1
|
Lorent C, Pelmenschikov V, Frielingsdorf S, Schoknecht J, Caserta G, Yoda Y, Wang H, Tamasaku K, Lenz O, Cramer SP, Horch M, Lauterbach L, Zebger I. Exploring Structure and Function of Redox Intermediates in [NiFe]-Hydrogenases by an Advanced Experimental Approach for Solvated, Lyophilized and Crystallized Metalloenzymes. Angew Chem Int Ed Engl 2021; 60:15854-15862. [PMID: 33783938 PMCID: PMC8360142 DOI: 10.1002/anie.202100451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/20/2021] [Indexed: 01/28/2023]
Abstract
To study metalloenzymes in detail, we developed a new experimental setup allowing the controlled preparation of catalytic intermediates for characterization by various spectroscopic techniques. The in situ monitoring of redox transitions by infrared spectroscopy in enzyme lyophilizate, crystals, and solution during gas exchange in a wide temperature range can be accomplished as well. Two O2 -tolerant [NiFe]-hydrogenases were investigated as model systems. First, we utilized our platform to prepare highly concentrated hydrogenase lyophilizate in a paramagnetic state harboring a bridging hydride. This procedure proved beneficial for 57 Fe nuclear resonance vibrational spectroscopy and revealed, in combination with density functional theory calculations, the vibrational fingerprint of this catalytic intermediate. The same in situ IR setup, combined with resonance Raman spectroscopy, provided detailed insights into the redox chemistry of enzyme crystals, underlining the general necessity to complement X-ray crystallographic data with spectroscopic analyses.
Collapse
Affiliation(s)
- Christian Lorent
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Vladimir Pelmenschikov
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Stefan Frielingsdorf
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Janna Schoknecht
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Giorgio Caserta
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research InstituteSPring-81-1-1 Kouto, Mikazuki-choSayo-gunHyogo679-5198Japan
| | - Hongxin Wang
- SETI Institute189 Bernardo AvenueMountain ViewCalifornia94043USA
| | - Kenji Tamasaku
- RIKEN SPring-8 center1-1-1 Kouto, Sayo-choSayo-gunHyogo679-5148Japan
| | - Oliver Lenz
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | | | - Marius Horch
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Lars Lauterbach
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| | - Ingo Zebger
- Department of ChemistryTechnische Universität BerlinStrasse des 17. Juni 13510623BerlinGermany
| |
Collapse
|
2
|
Lorent C, Pelmenschikov V, Frielingsdorf S, Schoknecht J, Caserta G, Yoda Y, Wang H, Tamasaku K, Lenz O, Cramer SP, Horch M, Lauterbach L, Zebger I. Ein neuer Aufbau zur Untersuchung der Struktur und Funktion von solvatisierten, lyophilisierten und kristallinen Metalloenzymen – veranschaulicht anhand von [NiFe]‐Hydrogenasen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christian Lorent
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Vladimir Pelmenschikov
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Stefan Frielingsdorf
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Janna Schoknecht
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Giorgio Caserta
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Yoshitaka Yoda
- Japan Synchrotron Radiation Research Institute SPring-8 1-1-1 Kouto, Mikazuki-cho Sayo-gun Hyogo 679-5198 Japan
| | - Hongxin Wang
- SETI Institute 189 Bernardo Avenue Mountain View California 94043 USA
| | - Kenji Tamasaku
- RIKEN SPring-8 center 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5148 Japan
| | - Oliver Lenz
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Stephen P. Cramer
- SETI Institute 189 Bernardo Avenue Mountain View California 94043 USA
| | - Marius Horch
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
- Department of Physics Freie Universität Berlin Arnimallee 14 14195 Berlin Deutschland
| | - Lars Lauterbach
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Ingo Zebger
- Department of Chemistry Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| |
Collapse
|
3
|
Cohen SE, Can M, Wittenborn EC, Hendrickson RA, Ragsdale SW, Drennan CL. Crystallographic Characterization of the Carbonylated A-Cluster in Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase. ACS Catal 2020; 10:9741-9746. [PMID: 33495716 PMCID: PMC7819276 DOI: 10.1021/acscatal.0c03033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/10/2020] [Indexed: 12/30/2022]
Abstract
![]()
The
Wood–Ljungdahl pathway allows for autotrophic bacterial
growth on carbon dioxide, with the last step in acetyl-CoA synthesis
catalyzed by the bifunctional enzyme carbon monoxide dehydrogenase/acetyl-CoA
synthase (CODH/ACS). ACS uses a complex Ni–Fe–S metallocluster
termed the A-cluster to assemble acetyl-CoA from carbon monoxide,
a methyl moiety and coenzyme A. Here, we report the crystal structure
of CODH/ACS from Moorella thermoacetica with substrate
carbon monoxide bound at the A-cluster, a state previously uncharacterized
by crystallography. Direct structural characterization of this state
highlights the role of second sphere residues and conformational dynamics
in acetyl-CoA assembly, the biological equivalent of the Monsanto
process.
