1
|
Transposon Sequencing Uncovers an Essential Regulatory Function of Phosphoribulokinase for Methylotrophy. Curr Biol 2017; 27:2579-2588.e6. [PMID: 28823675 DOI: 10.1016/j.cub.2017.07.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/11/2017] [Indexed: 11/21/2022]
Abstract
Methylotrophy is the ability of organisms to grow at the expense of reduced one-carbon compounds, such as methanol or methane. Here, we used transposon sequencing combining hyper-saturated transposon mutagenesis with high-throughput sequencing to define the essential methylotrophy genome of Methylobacterium extorquens PA1, a model methylotroph. To distinguish genomic regions required for growth only on methanol from general required genes, we contrasted growth on methanol with growth on succinate, a non-methylotrophic reference substrate. About 500,000 insertions were mapped for each condition, resulting in a median insertion distance of five base pairs. We identified 147 genes and 76 genes as specific for growth on methanol and succinate, respectively, and a set of 590 genes as required under both growth conditions. For the integration of metabolic functions, we reconstructed a genome-scale metabolic model and performed in silico essentiality analysis. In total, the approach uncovered 95 genes not previously described as crucial for methylotrophy, including genes involved in respiration, carbon metabolism, transport, and regulation. Strikingly, regardless of the absence of the Calvin cycle in the methylotroph, the screen led to the identification of the gene for phosphoribulokinase as essential during growth on methanol, but not during growth on succinate. Genetic experiments in addition to metabolomics and proteomics revealed that phosphoribulokinase serves a key regulatory function. Our data support a model according to which ribulose-1,5-bisphosphate is an essential metabolite that induces a transcriptional regulator driving one-carbon assimilation.
Collapse
|
2
|
Farmer RM, Tabita FR. Phosphoribulokinase mediates nitrogenase-induced carbon dioxide fixation gene repression in Rhodobacter sphaeroides. MICROBIOLOGY-SGM 2015; 161:2184-91. [PMID: 26306848 PMCID: PMC4806589 DOI: 10.1099/mic.0.000160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In many organisms there is a balance between carbon and nitrogen metabolism. These observations extend to the nitrogen-fixing, nonsulfur purple bacteria, which have the classic family of P(II) regulators that coordinate signals of carbon and nitrogen status to regulate nitrogen metabolism. Curiously, these organisms also possess a reverse mechanism to regulate carbon metabolism based on cellular nitrogen status. In this work, studies in Rhodobacter sphaeroides firmly established that the activity of the enzyme that catalyses nitrogen fixation, nitrogenase, induces a signal that leads to repression of genes encoding enzymes of the Calvin–Benson–Bassham (CBB) CO2 fixation pathway. Additionally, genetic and metabolomic experiments revealed that NADH-activated phosphoribulokinase is an intermediate in the signalling pathway. Thus, nitrogenase activity appears to be linked to cbb gene repression through phosphoribulokinase.
Collapse
Affiliation(s)
- Ryan M Farmer
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| | - F Robert Tabita
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210-1292, USA
| |
Collapse
|
3
|
Network identification and flux quantification of glucose metabolism in Rhodobacter sphaeroides under photoheterotrophic H(2)-producing conditions. J Bacteriol 2011; 194:274-83. [PMID: 22056932 DOI: 10.1128/jb.05624-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonsulfur purple bacteria that exhibit unusual metabolic versatility can produce hydrogen gas (H(2)) using the electrons derived from metabolism of organic compounds during photoheterotrophic growth. Here, based on (13)C tracer experiments, we identified the network of glucose metabolism and quantified intracellular carbon fluxes in Rhodobacter sphaeroides KD131 grown under H(2)-producing conditions. Moreover, we investigated how the intracellular fluxes in R. sphaeroides responded to knockout mutations in hydrogenase and poly-β-hydroxybutyrate synthase genes, which led to increased H(2) yield. The relative contribution of the Entner-Doudoroff pathway and Calvin-Benson-Bassham cycle to glucose metabolism differed significantly in hydrogenase-deficient mutants, and this flux change contributed to the increased formation of the redox equivalent NADH. Disruption of hydrogenase and poly-β-hydroxybutyrate synthase resulted in a significantly increased flux through the phosphoenolpyruvate carboxykinase and a reduced flux through the malic enzyme. A remarkable increase in the flux through the tricarboxylic acid cycle, a major NADH producer, was observed for the mutant strains. The in vivo regulation of the tricarboxylic acid cycle flux in photoheterotrophic R. sphaeroides was discussed based on the measurements of in vitro enzyme activities and intracellular concentrations of NADH and NAD(+). Overall, our results provide quantitative insights into how photoheterotrophic cells manipulate the metabolic network and redistribute intracellular fluxes to generate more electrons for increased H(2) production.
