1
|
Ellermann M, Gharaibeh RZ, Maharshak N, Peréz-Chanona E, Jobin C, Carroll IM, Arthur JC, Plevy SE, Fodor AA, Brouwer CR, Sartor RB. Dietary iron variably modulates assembly of the intestinal microbiota in colitis-resistant and colitis-susceptible mice. Gut Microbes 2019; 11:32-50. [PMID: 31179826 PMCID: PMC6973310 DOI: 10.1080/19490976.2019.1599794] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Iron deficiency, a common comorbidity of gastrointestinal inflammatory disorders such as inflammatory bowel diseases (IBD), is often treated with oral iron supplementation. However, the safety of oral iron supplementation remains controversial because of its association with exacerbated disease activity in a subset of IBD patients. Because iron modulates bacterial growth and function, one possible mechanism by which iron may exacerbate inflammation in susceptible hosts is by modulating the intestinal microbiota. We, therefore, investigated the impact of dietary iron on the intestinal microbiota, utilizing the conventionalization of germ-free mice as a model of a microbial community in compositional flux to recapitulate the instability of the IBD-associated intestinal microbiota. Our findings demonstrate that altering intestinal iron availability during community assembly modulated the microbiota in non-inflamed wild type (WT) and colitis-susceptible interleukin-10-deficient (Il10-/-) mice. Depletion of luminal iron availability promoted luminal compositional changes associated with dysbiotic states irrespective of host genotype, including an expansion of Enterobacteriaceae such as Escherichia coli. Mechanistic in vitro growth competitions confirmed that high-affinity iron acquisition systems in E. coli enhance its abundance over other bacteria in iron-restricted conditions, thereby enabling pathobiont iron scavenging during dietary iron restriction. In contrast, distinct luminal community assembly was observed with dietary iron supplementation in WT versus Il10-/- mice, suggesting that the effects of increased iron on the microbiota differ with host inflammation status. Taken together, shifts in dietary iron intake during community assembly modulate the ecological structure of the intestinal microbiota and is dependent on host genotype and inflammation status.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Raad Z. Gharaibeh
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, USA,Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Nitsan Maharshak
- Department of Gastroenterology and Liver Diseases, Tel Aviv Medical Center, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel, USA
| | - Ernesto Peréz-Chanona
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, USA,Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL, USA
| | - Ian M. Carroll
- Department of Medicine, University of North Carolina, Chapel Hill, NC, USA,Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA,Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Scott E Plevy
- Immunology Research and Development, Janssen Pharmaceuticals, Spring House, PA, USA
| | - Anthony A. Fodor
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Cory R. Brouwer
- Bioinformatics Services Division, Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, NC, USA,Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - R. Balfour Sartor
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA,Department of Medicine, University of North Carolina, Chapel Hill, NC, USA,Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA,CONTACT R. Balfour Sartor Department of Microbiology and Immunology, University of North Carolina, Room 7309A Biomolecular Building, CB# 7032, Chapel Hill, NC 27599-7032, USA
| |
Collapse
|
4
|
Greenwood KT, Luke RK. Enzymatic hydrolysis of enterochelin and its iron complex in Escherichia Coli K-12. Properties of enterochelin esterase. BIOCHIMICA ET BIOPHYSICA ACTA 1978; 525:209-18. [PMID: 150859 DOI: 10.1016/0005-2744(78)90216-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Properties of the enzyme which hydrolyses enterochelin (a cyclic trimer of 2,3-dihydroxy-N-benzoyl-L-serine) to 2,3-dihydroxybenzoylserine have been investigated with a view to resolving discrepancies between earlier reports. Enterochelin esterase, previously reported to consists of two components (O'Brien, I.G., Cox, G.B. and Gibson, F. (1971) Biochim. Biophys. Acta 237, 537-549), has been shown to be fully active in the absence of the so-called A component. The hydrolase described previously (Bryce, G.F. and Brot, N. (1972) Biochemistry 11, 1708-1715) as being able to break down enterochelin but not its iron complex, ferric-enterochelin, appears to be identical with the B component of enterochelin esterase. The single component enterochelin esterase corresponding to what was previously described as component B, hydrolyses both enterochelin and ferric-enterochelin. Under the assay conditions used, enterochelin is hydrolysed 2.5 times faster than the complex. Enzymatic activity is inhibited by N-ethylmaleimide and is lost rapidly at 37 degrees C. Activity is stabilized in the presence of ferric-enterochelin, enterochelin, dithiothreitol or certain protein fractions.
Collapse
|
9
|
Langman L, Young IG, Frost GE, Rosenberg H, Gibson F. Enterochelin system of iron transport in Escherichia coli: mutations affecting ferric-enterochelin esterase. J Bacteriol 1972; 112:1142-9. [PMID: 4565531 PMCID: PMC251542 DOI: 10.1128/jb.112.3.1142-1149.1972] [Citation(s) in RCA: 151] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Three mutant strains of Escherichia coli have been isolated which are lacking ferric-enterochelin esterase activity. This enzyme catalyzes the hydrolysis of the enterochelin moiety of ferric-enterochelin to yield ultimately three molecules of N-2,3-dihydroxybenzoylserine. The mutants (designated fes(-)) were shown to be unaffected in enterochelin biosynthesis, capable of enterochelin-mediated iron uptake, and able to utilize ferric-dihydroxybenzoylserine complexes normally. When grown under iron-deficient conditions, however, they showed an absolute requirement for added iron or citrate, a phenotype characteristic of mutants defective in some part of the enterochelin system of iron uptake. These results support the theory that iron, taken up by the cell as ferric-enterochelin is only available for general cell metabolism after hydrolysis of the ligand by enterochelin esterase. The three fes(-) strains were shown to be affected in the B component of enterochelin esterase. The fesB gene which is probably the structural gene coding for component B of the esterase, was shown to be located at about minute 14 on the E. coli chromosome together with seven other genes involved in the enterochelin system of iron transport.
Collapse
|