Collapse
Affiliation(s)
- Steven E. Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mehmet Can
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 04109, United States
| | - Elizabeth C. Wittenborn
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rachel A. Hendrickson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 04109, United States
| | - Catherine L. Drennan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02139, United States
- Bio-inspired Solar Energy Program, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
4
|
James CD, Wiley S, Ragsdale SW, Hoffman BM. 13C Electron Nuclear Double Resonance Spectroscopy Shows Acetyl-CoA Synthase Binds Two Substrate CO in Multiple Binding Modes and Reveals the Importance of a CO-Binding "Alcove". J Am Chem Soc 2020; 142:15362-15370. [PMID: 32786751 DOI: 10.1021/jacs.0c05950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
EPR and Electron Nuclear Double Resonance spectroscopies here characterize CO binding to the active-site A cluster of wild-type (WT) Acetyl-CoA Synthase (ACS) and two variants, F229W and F229A. The A-cluster binds CO to a proximal Ni (Nip) that bridges a [4Fe-4S] cluster and a distal Nid. An alcove seen in the ACS crystal structure near the A-cluster, defined by hydrophobic residues including F229, forms a cage surrounding a Xe mimic of CO. Previously, we only knew WT ACS bound a single CO to form the Ared-CO intermediate, containing Nip(I)-CO with CO located on the axis of the dz2 odd-electron orbital (g⊥ > g|| ∼ 2). Here, the two-dimensional field-frequency pattern of 2K-35 GHz 13C-ENDOR spectra collected across the Ared-CO EPR envelope reveals a second CO bound in the dz2 orbital's equatorial plane. This WT A-cluster conformer dominates the nearly conservative F229W variant, but 13C-ENDOR reveals a minority "A" conformation with (g|| > g⊥ ∼ 2) characteristic of a "cloverleaf" (e.g., dx2-y2) odd-electron orbital, with Nip binding two, apparently "in-plane" CO. Disruption of the alcove through introduction of the smaller alanine residue in the F229A variant diminishes conversion to Ni(I) ∼ 10-fold and introduces extensive cluster flexibility. 13C-ENDOR shows the F229A cluster is mostly (60%) in the "A" conformation but with ∼20% each of the WT conformer and an "O" state in which dz2 Nip(I) (g⊥ > g|| ∼ 2) surprisingly lacks CO. This paper thus demonstrates the importance of an intact alcove in forming and stabilizing the Ni(I)-CO intermediate in the Wood-Ljungdahl pathway of anaerobic CO and CO2 fixation.
Collapse
Affiliation(s)
- Christopher D James
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth Wiley
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606 United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606 United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Can M, Giles LJ, Ragsdale SW, Sarangi R. X-ray Absorption Spectroscopy Reveals an Organometallic Ni-C Bond in the CO-Treated Form of Acetyl-CoA Synthase. Biochemistry 2017; 56:1248-1260. [PMID: 28186407 DOI: 10.1021/acs.biochem.6b00983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetyl-CoA synthase (ACS) is a key enzyme in the Wood-Ljungdahl pathway of anaerobic CO2 fixation, which has long been proposed to operate by a novel mechanism involving a series of protein-bound organometallic (Ni-CO, methyl-Ni, and acetyl-Ni) intermediates. Here we report the first direct structural evidence of the proposed metal-carbon bond. We describe the preparation of the highly active metal-replete enzyme and near-quantitative generation of the kinetically competent carbonylated intermediate. This advance has allowed a combination of Ni and Fe K-edge X-ray absorption spectroscopy and extended X-ray absorption fine structure experiments along with density functional theory calculations. The data reveal that CO binds to the proximal Ni of the six-metal metallocenter at the active site and undergoes dramatic structural and electronic perturbation in forming this organometallic Ni-CO intermediate. This direct identification of a Ni-carbon bond in the catalytically competent CO-bound form of the A cluster of ACS provides definitive experimental structural evidence supporting the proposed organometallic mechanism of anaerobic acetyl-CoA synthesis.
Collapse
Affiliation(s)
- Mehmet Can
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Logan J Giles
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States.,Department of Chemistry, Stanford University , Stanford, California 94306, United States
| | - Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan , Ann Arbor, Michigan 48109-0606, United States
| | - Ritimukta Sarangi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory , Menlo Park, California 94025, United States
| |
Collapse
|
6
|
Abstract
Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.