Collapse
|
4
|
Runquist JA, Miziorko HM. Anionic substitutes for catalytic aspartic acids in phosphoribulokinase. Arch Biochem Biophys 2002; 405:178-84. [PMID: 12220530 DOI: 10.1016/s0003-9861(02)00367-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mutagenic substitution of the invariant D42 and D169 residues in phosphoribulokinase (PRK) with amino acids that contain neutral side chains (e.g., alanine or asparagine) results in large decreases in catalytic efficiency (10(5)- and 10(4)-fold for replacement of D42 and D169, respectively). To further evaluate the importance of anionic side chains at residues 42 and 169, substitutions of glutamic acid (D42E, D169E) and cysteine (D42C and D169C in an otherwise cysteine-free protein) have been engineered. All purified mutant enzymes bind the fluorescent alternative substrate trinitrophenyl-ATP and the allosteric effector NADH similarly to wild-type PRK. For D42E and D42C, V(max) exhibits substantial decreases of 135- and 220-fold, respectively. Comparable substitutions for D169 result in smaller effects; D169E and D169C exhibit decreases in V(max) of 39- and 26-fold, respectively. Thus, regardless of the type of substitution, changes at D42 more profoundly affect catalytic rate than do comparable changes at D169. Precedent with enzymes in which cysteine replaces an acidic residue suggests that oxidation of the thiolate to a sulfinate can convert low-activity cysteine mutants into enzymes with improved activity. Periodate oxidation of cysteine-free PRK results in a slight decrease in activity. In contrast, comparable treatment of D42C and D169C proteins increases activity by 5- and 7-fold, respectively. Thus, for reasonably efficient catalysis, PRK requires anionic character in the side chains of residues 42 and 169. The enzyme can, however, tolerate substantial structural and chemical variability at these residues.
Collapse
Affiliation(s)
- Jennifer A Runquist
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | |
Collapse
|
5
|
Miziorko HM. Phosphoribulokinase: current perspectives on the structure/function basis for regulation and catalysis. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2000; 74:95-127. [PMID: 10800594 DOI: 10.1002/9780470123201.ch3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Phosphoribulokinase (PRK), an enzyme unique to the reductive pentose phosphate pathway of CO2 assimilation, exhibits distinctive contrasting properties when the proteins from eukaryotic and prokaryotic sources are compared. The eukaryotic PRKs are typically dimers of -39 kDa subunits while the prokaryotic PRKs are octamers of -32 kDa subunits. The enzymes from these two classes are regulated by different mechanisms. Thioredoxin of mediated thiol-disulfide exchange interconverts eukaryotic PRKs between reduced (active) and oxidized (inactive) forms. Allosteric effectors, including activator NADH and inhibitors AMP and phosphoenolpyruvate, regulate activity of prokaryotic PRK. The effector binding site has been identified in the high resolution structure recently elucidated for prokaryotic PRK and the7 apparatus for transmission of the allosteric stimulus has been identified. Additional contrasts between PRKs include marked differences in primary structure between eukaryotic and prokaryotic PRKs. Alignment of all available deduced PRK sequences indicates that less than 10% of the amino acid residues are invariant. In contrast to these differences, the mechanism for ribulose 1,5-biphosphate synthesis from ATP and ribulose 5-phosphate (Ru5P) appears to be the same for all PRKs. Consensus sequences associated with M++-ATP binding, identified in all PRK proteins, are closely juxtaposed to the residue proposed to function as general base catalyst. Sequence homology and mutagenesis approaches have suggested several residues that may potentially function in Ru5P binding. Not all of these proposed Ru5P binding residues are closely juxtaposed in the structure of unliganded PRK. Mechanistic approaches have been employed to investigate the amino acids which influence K(m Ru5P) and identify those amino acids most directly involved in Ru5P binding. PRK is one member of a family of phospho or sulfo transferase proteins which exhibit a nucleotide monophosphate kinase fold. Structure/function correlations elucidated for PRK suggest analogous assignments for other members of this family of proteins.
