axial ligand plane dihedral angle Deltavarphi.
Collapse
|
3
|
Benda R, Schünemann V, Trautwein AX, Cai S, Reddy Polam J, Watson CT, Shokhireva TK, Walker FA. Models of the bis-histidine-coordinated ferricytochromes: Mössbauer and EPR spectroscopic studies of low-spin iron(III) tetrapyrroles of various electronic ground states and axial ligand orientations. J Biol Inorg Chem 2003; 8:787-801. [PMID: 12898323 DOI: 10.1007/s00775-003-0472-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2002] [Accepted: 05/19/2003] [Indexed: 10/26/2022]
Abstract
The EPR and magnetic Mössbauer spectra of a series of axial ligand complexes of tetrakis(2,6-dimethoxyphenyl)porphyrinatoiron(III), [(2,6-(OMe)(2))(4)TPPFeL(2)](+), where L= N-methylimidazole, 2-methylimidazole, or 4-(dimethylamino)pyridine, of one axial ligand complex of tetraphenylporphyrin, the bis(4-cyanopyridine) complex [TPPFe(4-CNPy)(2)](+), and of one axial ligand complex of tetraphenylchlorin, [TPCFe(ImH)(2)](+), where ImH=imidazole, have been investigated and compared to those of low-spin Fe(III) porphyrinates and ferriheme proteins reported in the literature. On the basis of this and previous complementary spectroscopic investigations, three types of complexes have been identified: those having (d(xy))(2)(d(xz),d(yz))(3) electronic ground states with axial ligands aligned in perpendicular planes (Type I), those having (d(xy))(2)(d(xz),d(yz))(3) electronic ground states with axial ligands aligned in parallel planes (Type II), and those having the novel (d(xz),d(yz))(4)(d(xy))(1) electronic ground state (Type III). A subset of the latter type, with planar axial ligands aligned parallel to each other or strong macrocycle asymmetry that yield rhombic EPR spectra, cannot be created using the porphyrinate ligand. Type I centers are characterized by "large g(max)" EPR spectra with g>3.2 and well-resolved, widely spread magnetic Mössbauer spectra having A(zz)/ g(N)mu(N)>680 kG, with A(xx) negative in sign but much smaller in magnitude than A(zz), while Type II centers have well-resolved rhombic EPR spectra with g(zz)=2.4-3.1 and also less-resolved magnetic Mössbauer spectra, and usually have A(zz)/ g(Nmu(N) in the range of 440-660 kG (but in certain cases as small as 180 kG) and A(xx) again negative in sign but only somewhat smaller (but occasionally larger in magnitude) than A(zz), and Type III centers have axial EPR spectra with g( upper left and right quadrants ) approximately 2.6 or smaller and g( vertical line )<1.0-1.95, but often not resolved, and less-resolved magnetic Mössbauer spectra having A(zz)/ g(N)mu(N) in the range of 270-400 kG, and A(xx) again negative in sign but much smaller in magnitude than A(zz). An exception to this rule is [TPPFe(4-CNPy)(2)](+), which has A(xx)/ g(N)mu(N)=-565 kG, A(yy)/ g(N)mu(N)=629 kG, and A(zz)/ g(N)mu(N)=4 kG. A subset of Type II complexes (Type II') have rhombicities ( V/Delta) much greater than 0.67 and A(zz)/ g(N)mu(N) ranging from 320 to 170 kG, with A(xx) also negative but with the magnitude of A(xx) significantly larger than that of A(zz). These classifications are also observed for a variety of ferriheme proteins, and they lead to linear correlations between A(zz) and either A(xx), g(zz), or V/Delta for Types I and II (but not for A(zz) versus V/Delta for Type II'). Not enough data are yet available on Type III complexes to determine what, if any, correlations may be observed.