Collapse
Affiliation(s)
- Rudolf Kurt Thauer
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany;
| |
Collapse
|
7
|
Hess V, Poehlein A, Weghoff MC, Daniel R, Müller V. A genome-guided analysis of energy conservation in the thermophilic, cytochrome-free acetogenic bacterium Thermoanaerobacter kivui. BMC Genomics 2014; 15:1139. [PMID: 25523312 PMCID: PMC4320612 DOI: 10.1186/1471-2164-15-1139] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acetogenic bacteria are able to use CO2 as terminal electron acceptor of an anaerobic respiration, thereby producing acetate with electrons coming from H2. Due to this feature, acetogens came into focus as platforms to produce biocommodities from waste gases such as H2+CO2 and/or CO. A prerequisite for metabolic engineering is a detailed understanding of the mechanisms of ATP synthesis and electron-transfer reactions to ensure redox homeostasis. Acetogenesis involves the reduction of CO2 to acetate via soluble enzymes and is coupled to energy conservation by a chemiosmotic mechanism. The membrane-bound module, acting as an ion pump, was of special interest for decades and recently, an Rnf complex was shown to couple electron flow from reduced ferredoxin to NAD+ with the export of Na+ in Acetobacterium woodii. However, not all acetogens have rnf genes in their genome. In order to gain further insights into energy conservation of non-Rnf-containing, thermophilic acetogens, we sequenced the genome of Thermoanaerobacter kivui. RESULTS The genome of Thermoanaerobacter kivui comprises 2.9 Mbp with a G+C content of 35% and 2,378 protein encoding orfs. Neither autotrophic growth nor acetate formation from H2+CO2 was dependent on Na+ and acetate formation was inhibited by a protonophore, indicating that H+ is used as coupling ion for primary bioenergetics. This is consistent with the finding that the c subunit of the F1FO ATP synthase does not have the conserved Na+ binding motif. A search for potential H+-translocating, membrane-bound protein complexes revealed genes potentially encoding two different proton-reducing, energy-conserving hydrogenases (Ech). CONCLUSIONS The thermophilic acetogen T. kivui does not use Na+ but H+ for chemiosmotic ATP synthesis. It does not contain cytochromes and the electrochemical proton gradient is most likely established by an energy-conserving hydrogenase (Ech). Its thermophilic nature and the efficient conversion of H2+CO2 make T. kivui an interesting acetogen to be used for the production of biocommodities in industrial micobiology. Furthermore, our experimental data as well as the increasing number of sequenced genomes of acetogenic bacteria supported the new classification of acetogens into two groups: Rnf- and Ech-containing acetogens.
Collapse
Affiliation(s)
- Verena Hess
- />Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Anja Poehlein
- />Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Georg August University, Institute for Microbiology and Genetics, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Marie Charlotte Weghoff
- />Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Rolf Daniel
- />Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Georg August University, Institute for Microbiology and Genetics, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Volker Müller
- />Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
8
|
Gencic S, Kelly K, Ghebreamlak S, Duin EC, Grahame DA. Different Modes of Carbon Monoxide Binding to Acetyl-CoA Synthase and the Role of a Conserved Phenylalanine in the Coordination Environment of Nickel. Biochemistry 2013; 52:1705-16. [DOI: 10.1021/bi3016718] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Simonida Gencic
- Department of Biochemistry and
Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Kayla Kelly
- Holton-Arms School, Bethesda, Maryland 20817, United States
| | - Selamawit Ghebreamlak
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - Evert C. Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| | - David A. Grahame
- Department of Biochemistry and
Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| |
Collapse
|
9
|
Bender G, Pierce E, Hill JA, Darty JE, Ragsdale SW. Metal centers in the anaerobic microbial metabolism of CO and CO2. Metallomics 2011; 3:797-815. [PMID: 21647480 PMCID: PMC3964926 DOI: 10.1039/c1mt00042j] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Carbon dioxide and carbon monoxide are important components of the carbon cycle. Major research efforts are underway to develop better technologies to utilize the abundant greenhouse gas, CO(2), for harnessing 'green' energy and producing biofuels. One strategy is to convert CO(2) into CO, which has been valued for many years as a synthetic feedstock for major industrial processes. Living organisms are masters of CO(2) and CO chemistry and, here, we review the elegant ways that metalloenzymes catalyze reactions involving these simple compounds. After describing the chemical and physical properties of CO and CO(2), we shift focus to the enzymes and the metal clusters in their active sites that catalyze transformations of these two molecules. We cover how the metal centers on CO dehydrogenase catalyze the interconversion of CO and CO(2) and how pyruvate oxidoreductase, which contains thiamin pyrophosphate and multiple Fe(4)S(4) clusters, catalyzes the addition and elimination of CO(2) during intermediary metabolism. We also describe how the nickel center at the active site of acetyl-CoA synthase utilizes CO to generate the central metabolite, acetyl-CoA, as part of the Wood-Ljungdahl pathway, and how CO is channelled from the CO dehydrogenase to the acetyl-CoA synthase active site. We cover how the corrinoid iron-sulfur protein interacts with acetyl-CoA synthase. This protein uses vitamin B(12) and a Fe(4)S(4) cluster to catalyze a key methyltransferase reaction involving an organometallic methyl-Co(3+) intermediate. Studies of CO and CO(2) enzymology are of practical significance, and offer fundamental insights into important biochemical reactions involving metallocenters that act as nucleophiles to form organometallic intermediates and catalyze C-C and C-S bond formations.