Collapse
Affiliation(s)
- H M Miziorko
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| |
Collapse
|
6
|
Novak JS, Tabita FR. Molecular approaches to probe differential NADH activation of phosphoribulokinase isozymes from Rhodobacter sphaeroides. Arch Biochem Biophys 1999; 363:273-82. [PMID: 10068449 DOI: 10.1006/abbi.1998.1084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cbbPI and cbbPII genes from Rhodobacter sphaeroides, encoding highly similar phosphoribulokinase (PRK) isozymes, PRK I and PRK II, respectively, exhibited differential allosteric activation by NADH. The two cbbP genes were cloned into expression vectors and homogeneous recombinant protein prepared. PRK II was found to be inherently less stable than PRK I; however, the addition of substrate ATP resulted in the complete protection of both isozymes to a 15-min incubation at 50 degrees C. The relative molecular masses for both octameric isozymes were determined to be approximately 230,000; however, the protective effect of ATP was in accordance with aggregation of monomers to a molecular mass of approximately 750,000. While PRK I exhibited a nearly absolute dependence upon NADH for activity, PRK II retained substantial activity in the absence of NADH. PRK chimeras were thus constructed to facilitate elucidation of the basis for the differential effect of NADH, with advantage taken of the relative sequence identity of about 90% between the two isozymes. Chimeras were constructed either by in vivo homologous recombination, using the sacB gene from Bacillus subtilis as a conditionally lethal marker, or by using convenient restriction sites to combine different parts of the two cbbP genes. The PRK chimeras generated contained either the amino-terminal domain of PRK II and the carboxy-terminal domain of PRK I or the opposite configuration. Subsequent analyses of the chimeras pointed to particular regions and residue(s) as likely being important for NADH activation.
Collapse
Affiliation(s)
- J S Novak
- Department of Microbiology and Plant Molecular Biology/Biotechnology Program, The Ohio State University, 484 West 12th Avenue, Columbus, Ohio, 43210-1292, USA
| | | |
Collapse
|
7
|
Shively JM, van Keulen G, Meijer WG. Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 1999; 52:191-230. [PMID: 9891798 DOI: 10.1146/annurev.micro.52.1.191] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The last decade has seen significant advances in our understanding of the physiology, ecology, and molecular biology of chemoautotrophic bacteria. Many ecosystems are dependent on CO2 fixation by either free-living or symbiotic chemoautotrophs. CO2 fixation in the chemoautotroph occurs via the Calvin-Benson-Bassham cycle. The cycle is characterized by three unique enzymatic activities: ribulose bisphosphate carboxylase/oxygenase, phosphoribulokinase, and sedoheptulose bisphosphatase. Ribulose bisphosphate carboxylase/oxygenase is commonly found in the cytoplasm, but a number of bacteria package much of the enzyme into polyhedral organelles, the carboxysomes. The carboxysome genes are located adjacent to cbb genes, which are often, but not always, clustered in large operons. The availability of carbon and reduced substrates control the expression of cbb genes in concert with the LysR-type transcriptional regulator, CbbR. Additional regulatory proteins may also be involved. All of these, as well as related topics, are discussed in detail in this review.
Collapse
Affiliation(s)
- J M Shively
- Department of Biological Sciences, Clemson University, South Carolina 29634, USA.
| | | | | |
Collapse
|
8
|
Brandes HK, Larimer FW, Lu TY, Dey J, Hartman FC. Roles and microenvironments of tryptophanyl residues of spinach phosphoribulokinase. Arch Biochem Biophys 1998; 352:130-6. [PMID: 9521825 DOI: 10.1006/abbi.1998.0580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphoribulokinase is one of several Calvin cycle enzymes that are light-regulated via the ferredoxin-thioredoxin system (R. A. Wolosiuk and B. B. Buchanan, 1978, Arch. Biochem. Biophys. 189, 97-101). Substitution of the only two Trp residues of the enzyme was prompted by the following goals: to identify each tryptophanyl residue with respect to prior classifications as exposed and buried (C. A. Ghiron et al., 1988, Arch. Biochem. Biophys. 260, 267-272); to explore the possible active-site location and function of conserved Trp155, as suggested by sequence proximity to catalytic Asp160 (H. A. Charlier et al., 1994, Biochemistry 33, 9343-9350); and to determine if fluorescence of a Trp residue can serve as a gauge of conformational differences between the reduced (active) and the oxidized (inactive) forms of the enzyme. Emission spectra and acrylamide quenching data demonstrate that Trp155 is solvent exposed, while Trp241 is buried. Kinetic parameters of the W241F mutant are not significantly altered relative to those of wild-type enzyme, thereby discounting any requirement for Trp at position 241. While substitution of Trp155 with Phe or Ala has little impact on Vmax, the Km for Ru5P and ATP are increased substantially; the diminished affinity for ATP is particularly pronounced in the case of the Ala substitution. In further support of an active-site location of Trp155, its fluorescence emission is subject to quenching by nucleotides. Fluorescence quenching of reduced W241F by ATP gives a dissociation constant (Kd) of 37 microM, virtually identical with its Km of 46 microM, and provides for the first time a direct measurement of the interaction of the kinase with product ADP (Kd of 1.3 mM). Fluorescence quenching of oxidized W241F by ATP reveals a Kd of 28 mM; however, this weakened binding does not reflect an altered microenvironment of Trp155, as its steady-state emission and fluorescence lifetimes are unaffected by the oxidation state.