Collapse
Affiliation(s)
- Rüdiger Benda
- Institut für Physik, Universität Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Börger B, Bingham SJ, Gutschank J, Schweika MO, Suter D, Thomson AJ. Optically detected electron paramagnetic resonance by microwave modulated magnetic circular dichroism. J Chem Phys 1999. [DOI: 10.1063/1.480197] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Schünemann V, Trautwein AX, Illerhaus J, Haehnel W. Mössbauer and electron paramagnetic resonance studies of the cytochrome bf complex. Biochemistry 1999; 38:8981-91. [PMID: 10413471 DOI: 10.1021/bi990080n] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The (57)Fe-enriched cytochrome bf complex has been isolated from hydrocultures of spinach. It has been studied at different redox states by optical, EPR, and Mössbauer spectroscopy. The Mössbauer spectrum of the native complex at 190 K with all iron centers in the oxidized state reveals the presence of four different iron sites: low-spin ferric iron in cytochrome b [with an isomer shift (delta) of 0.20 mm/s, a quadrupole splitting (DeltaE(Q)) of 1.77 mm/s, and a relative area of 40%], low-spin ferric iron of cytochrome f (delta = 0.26 mm/s, DeltaE(Q) = 1.90 mm/s, and a relative area of 20%), and two high-spin ferric iron sites of the Rieske iron-sulfur protein (ISP) with a bis-cysteine and a bis-histidine ligated iron (delta(1) = 0.15 mm/s, DeltaE(Q1) = 0.70 mm/s, and a relative area of 20%, and delta(2) = 0.25 mm/s, DeltaE(Q2) = 0.90 mm/s, and a relative area of 20%, respectively). EPR and magnetic Mössbauer measurements at low temperatures corroborate these results. A crystal-field analysis of the EPR data and of the magnetic Mössbauer data yields estimates for the g-tensors (g(z)(), g(y)(), and g(x)()) of cytochrome b (3.60, 1.35, and 1.1) and of cytochrome f (3.51, 1.69, and 0.9). Addition of ascorbate reduces not only the iron of cytochrome f to the ferrous low-spin state (delta = 0.43 mm/s, DeltaE(Q) = 1.12 mm/s at 4.2 K) but also the bis-histidine coordinated iron of the Rieske 2Fe-2S center to the ferrous high-spin state (delta(2) = 0.73 mm/s, DeltaE(Q2) = -2.95 mm/s at 4.2 K). At this redox step, the Mössbauer parameters of cytochrome b have not changed, indicating that the redox changes of cytochrome f and the Rieske protein did not change the first ligand sphere of the low-spin ferric iron in cytochrome b. Reduction with dithionite further reduces the two hemes of cytochrome b to the ferrous low-spin state (delta = 0.49 mm/s, DeltaE(Q) = 1.08 mm/s at 4.2 K). The spin Hamiltonian analysis of the magnetic Mössbauer spectra at 4.2 K yields hyperfine parameters of the reduced Rieske 2Fe-2S center in the cytochrome bf complex which are very similar to those reported for the Rieske center from Thermus thermophilus [Fee, J. A., Findling, K. L., Yoshida, T., et al. (1984) J. Biol. Chem. 259, 124-133].
Collapse
Affiliation(s)
- V Schünemann
- Institut für Physik, Medizinische Universität Lübeck, Germany
| | | | | | | |
Collapse
|
6
|
Walker F. Magnetic spectroscopic (EPR, ESEEM, Mössbauer, MCD and NMR) studies of low-spin ferriheme centers and their corresponding heme proteins. Coord Chem Rev 1999. [DOI: 10.1016/s0010-8545(99)00029-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Prazeres S, Moura JJ, Moura I, Gilmour R, Goodhew CF, Pettigrew GW, Ravi N, Huynh BH. Mössbauer characterization of Paracoccus denitrificans cytochrome c peroxidase. Further evidence for redox and calcium binding-induced heme-heme interaction. J Biol Chem 1995; 270:24264-9. [PMID: 7592634 DOI: 10.1074/jbc.270.41.24264] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Mössbauer and electron paramagnetic resonance (EPR) spectroscopies were used to characterize the diheme cytochrome c peroxidase from Paracoccus denitrificans (L.M.D. 52.44). The spectra of the oxidized enzyme show two distinct spectral components characteristic of low spin ferric hemes (S = 1/2), revealing different heme environments for the two heme groups. The Paracoccus peroxidase can be non-physiologically reduced by ascorbate. Mössbauer investigation of the ascorbate-reduced peroxidase shows that only one heme (the high potential heme) is reduced and that the reduced heme is diamagnetic (S = 0). The other heme (the low potential heme) remains oxidized, indicating that the enzyme is in a mixed valence, half-reduced state. The EPR spectrum of the half-reduced peroxidase, however, shows two low spin ferric species with gmax = 2.89 (species I) and gmax = 2.78 (species II). This EPR observation, together with the Mössbauer result, suggests that both species are arising from the low potential heme. More interestingly, the spectroscopic properties of these two species are distinct from that of the low potential heme in the oxidized enzyme, providing evidence for heme-heme interaction induced by the reduction of the high potential heme. Addition of calcium ions to the half-reduced enzyme converts species II to species I. Since calcium has been found to promote peroxidase activity, species I may represent the active form of the peroxidatic heme.