Collapse
Affiliation(s)
- Güneş Bender
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Elizabeth Pierce
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Jeffrey A. Hill
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Joseph E. Darty
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| | - Stephen W. Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109-0606, USA. Fax: +1 734-763-4581; Tel: +1 734-615-4621
| |
Collapse
|
10
|
Bender G, Ragsdale SW. Evidence that ferredoxin interfaces with an internal redox shuttle in Acetyl-CoA synthase during reductive activation and catalysis. Biochemistry 2010; 50:276-86. [PMID: 21141812 DOI: 10.1021/bi101511r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Acetyl-CoA synthase (ACS), a subunit of the bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) complex of Moorella thermoacetica requires reductive activation in order to catalyze acetyl-CoA synthesis and related partial reactions, including the CO/[1-(14)C]-acetyl-CoA exchange reaction. We show that the M. thermoacetica ferredoxin(II) (Fd-II), which harbors two [4Fe-4S] clusters and is an electron acceptor for CODH, serves as a redox activator of ACS. The level of activation depends on the oxidation states of both ACS and Fd-II, which strongly suggests that Fd-II acts as a reducing agent. By the use of controlled potential enzymology, the midpoint reduction potential for the catalytic one-electron redox-active species in the CO/acetyl-CoA exchange reaction is -511 mV, which is similar to the midpoint reduction potential that was earlier measured for other reactions involving ACS. Incubation of ACS with Fd-II and CO leads to the formation of the NiFeC species, which also supports the role of Fd-II as a reductant for ACS. In addition to being a reductant, Fd-II can accept electrons from acetylated ACS, as observed by the increased intensity of the EPR spectrum of reduced Fd-II, indicating that there is a stored electron within an "electron shuttle" in the acetyl-Ni(II) form of ACS. This "shuttle" is proposed to serve as a redox mediator during activation and at different steps of the ACS catalytic cycle.
Collapse
Affiliation(s)
- Güneş Bender
- Department of Biological Chemistry, University of Michigan, Ann Arbor, 48109, United States
| | | |
Collapse
|
11
|
Gencic S, Duin EC, Grahame DA. Tight coupling of partial reactions in the acetyl-CoA decarbonylase/synthase (ACDS) multienzyme complex from Methanosarcina thermophila: acetyl C-C bond fragmentation at the a cluster promoted by protein conformational changes. J Biol Chem 2010; 285:15450-15463. [PMID: 20202935 DOI: 10.1074/jbc.m109.080994] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Direct synthesis and cleavage of acetyl-CoA are carried out by the bifunctional CO dehydrogenase/acetyl-CoA synthase enzyme in anaerobic bacteria and by the acetyl-CoA decarbonylase/synthase (ACDS) multienzyme complex in Archaea. In both systems, a nickel- and Fe/S-containing active site metal center, the A cluster, catalyzes acetyl C-C bond formation/breakdown. Carbonyl group exchange of [1-(14)C]acetyl-CoA with unlabeled CO, a hallmark of CODH/ACS, is weakly active in ACDS, and exchange with CO(2) was up to 350 times faster, indicating tight coupling of CO release at the A cluster to CO oxidation to CO(2) at the C cluster in CO dehydrogenase. The basis for tight coupling was investigated by analysis of three recombinant A cluster proteins, ACDS beta subunit from Methanosarcina thermophila, acetyl-CoA synthase of Carboxydothermus hydrogenoformans (ACS(Ch)), and truncated ACS(Ch) lacking its 317-amino acid N-terminal domain. A comparison of acetyl-CoA synthesis kinetics, CO exchange, acetyltransferase, and A cluster Ni(+)-CO EPR characteristics demonstrated a direct role of the ACS N-terminal domain in promoting acetyl C-C bond fragmentation. Protein conformational changes, related to "open/closed" states previously identified crystallographically, were indicated to have direct effects on the coordination geometry and stability of the A cluster Ni(2+)-acetyl intermediate, controlling Ni(2+)-acetyl fragmentation and Ni(2+)(CO)(CH(3)) condensation. EPR spectral changes likely reflect variations in the Ni(+)-CO equatorial coordination environment in closed buried hydrophobic and open solvent-exposed states. The involvement of subunit-subunit interactions in ACDS, versus interdomain contacts in ACS, ensures that CO is not released from the ACDS beta subunit in the absence of appropriate interactions with the alpha(2)epsilon(2) CO dehydrogenase component. The resultant high efficiency CO transfer explains the low rate of CO exchange relative to CO(2).
Collapse
Affiliation(s)
- Simonida Gencic
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814
| | - Evert C Duin
- Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849
| | - David A Grahame
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814.
| |
Collapse
|
12
|
Panja A, Campana C, Leavitt C, Van Stipdonk MJ, Eichhorn DM. Iron and Cobalt Complexes of 2,6-Diacetylpyridine-bis(R-thiosemicarbazone) (R=H, phenyl) Showing Unprecedented Ligand Deviation from Planarity. Inorganica Chim Acta 2009; 362:1348-1354. [PMID: 20161238 PMCID: PMC2705211 DOI: 10.1016/j.ica.2008.06.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The syntheses, characterization, and single-crystal X-ray crystal structures are reported for four complexes of iron and cobalt with the pentadentate ligands, 2,6-diacetylpyridinebis(thiosemicarbazone) (H(2)L(1)) and 2,6-diacetylpyridinebis-(phenylthiosemicarbazone) (H(2)L(2)), including a cobalt dimer displaying a deviation from planarity which is unprecedented for this class of ligands and allows the ligand to occupy five positions of a pseudo-octahedral coordination sphere. This dimer reacts with KCN to produce a mononuclear complex of relevance to the active site of cobalt nitrile hydratase.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| | | | | | | | - David M. Eichhorn
- Department of Chemistry, Wichita State University, Wichita, KS 67260, USA
| |
Collapse
|
13
|
Ragsdale SW, Pierce E. Acetogenesis and the Wood-Ljungdahl pathway of CO(2) fixation. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1784:1873-98. [PMID: 18801467 PMCID: PMC2646786 DOI: 10.1016/j.bbapap.2008.08.012] [Citation(s) in RCA: 714] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/12/2008] [Accepted: 08/13/2008] [Indexed: 01/04/2023]
Abstract
Conceptually, the simplest way to synthesize an organic molecule is to construct it one carbon at a time. The Wood-Ljungdahl pathway of CO(2) fixation involves this type of stepwise process. The biochemical events that underlie the condensation of two one-carbon units to form the two-carbon compound, acetate, have intrigued chemists, biochemists, and microbiologists for many decades. We begin this review with a description of the biology of acetogenesis. Then, we provide a short history of the important discoveries that have led to the identification of the key components and steps of this usual mechanism of CO and CO(2) fixation. In this historical perspective, we have included reflections that hopefully will sketch the landscape of the controversies, hypotheses, and opinions that led to the key experiments and discoveries. We then describe the properties of the genes and enzymes involved in the pathway and conclude with a section describing some major questions that remain unanswered.