Collapse
Affiliation(s)
- H K Brandes
- Life Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | | | | | | | | |
Collapse
|
9
|
Roberts DL, Runquist JA, Miziorko HM, Kim JJ. Crystallization and preliminary X-ray crystallographic analysis of phosphoribulokinase from Rhodobacter sphaeroides. Protein Sci 1995; 4:2442-3. [PMID: 8563645 PMCID: PMC2143017 DOI: 10.1002/pro.5560041126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A recombinant form of Rhodobacter sphaeroides phosphoribulokinase (PRK), expressed in Escherichia coli and isolated by affinity chromatography, was crystallized by the sitting drop vapor diffusion technique using NH4H2PO4 (pH 5.6) as the precipitating agent. PRK crystallizes in the cubic space group P432, with unit cell parameters a = b = c = 129.55 A. Based on the assumption of one 32-kDa monomer per asymmetric unit, the Vm value is 2.83 A3/Da. The octameric molecular symmetry is consistent with two planar tetramers stacked in a nearly eclipsed arrangement. A native data set has been collected to 2.6 A resolution.
Collapse
Affiliation(s)
- D L Roberts
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226, USA
| | | | | | | |
Collapse
|
10
|
Charlier HA, Runquist JA, Miziorko HM. Evidence supporting catalytic roles for aspartate residues in phosphoribulokinase. Biochemistry 1994; 33:9343-50. [PMID: 7914091 DOI: 10.1021/bi00197a039] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The DNA encoding Rhodobacter sphaeroides phosphoribulokinase (PRK) has been modified to allow ligation into pET-3d. Using the resulting expression plasmid, PRK was overexpressed in Escherichia coli and isolated in milligram quantities. Homogeneous preparations of the enzyme exhibit properties comparable to those of PRK expressed using a previously described pUC19-derived construct [Sandbaken et al., Biochemistry 31, 3715-3719]. Mutagenesis experiments have been designed to produce conservative substitutions that eliminate the carboxyl groups of each of four conserved acidic residues (D42, E131, D169, and E178). Using the newly developed expression system, the resulting PRK variants have been expressed, isolated, and characterized. Expression levels and recoveries upon affinity chromatography purification are similar to the results obtained with wild-type PRK. Apparent substrate affinities of these mutant proteins do not differ greatly from values observed for wild-type PRK. In contrast, these PRK variants display a wide range of Vmax values, ranging from wild-type activity (approximately 200 units/mg; E178A) to levels that are diminished by 4 (D169A) to 5 (D42A, D42N) orders of magnitude. That the large diminutions in catalytic activity are significant and do not merely reflect gross perturbations in protein structure is suggested not only by the modest effects on substrate affinity but also by the allosteric properties of D169A, D42A, and D42N. The activities of these proteins, like that of wild-type PRK, are markedly stimulated by the positive effector NADH. The magnitude of the Vmax perturbations suggests that D42 and D169 are candidates for the role of active site base or activator cation ligand.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- H A Charlier
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee 53226
| | | | | |
Collapse
|
11
|
Mural RJ, Lu TY, Hartman FC. The role of an active-site lysyl residue of spinach phosphoribulokinase as explored by site-directed mutagenesis. JOURNAL OF PROTEIN CHEMISTRY 1993; 12:207-13. [PMID: 8387794 DOI: 10.1007/bf01026042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Based on selective labeling by ATP analogues, Lys68 of the Calvin Cycle enzyme phosphoribulokinase (PRK) from spinach has been assigned to the active-site region [Miziorko et al. (1990), J. Biol. Chem. 265, 3642-3647]. The equivalent position is occupied by lysyl or arginyl residues in the PRK from both prokaryotic and eukaryotic sources, suggesting a requirement for a basic residue at this location. To examine this possibility, we have replaced Lys68 of the spinach enzyme with arginyl, glutaminyl, alanyl, or glutamyl residues by site-directed mutagenesis. All of the mutant enzymes retain substantial kinase activity; and even in the case of the radical substitution by glutamate, the Km values for ATP and ribulose 5-phosphate are not perturbed significantly. Glutamate at position-68 may destabilize tertiary structure, because the yield of this mutant protein from transformed E. coli is quite low compared to that of the other proteins in this series. Despite the active-site proximity of Lys68, our results show that this residue does not play a key role in catalysis or substrate binding.