Collapse
Affiliation(s)
- S Prazeres
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Ravi N, Moura I, Costa C, Teixeira M, LeGall J, Moura JJ, Huynh BH. Mössbauer characterization of the tetraheme cytochrome c3 from Desulfovibrio baculatus (DSM 1743). Spectral deconvolution of the heme components. EUROPEAN JOURNAL OF BIOCHEMISTRY 1992; 204:779-82. [PMID: 1311680 DOI: 10.1111/j.1432-1033.1992.tb16694.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mössbauer spectroscopy was used to study the tetraheme cytochrome c3 from Desulfovibrio baculatus (DSM 1743). Samples with different degrees of reduction were prepared using a redoxtitration technique. In the reduced cytochrome c3, all four hemes are reduced and exhibit diamagnetic Mössbauer spectra typical for low-spin ferrous hemes (S = 0). In the oxidized protein, the hemes are low-spin ferric (S = 1/2) and exhibit overlapping magnetic Mössbauer spectra. A method of differential spectroscopy was applied to deconvolute the four overlapping heme spectra and a crystal-field model was used for data analysis. Characteristic Mössbauer spectral components for each heme group are obtained. Hyperfine and crystal-field parameters for all four hemes are determined from these deconvoluted spectra.
Collapse
Affiliation(s)
- N Ravi
- Department of Physics, Emory University, Atlanta, GA 30322
| | | | | | | | | | | | | |
Collapse
|
9
|
Costa C, Moura J, Moura I, Liu M, Peck H, LeGall J, Wang Y, Huynh B. Hexaheme nitrite reductase from Desulfovibrio desulfuricans. Mössbauer and EPR characterization of the heme groups. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(18)77313-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
10
|
Kretchmar SA, Teixeira M, Huynh BH, Raymond KN. Mössbauer studies of electrophoretically purified monoferric and diferric human transferrin. BIOLOGY OF METALS 1988; 1:26-32. [PMID: 3152869 DOI: 10.1007/bf01128014] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Electrophoretically purified 57Fe-enriched monoferric and diferric human transferrins and selectively labeled complexes ([C-56Fe,N-57Fe]transferrin and [C-57Fe,N-56Fe]transferrin) were studied by Mössbauer spectroscopy. The data were recorded at 4.2 K over a wide range of applied magnetic fields (0.05-6 T) and were analyzed by a spin-Hamiltonian formalism. Characteristic hyperfine parameters were found and the obtained zero-field splitting parameters (D = 0.25 +/- 0.05 cm-1 and E/D = 0.30 +/- 0.02) agree with previous electron paramagnetic resonance (EPR) findings. The weak-field spectra of the [N-57Fe]transferrin are slightly broader than those of the [C-57Fe]transferrin, indicating that the N-terminal iron site may be more heterogeneous. However, the absorption line positions and the relative intensities of the subspectra originating from the three Kramers doublets of each Fe3+ site are identical. Thus the electronic structures of the two iron sites can be described by the same set of spin-Hamiltonian parameters, indicating that the ligand environments for the two sites are the same, as suggested by the recent X-ray crystallographic studies. This suggestion is further supported by the observation that the strong-field spectra of the two monoferric transferrins are indistinguishable. The selectively labeled mixed-isotope transferrins exhibit spectra that are identical to those of the corresponding monoferric 57Fe-enriched transferrins, implying that the occupation of one iron site has little or no effect on the immediate environment of the other site, a finding that is not surprising since the two sites are separated by approximately 4.2 nm.
Collapse
Affiliation(s)
- S A Kretchmar
- Department of Chemistry, University of California, Berkeley 94720
| | | | | | | |
Collapse
|
11
|
Muhoberac BB, Wharton DC. Electron paramagnetic resonance study of the interaction of some anionic ligands with oxidized Pseudomonas cytochrome oxidase. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(18)32823-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
12
|
Dislocation strain broadening as a source of anisotropic linewidth and asymmetrical lineshape in the electron paramagnetic resonance spectrum of metalloproteins and related systems. ACTA ACUST UNITED AC 1981. [DOI: 10.1016/0022-2364(81)90279-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Senn H, Keller RM, Wüthrich K. Different chirality of the axial methionine in homologous cytochromes c determined by 1H NMR and CD sectroscopy. Biochem Biophys Res Commun 1980; 92:1362-9. [PMID: 6245651 DOI: 10.1016/0006-291x(80)90436-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|