Collapse
Affiliation(s)
- Stephen W Ragsdale
- Department of Biological Chemistry, MSRB III, 5301, 1150 W. Medical Center Drive, University of Michigan, Ann Arbor, MI 48109-0606, USA.
| | | |
Collapse
|
14
|
Abstract
The biochemistry of acetogenesis is reviewed. The microbes that catalyze the reactions that are central to acetogenesis are described and the focus is on the enzymology of the process. These microbes play a key role in the global carbon cycle, producing over 10 trillion kilograms of acetic acid annually. Acetogens have the ability to anaerobically convert carbon dioxide and CO into acetyl-CoA by the Wood-Ljungdahl pathway, which is linked to energy conservation. They also can convert the six carbons of glucose stoichiometrically into 3 mol of acetate using this pathway. Acetogens and other anaerobic microbes (e.g., sulfate reducers and methanogens) use the Wood-Ljungdahl pathway for cell carbon synthesis. Important enzymes in this pathway that are covered in this review are pyruvate ferredoxin oxidoreductase, CO dehydrogenase/acetyl-CoA synthase, a corrinoid iron-sulfur protein, a methyltransferase, and the enzymes involved in the conversion of carbon dioxide to methyl-tetrahydrofolate.
Collapse
Affiliation(s)
- Stephen W Ragsdale
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Smucker BW, Vanstipdonk MJ, Eichhorn DM. Incorporation of thiolate donation using 2,2'-dithiodibenzaldehyde: complexes of a pentadentate N2S3 ligand with relevance to the active site of Co nitrile hydratase. J Inorg Biochem 2007; 101:1537-42. [PMID: 17698201 PMCID: PMC2278241 DOI: 10.1016/j.jinorgbio.2007.06.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 06/25/2007] [Accepted: 06/29/2007] [Indexed: 11/22/2022]
Abstract
The use of 2,2'-dithiodibenzaldehyde (DTDB) as a reactant for incorporating thiolate donors into the coordination sphere of a transition metal complex without the need for protecting groups is expanded to include the synthesis of complexes with pentadentate ligands. The ligand N,N'-bis(thiosalicylideneimine)-2,2'-thiobis(ethylamine) (tsaltp) is synthesized at a cobalt center by the reaction of DTDB with a Co complex of thiobis(ethylamine). The resulting Co complexes are thus coordinated by the N(2)S(3) pentadentate ligand through two imine N atoms, two thiolate S atoms, and one thioether S atom. A dimeric, bis-thiolate-bridged complex (1) is isolated and converted to a monomeric CN adduct (2) by treatment with KCN. The N(2)S(3) coordination environment provided by the tsaltp ligand is similar to that provided by the protein donors at the active site of the nitrile hydratase enzymes, with 2 being the first octahedral Co complex reported with such a coordination sphere.
Collapse
Affiliation(s)
- Bradley W Smucker
- Department of Chemistry, Wichita State University, Wichita, KS 67260-0051, United States
| | | | | |
Collapse
|
16
|
Tan X, Surovtsev IV, Lindahl PA. Kinetics of CO insertion and acetyl group transfer steps, and a model of the acetyl-CoA synthase catalytic mechanism. J Am Chem Soc 2007; 128:12331-8. [PMID: 16967985 PMCID: PMC2527582 DOI: 10.1021/ja0627702] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetyl-CoA synthase/carbon monoxide dehydrogenase is a Ni-Fe-S-containing enzyme that catalyzes the synthesis of acetyl-CoA from CO, CoA, and a methyl group. The methyl group is transferred onto the enzyme from a corrinoid-iron-sulfur protein (CoFeSP). The kinetics of two steps within the catalytic mechanism were studied using the stopped-flow method, including the insertion of CO into a putative Ni(2+)-CH(3) bond and the transfer of the resulting acetyl group to CoA. Neither step had been studied previously. Reactions were monitored indirectly, starting with the methylated intermediate form of the enzyme. Resulting traces were analyzed by constructing a simple kinetic model describing the catalytic mechanism under reducing conditions. Besides methyl group transfer, CO insertion, and acetyl group transfer, fitting to experimental traces required the inclusion of an inhibitory step in which CO reversibly bound to the form of the enzyme obtained immediately after product release. Global simulation of the reported datasets afforded a consistent set of kinetic parameters. The equilibrium constant for the overall synthesis of acetyl-CoA was estimated and compared to the product of the individual equilibrium constants. Simulations obtained with the model duplicated the essential behavior of the enzyme, in terms of the variation of activity with [CO], and the time-dependent decay of the NiFeC EPR signal upon reaction with CoFeSP. Under standard assay conditions, the model suggests that the vast majority of active enzyme molecules in a population should be in the methylated form, suggesting that the subsequent catalytic step, namely CO insertion, is rate limiting. This conclusion is further supported by a sensitivity analysis showing that the rate is most sensitively affected by a change in the rate coefficient associated with the CO insertion step.