Collapse
Affiliation(s)
- R J Mural
- Biology Division, Oak Ridge National Laboratory, Tennessee 37831-8077
| | | | | |
Collapse
|
12
|
|
13
|
Gibson JL, Tabita FR. Organization of phosphoribulokinase and ribulose bisphosphate carboxylase/oxygenase genes in Rhodopseudomonas (Rhodobacter) sphaeroides. J Bacteriol 1987; 169:3685-90. [PMID: 3038848 PMCID: PMC212451 DOI: 10.1128/jb.169.8.3685-3690.1987] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A heterologous phosphoribulokinase (PRK) gene probe was used to analyze two recombinant plasmids isolated from a Rhodopseudomonas (Rhodobacter) sphaeroides gene library. These plasmids were previously shown to carry the genes for form I and form II ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBPC/O). Southern blot hybridization analysis indicated that there were two PRK genes linked to the RuBPC/O coding sequences. Restriction mapping showed the arrangement of the duplicate sets of PRK and RuBPC/O to be distinct. Subcloning of the hybridizing PRK sequences downstream of the lac promoter of pUC8 allowed expression of the two PRK enzymes in Escherichia coli. Analysis of the purified proteins by sodium dodecyl sulfate-slab gel electrophoresis revealed polypeptides with molecular weights of 32,000 and 34,000 corresponding to the form I and form II PRKs, respectively. Preliminary experiments on sensitivity to NADH regulation suggested that the two PRK enzymes differ in catalytic properties.
Collapse
|
14
|
Hallenbeck PL, Kaplan S. Cloning of the gene for phosphoribulokinase activity from Rhodobacter sphaeroides and its expression in Escherichia coli. J Bacteriol 1987; 169:3669-78. [PMID: 3038847 PMCID: PMC212449 DOI: 10.1128/jb.169.8.3669-3678.1987] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A 3.4-kilobase EcoRI restriction endonuclease fragment has been cloned from the facultatively photoheterotrophic bacterium Rhodobacter sphaeroides and shown to contain the structural gene (prkA) for phosphoribulokinase (PRK) activity. The PRK activity was characterized in Escherichia coli, and the product of the reaction was identified. The prkA gene was localized to a 1,565-base-pair EcoRI-PstI restriction endonuclease fragment and gave rise to a 33-kilodalton polypeptide both in vivo and in vitro. The gene product produced in E. coli was shown to be identical to the gene product produced in R. sphaeroides. The amino acid sequence for the amino-terminal region deduced from the DNA sequence confirmed that derived for partially purified PRK derived from both E. coli and R. sphaeroides. In addition, the 3.4-kilobase EcoRI restriction endonuclease fragment coded for a 37-kilodalton polypeptide of unknown function, and preliminary evidence indicates that this DNA fragment is linked to genes coding for other activities significant in photosynthetic carbon assimilation. The genetic organization and proposed operon structure of this DNA fragment are discussed.