Collapse
Affiliation(s)
- Xiangshi Tan
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
17
|
|
18
|
King GM. Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria. FEMS Microbiol Ecol 2006; 56:1-7. [PMID: 16542399 DOI: 10.1111/j.1574-6941.2006.00065.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Two dissimilatory nitrate-reducing (Burkholderia xenovorans LB400 and Xanthobacter sp. str. COX) and two denitrifying isolates (Stappia aggregata IAM 12614 and Bradyrhizobium sp. str. CPP), previously characterized as aerobic CO oxidizers, consumed CO at ecologically relevant levels (<100 ppm) under anaerobic conditions in the presence, but not absence, of nitrate. None of the isolates were able to grow anaerobically with CO as a carbon or energy source, however, and nitrate-dependent anaerobic CO oxidation was inhibited by headspace concentrations >100-1000 ppm. Surface soils collected from temperate, subtropical and tropical forests also oxidized CO under anaerobic conditions with no lag. The observed activity was 25-60% less than aerobic CO oxidation rates, and did not appear to depend on nitrate. Chloroform inhibited anaerobic but not aerobic activity, which suggested that acetogenic bacteria may have played a significant role in forest soil anaerobic CO uptake.
Collapse
Affiliation(s)
- G M King
- Darling Marine Center, University of Maine, Walpole, ME, USA.
| |
Collapse
|
19
|
Brunold TC. Spectroscopic and computational insights into the geometric and electronic properties of the A-cluster of acetyl-coenzyme A synthase. J Biol Inorg Chem 2004; 9:533-41. [PMID: 15221480 DOI: 10.1007/s00775-004-0566-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 05/21/2004] [Indexed: 10/26/2022]
Abstract
For the last two decades, the bifunctional enzyme acetyl-coenzyme A synthase/carbon monoxide dehydrogenase (ACS/CODH) from Moorella thermoacetica has been the subject of considerable research aimed at elucidating the geometric and electronic properties of the A-cluster, which serves as the active site for ACS catalysis. While the recent success in obtaining high-resolution X-ray structures of this enzyme solved many of the mysteries regarding the number, identities, and coordination environments of the metal centers of the A-cluster, fundamental questions concerning the catalytic mechanism of this highly elaborate polynuclear active site have yet to be answered. This Commentary summarizes relevant information obtained from spectroscopic and computational studies on the oxidized, reduced, and CO-bound forms of the A-cluster and highlights some of the key issues regarding the electronic properties and reactivity of this cluster that need to be addressed in future studies.
Collapse
Affiliation(s)
- Thomas C Brunold
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
20
|
Seravalli J, Gu W, Tam A, Strauss E, Begley TP, Cramer SP, Ragsdale SW. Functional copper at the acetyl-CoA synthase active site. Proc Natl Acad Sci U S A 2003; 100:3689-94. [PMID: 12589021 PMCID: PMC152983 DOI: 10.1073/pnas.0436720100] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2002] [Indexed: 11/18/2022] Open
Abstract
The bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) plays a central role in the Wood-Ljungdahl pathway of autotrophic CO(2) fixation. A recent structure of the Moorella thermoacetica enzyme revealed that the ACS active site contains a [4Fe-4S] cluster bridged to a binuclear Cu-Ni site. Here, biochemical and x-ray absorption spectroscopic (XAS) evidence is presented that the copper ion at the M. thermoacetica ACS active site is essential. Depletion of copper correlates with reduction in ACS activity and in intensity of the "NiFeC" EPR signal without affecting either the activity or the EPR spectroscopic properties associated with CODH. In contrast, Zn content is negatively correlated with ACS activity without any apparent relationship to CODH activity. Cu is also found in the methanogenic CODH/ACS from Methanosarcina thermophila. XAS studies are consistent with a distorted Cu(I)-S(3) site in the fully active enzyme in solution. Cu extended x-ray absorption fine structure analysis indicates an average Cu-S bond length of 2.25 A and a metal neighbor at 2.65 A, consistent with the Cu-Ni distance observed in the crystal structure. XAS experiments in the presence of seleno-CoA reveal a Cu-S(3)Se environment with a 2.4-A Se-Cu bond, strongly implicating a Cu-SCoA intermediate in the mechanism of acetyl-CoA synthesis. These results indicate an essential and functional role for copper in the CODH/ACS from acetogenic and methanogenic organisms.
Collapse
Affiliation(s)
- Javier Seravalli
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Craft JL, Mandimutsira BS, Fujita K, Riordan CG, Brunold TC. Spectroscopic and computational studies of a Ni(+)-CO model complex: implications for the acetyl-CoA synthase catalytic mechanism. Inorg Chem 2003; 42:859-67. [PMID: 12562200 DOI: 10.1021/ic020441e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The four-coordinate Ni(+) complex [PhTt(t)(Bu)]Ni(I)CO, where PhTt(t)()(Bu) = phenyltris((tert-buthylthio)methyl)borate (a tridentate thioether donor ligand), serves as a possible model for key Ni-CO reaction intermediates in the acetyl-CoA synthase (ACS) catalytic cycle. Resonance Raman, electronic absorption, magnetic circular dichroism (MCD), variable-temperature variable-field MCD, and electron paramagnetic resonance spectroscopies were utilized in conjunction with density functional theory and semiemperical INDO/S-CI calculations to investigate the ground and excited states of [PhTt(t)()(Bu)]Ni(I)CO. These studies reveal extensive Ni(+) --> CO pi-back-bonding interactions, as evidenced by a low C-O stretching frequency (1995 cm(-)(1)), a calculated C-O stretching force constant of 15.5 mdyn/A (as compared to k(CO)(free CO) = 18.7 mdyn/A), and strong Ni(+) --> CO charge-transfer absorption intensities. Calculations reveal that this high degree of pi-back-bonding is due to the fact that the Ni(+) 3d orbitals are in close energetic proximity to the CO pi acceptor orbitals. In the ACS "paramagnetic catalytic cycle", the high degree of pi-back-bonding in the putative Ni(+)-CO intermediate (the NiFeC species) is not expected to preclude methyl transfer from CH(3)-CoFeSP.
Collapse
Affiliation(s)
- Jennifer L Craft
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
22
|
Maynard EL, Sewell C, Lindahl PA. Kinetic mechanism of acetyl-CoA synthase: steady-state synthesis at variable Co/Co2 pressures. J Am Chem Soc 2001; 123:4697-703. [PMID: 11457278 DOI: 10.1021/ja004017t] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Steady-state initial rates of acetyl-CoA synthesis (upsilon/[E(tot)]) catalyzed by acetyl-CoA synthase from Clostridium thermoaceticum (ACS) were determined at various partial pressures of CO and CO2. When [CO] was varied from 0 to 100 microM in a balance of Ar, rates increased sharply from 0.3 to 100 min(-1). At [CO] > 100 microM, rates declined sharply and eventually stabilized at 10 min(-1) at 980 microM CO. Equivalent experiments carried out in CO2 revealed similar inhibitory behavior and residual activity under saturating [CO]. Plots of upsilon/[E(tot)] vs [CO2] at different fixed inhibitory [CO] revealed that Vmax/[E(tot)] (kcat) decreased with increasing [CO]. Plots of upsilon/[E(tot)] vs [CO2] at different fixed noninhibitory [CO] showed that Vmax/[E(tot)] was insensitive to changes in [CO]. Of eleven candidate mechanisms, the simplest one that fit the data best had the following key features: (a) either CO or CO2 (at a designated reductant level and pH) activate the enzyme (E' + CO right arrow over left arrow E, E' + CO2/2e-/2H+ right arrow over left arrow E); (b) CO and CO2 are both substrates that compete for the same enzyme form (E + CO right arrow over left arrow ECO, E + CO2/2e-/2H+ right arrow over left arrow ECO, and ECO --> E + P); (c) between 3 and 5 molecules of CO bind cooperatively to an enzyme form different from that to which CO2 and substrate CO bind (nCO + ECO right arrow over left arrow (CO)nECO), and this inhibits catalysis; and (d) the residual activity arises from either the (CO)nECO state or a heterogeneous form of the enzyme. Implications of these results, focusing on the roles of CO and CO2 in catalysis, are discussed.
Collapse
Affiliation(s)
- E L Maynard
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | | | | |
Collapse
|
23
|
Abstract
The two redox catalysts described here can generate very low potential electrons in one direction and perform chemically difficult reductions in the other. The chemical transformations occur at unusual metal clusters. Spectroscopic, crystallographic, and kinetic analyses are converging on answers to how the metals in these clusters are arranged and how they are involved in the chemical and redox steps. The first structure of CO dehydrogenase, which will appear in the next year, will help define a firm chemical basis for future mechanistic studies. In the immediate future, we hope to learn whether the hydride intermediate in hydrogenase or the carbonyl intermediate in CO dehydrogenase bind to the Ni or Fe subsites in these heterometallic clusters. Or perhaps could they be bridged to two metals? Inter- and intramolecular wires have been proposed that connect the catalytic redox machine to proximal redox centers leading eventually to the ultimate redox partners. Elucidating the pathways of electron flow is a priority for the future. There is evidence for molecular channels delivering substrates to the active sites of these enzymes. In the next few years, these channels will be better defined. The products of CO2 and proton reduction are passed to the active sites of other enzymes and, in the case of H2, even passed from one organism to another. In the future, the mechanism of gas transfer will be uncovered. General principles of how these redox reactions are catalyzed are becoming lucid as the reactions are modeled theoretically and experimentally. Proton and CO2 reduction and the generation of C-C bonds from simple precursors are important reactions in industry. H2 could be the clean fuel of the future. Hopefully, the knowledge gained from studies of hydrogenase, CO dehydrogenase, and acetyl-CoA synthase can be used to improve life on earth.