Collapse
|
15
|
Crawford NA, Sutton CW, Yee BC, Johnson TC, Carlson DC, Buchanan BB. Contrasting modes of photosynthetic enzyme regulation in oxygenic and anoxygenic prokaryotes. Arch Microbiol 1984; 139:124-9. [PMID: 11536590 DOI: 10.1007/bf00401986] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enzymes that are regulated by the ferredoxin/thioredoxin system in chloroplasts--fructose-1,6-bis-phosphatase (FBPase), sedoheptulose-1,7-bisphosphatase (SBPase), and phosphoribulokinase (PRK)--were partially purified from two different types of photosynthetic prokaryotes (cyanobacteria, purple sulfur bacteria) and tested for a response to thioredoxins. Each of the enzymes from the cyanobacterium Nostoc muscorum, an oxygenic organism known to contain the ferredoxin/thioredoxin system, was activated by thioredoxins that had been reduced either chemically by dithiothreitol or photochemically by reduced ferredoxin and ferredoxin-thioredoxin reductase. Like their chloroplast counterparts, N. muscorum FBPase and SBPase were activated preferentially by reduced thioredoxin f. SBPase was also partially activated by thioredoxin m. PRK, which was present in two regulatory forms in N. muscorum, was activated similarly by thioredoxins f and m. Despite sharing the capacity for regulation by thioredoxins, the cyanobacterial FBPase and SBPase target enzymes differed antigenically from their chloroplast counterparts. The corresponding enzymes from Chromatium vinosum, an anoxygenic photosynthetic purple bacterium found recently to contain the NADP/thioredoxin system, differed from both those of cyanobacteria and chloroplasts in showing no response to reduced thioredoxin. Instead, C. vinosum FBPase, SBPase, and PRK activities were regulated by a metabolite effector, 5'-AMP. The evidence is in accord with the conclusion that thioredoxins function in regulating the reductive pentose phosphate cycle in oxygenic prokaryotes (cyanobacteria) that contain the ferredoxin/thioredoxin system, but not in anoxygenic prokaryotes (photosynthetic purple bacteria) that contain the NADP/thioredoxin system. In organisms of the latter type, enzyme effectors seem to play a dominant role in regulating photosynthetic carbon dioxide assimilation.
Collapse
Affiliation(s)
- N A Crawford
- Division of Molecular Plant Biology, University of California, Berkeley 94720, USA
| | | | | | | | | | | |
Collapse
|
16
|
Siebert K, Schobert P, Bowien B. Purification, some catalytic and molecular properties of phosphoribulokinase from Alcaligenes eutrophus. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 658:35-44. [PMID: 6260209 DOI: 10.1016/0005-2744(81)90247-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Tabita FR. Pyridine nucleotide control and subunit structure of phosphoribulokinase from photosynthetic bacteria. J Bacteriol 1980; 143:1275-80. [PMID: 6251028 PMCID: PMC294495 DOI: 10.1128/jb.143.3.1275-1280.1980] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
With one exception, phosphoribulokinase from the Rhodospirillaceae requires reduced nicotinamide adenine dinucleotide for maximum activity. This mode of regulation is unique to the facultatively anaerobic photoorganotrophic photosynthetic bacteria, since the phosphoribulokinase from oxygen-evolving photosynthetic species is not subject to activation by reduced nicotinamide adenine dinucleotide. The enzyme was purified of fructose bisphosphatase activity from Rhodopseudomonas capsulata by means of affinity chromatography and was shown to have a native molecular weight of about 220,000. The homogeneous enzyme is composed of a single size polypeptide of 36,000 molecular weight. This study represents the first time the subunit structure of phosphoribulokinase has been determined from any source.
Collapse
|
18
|
Tabita FR, Caruso P, Whitman W. Facile assay of enzymes unique to the Calvin cycle in intact cells, with special reference to ribulose 1,5-bisphosphate carboxylase. Anal Biochem 1978; 84:462-72. [PMID: 204219 DOI: 10.1016/0003-2697(78)90064-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Kiesow LA, Lindsley BF, Bless JW. Phosphoribulokinase from Nitrobacter winogradskyi: activation by reduced nicotinamide adenine dinucleotide and inhibition by pyridoxal phosphate. J Bacteriol 1977; 130:20-5. [PMID: 15976 PMCID: PMC235169 DOI: 10.1128/jb.130.1.20-25.1977] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
CO2 fixation by particle-free extracts from Nitrobacter winogradskyi increased by addition of reduced nicotinamide adenine dinucleotide (NADH). Ribulose-1,5-diphosphate, however, increased CO2 fixation, even in the absence of NADH. Phosphoribulokinase (EC 2.7.1.19) was the enzyme of Nitrobacter extracts that was activated specifically by NADH. Pyridoxal-5-phosphate inhibited both CO2 fixation and NADH-activated phosphoribulokinase from Nitrobacter. However, it did not affect phosphoribulokinase from spinach leaves. Since the spinach enzyme had also no requirement for reduced pyridine nucleotides, it appears that pyridoxal phosphate interferes only with the binding of NADH and not with the binding of ribulose-5-phosphate and adenosine-5'-triphosphate. The regulation of phosphoribulokinase activity by NADH provided Nitrobacter with an energy-dependent control mechanism of CO2 assimilation.
Collapse
|
20
|
Pelroy RA, Levine GA, Bassham JA. Kinetics of light-dark CO2 fixation and glucose assimilation by Aphanocapsa 6714. J Bacteriol 1976; 128:633-43. [PMID: 185198 PMCID: PMC232801 DOI: 10.1128/jb.128.2.633-643.1976] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cells of Aphanocapsa 6714 were subjected to alternating ligh-dark periods (flashing-light experiments). The corresponding activation (in the light) and inactivation (in the dark) of the reductive pentose cycle was measured, in vivo, from initial rates of 14CO2 incorporation and also by changes in the total concentration of 14C and 32P in soluble metabolites. Two principle sites of metabolic regulation were detected: (i) CO2 fixation was inactivated 15 to 20 s after removal of the light source, but reactivated rapidly on reentering the light; (ii) hydrolysis of fructose-1,6-diphosphate (FDP) and sedoheptulose-1,7-diphosphate (SDP) by their respective phosphatase(s) (FDP + SDPase) was rapidly inhibited in the dark but only slowly reactivated in the light. The time required for reactivation of FDP + SDPase, in the light, was on the order of 20 to 30 s. As a consequence of the timing of these inactivation-reactivation reactions, newly fixed CO2 accumulated in the FDP and SDP pools during the flashing-light experiments. Changes in the concentrations of the adenylate pools (mainly in the levels of adenosine 5'-triphosphate and adenosine diphosphate) were fast in comparison to the inactivation-reactivation reactions in the reductive pentose cycle. Thus, these regulatory effects may not be under the control of the adenylates in this organism. The activation of CO2 fixation in the light is at least in part due to activation of phosphoribulokinase, which is required for formation of ribulose-1,5-diphoshate, the carboxylation substrate. Phosphoribulokinase activity in crude extracts was found to be dependent on the presence of strong reducing agents such as dithiothreitol, but not significantly dependent on adenylate levels, although adenosine 5'-triphosphate is a substrate.
Collapse
|
21
|
Abdelal AT, Schlegel HG. Purification and regulatory properties of phosphoribulokinase from Hydrogenomonas eutropha H 16. Biochem J 1974; 139:481-9. [PMID: 4369092 PMCID: PMC1166312 DOI: 10.1042/bj1390481] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
1. Phosphoribulokinase was purified 286-fold from extracts of autotrophically grown cells. 2. The enzyme had a molecular weight of 237000 and showed a pH optimum of 9.0 in both crude extracts and purified preparation. MgCl(2) was required for activity; full activation was obtained at 5mm-MgCl(2) and the K(m) was approx. 0.5mm. 3. The ATP-saturation curve was sigmoidal and the degree of positive co-operativity increased at higher MgCl(2) concentrations. The ATP-binding sites appeared to be non-interacting at low ribulose 5-phosphate concentrations. 4. Lineweaver-Burk plots for ribulose 5-phosphate showed abrupt transitions between apparently linear sections. The apparent K(m) and V(max.) values increased with increasing concentrations of ribulose phosphate. The transitions may be explained by a sequence of negative and positive co-operativity in the catalytic rate constants. 5. Phosphoribulokinase activity was inhibited by AMP and phosphoenolpyruvate and was activated by NADH. The presence of AMP or phosphoenolpyruvate increased s(0.5) (substrate concentration required for half-maximal velocity) for both ribulose 5-phosphate and ATP but V(max.) was not changed. The sigmoidicity of the ATP-saturation curve increased in the presence of AMP but was not affected by phosphoenolpyruvate. The transitions in the ribulose 5-phosphate-saturation curves were more abrupt in the presence of either inhibitor. NADH lowered the s(0.5) for both ribulose 5-phosphate and ATP. The activator did not affect the degree of positive co-operativity between ATP-binding sites, but the ribulose 5-phosphate-binding sites appeared to be non-interacting in its presence. 6. A sequence of positive and negative co-operativity in the interactions of AMP-binding sites was suggested by the Hill plots. In the presence of NADH (and phosphoenolpyruvate) the sensitivity to inhibition by AMP was less below a certain AMP concentration and increased above that concentration. 7. Examination of the interactions between ligands indicated that phosphoribulokinase can be regulated effectively by changes in effector concentrations similar to those reported to occur in vivo.
Collapse
|
22
|
Abstract
Photoautotrophic metabolism of CO(2) was compared with glucose metabolism in the facultative unicellular blue-green alga, Aphanocapsa 6714. Glucose-fed cells incorporated more (14)C into phosphorylated sugar intermediates of the reductive and oxidative pentose phosphate cycles than autotrophic cells. The relative increases were: 140-fold in dark cells; 32-fold in dichlorophenylmethylurea (DCMU)-inhibited cells; and 16-fold in cells assumilating glucose during photosynthetic carbon reduction. On the other hand, incorporation of (14)C from glucose into 3-phosphoglycerate and the amino acid pools of glutamate and aspartate was reduced in dark cells. Rates of protein synthesis in dark and DCMU-inhibited cells were reduced 50 and 80% compared to photoautotrophic cells. In cells assimilating glucose during photosynthesis, rates of (14)C incorporation into the two amino acids and protein were the same as in photoautotrophic cells. Chase experiments, using an excess of (12)C-glucose and CO(2), revealed slow turnover of carbon in dark cells and intermediate turnover rates in DCMU-inhibited cells, when compared to cells assimilating glucose during photosynthesis.
Collapse
|
23
|
McFadden BA. Autotrophic CO2 assimilation and the evolution of ribulose diphosphate carboxylase. BACTERIOLOGICAL REVIEWS 1973; 37:289-319. [PMID: 4357017 PMCID: PMC413820 DOI: 10.1128/br.37.3.289-319.1973] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
24
|
MacElroy RD, Mack HM, Johnson EJ. Properties of phosphoribulokinase from Thiobacillus neapolitanus. J Bacteriol 1972; 112:532-8. [PMID: 5079073 PMCID: PMC251441 DOI: 10.1128/jb.112.1.532-538.1972] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Partially purified preparations of ribulose-5-phosphate kinase (specific activity, 50 to 125 mumoles per min per mg of protein) were employed in a series of kinetic experiments in the presence of several concentrations of H(+), Mg(2+), adenosine triphosphate (ATP), and phosphoenolpyruvate (PEP). The pH optimum of the enzyme was found to be 7.9; at this pH and above, response of the enzyme to variations in ATP concentration was hyperbolic, exhibiting a K(m) of 7 x 10(-4)m ATP. At pH values below the optimum the response to ATP was sigmoidal, as it was throughout the entire pH range in the presence of PEP at a concentration greater than 5 x 10(-4)m. In the presence of PEP the pH optimum shifted to pH 8.4. In contrast, phosphoribulokinase from spinach exhibited hyperbolic responses throughout its pH range with no inhibition caused by PEP. Thiobacillus neapolitanus phosphoribulokinase was inhibited by PEP in a sigmoidal manner; however, in the presence of suboptimal concentrations of Mg(2+) the addition of PEP caused significant stimulation of activity. It is postulated that the enzyme consists of interacting subunits with several sites on the enzyme for binding ATP and with several separate sites binding PEP. It is suggested that PEP functions as a regulator of CO(2) fixation when the organism is under conditions of unlimited concentrations of substrate and CO(2).
Collapse
|
25
|
Joint IR, Morris I, Fuller R. Purification of a Complex of Alkaline Fructose 1, 6-Bisphosphatase and Phosphoribulokinase from Rhodospirillum rubrum. J Biol Chem 1972. [DOI: 10.1016/s0021-9258(19)44986-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
26
|
Joint IR, Morris I, Fuller RC. Possible regulatory characteristics of the fructose diphosphatase--phosphoribulokinase complex from Rhodospirillum rubrum. BIOCHIMICA ET BIOPHYSICA ACTA 1972; 276:333-7. [PMID: 4340121 DOI: 10.1016/0005-2744(72)90037-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
|
28
|
Ballard RW, MacElroy RD. Phosphoenolpyruvate, a new inhibitor of phosphoribulokinase in pseudomonas facilis. Biochem Biophys Res Commun 1971; 44:614-8. [PMID: 4330777 DOI: 10.1016/s0006-291x(71)80127-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
|
30
|
Der Einflu� von anorganischem Pyrophosphat auf die CO2-Fixierung in photosynthetischen Bakterien. Arch Microbiol 1971. [DOI: 10.1007/bf00407987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Der Einflu� der Kulturbedingungen auf den Nicotinamid-Adenin-Dinucleotid(phosphat)-Gehalt in Zellen von Rhodospirillum rubrum. Arch Microbiol 1971. [DOI: 10.1007/bf00424922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
|
33
|
Latzko E, von Garnier R, Gibbs M. Effect of photosynthesis, photosynthetic inhibitors and oxygen on the activity of ribulose 5-phosphate kinase. Biochem Biophys Res Commun 1970; 39:1140-4. [PMID: 5513250 DOI: 10.1016/0006-291x(70)90678-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
34
|
|