Collapse
Affiliation(s)
- S W Ragsdale
- Department of Biochemistry, Beadle Center, University of Nebraska, P.O. Box 880664, Lincoln, NE 68588-0664, USA
| |
Collapse
|
24
|
Ralston CY, Wang H, Ragsdale SW, Kumar M, Spangler NJ, Ludden PW, Gu W, Jones RM, Patil DS, Cramer SP. Characterization of Heterogeneous Nickel Sites in CO Dehydrogenases from Clostridium thermoaceticum and Rhodospirillum rubrum by Nickel L-Edge X-ray Spectroscopy. J Am Chem Soc 2000. [DOI: 10.1021/ja0009469] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. Y. Ralston
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Hongxin Wang
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - S. W. Ragsdale
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - M. Kumar
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - N. J. Spangler
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - P. W. Ludden
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - W. Gu
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - R. M. Jones
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - D. S. Patil
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - S. P. Cramer
- Contribution from the Department of Applied Science, University of California, Davis, California 95616, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583, Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
25
|
Murakami E, Ragsdale SW. Evidence for intersubunit communication during acetyl-CoA cleavage by the multienzyme CO dehydrogenase/acetyl-CoA synthase complex from Methanosarcina thermophila. Evidence that the beta subunit catalyzes C-C and C-S bond cleavage. J Biol Chem 2000; 275:4699-707. [PMID: 10671500 DOI: 10.1074/jbc.275.7.4699] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The carbon monoxide dehydrogenase/acetyl-CoA synthase (CODH/ACS) from Methanosarcina thermophila is part of a five-subunit complex consisting of alpha, beta, gamma, delta, and epsilon subunits. The multienzyme complex catalyzes the reversible oxidation of CO to CO(2), transfer of the methyl group of acetyl-CoA to tetrahydromethanopterin (H(4)MPT), and acetyl-CoA synthesis from CO, CoA, and methyl-H(4)MPT. The alpha and epsilon subunits are required for CO oxidation. The gamma and delta subunits constitute a corrinoid iron-sulfur protein that is involved in the transmethylation reaction. This work focuses on the beta subunit. The isolated beta subunit contains significant amounts of nickel. When proteases truncate the beta subunit, causing the CODH/ACS complex to dissociate, the amount of intact beta subunit correlates directly with the EPR signal intensity of Cluster A and the activity of the CO/acetyl-CoA exchange reaction. Our results strongly indicate that the beta subunit harbors Cluster A, a NiFeS cluster, that is the active site of acetyl-CoA cleavage and assembly. Although the beta subunit is necessary, it is not sufficient for acetyl-CoA synthesis; interactions between the CODH and the ACS subunits are required for cleavage or synthesis of the C-C bond of acetyl-CoA. We propose that these interactions include intramolecular electron transfer reactions between the CODH and ACS subunits.
Collapse
Affiliation(s)
- E Murakami
- Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
26
|
Fontecilla-Camps JC, Ragsdale SW. Nickel–Iron–Sulfur Active Sites: Hydrogenase and Co Dehydrogenase. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60081-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Xia J, Hu Z, Popescu CV, Lindahl PA, Münck E. Mössbauer and EPR Study of the Ni-Activated α-Subunit of Carbon Monoxide Dehydrogenase fromClostridium thermoaceticum. J Am Chem Soc 1997. [DOI: 10.1021/ja971025+] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Ragsdale SW, Kumar M. Nickel-Containing Carbon Monoxide Dehydrogenase/Acetyl-CoA Synthase(,). Chem Rev 1996; 96:2515-2540. [PMID: 11848835 DOI: 10.1021/cr950058+] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Stephen W. Ragsdale
- Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664
| | | |
Collapse
|
29
|
Qiu D, Kumar M, Ragsdale SW, Spiro TG. Raman and Infrared Spectroscopy of Cyanide-Inhibited CO Dehydrogenase/Acetyl-CoA Synthase from Clostridium thermoaceticum: Evidence for Bimetallic Enzymatic CO Oxidation. J Am Chem Soc 1996. [DOI: 10.1021/ja960435f] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Di Qiu
- Contribution from the Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Manoj Kumar
- Contribution from the Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Stephen W. Ragsdale
- Contribution from the Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| | - Thomas G. Spiro
- Contribution from the Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664, and Department of Chemistry, Princeton University, Princeton, New Jersey 08544
| |
Collapse
|
30
|
Seravalli J, Kumar M, Lu WP, Ragsdale SW. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions. Biochemistry 1995; 34:7879-88. [PMID: 7794899 DOI: 10.1021/bi00024a012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carbon monoxide dehydrogenase (CODH) performs two distinct reactions at two different metal centers. The synthesis of acetyl-CoA from a methyl group, CO, and coenzyme A occurs at center A and the oxidation of CO to CO2 occurs at center C. In the work reported here, we have studied the mechanism of CO oxidation by CODH and its inhibition by thiocyanate. Our data are consistent with a ping-pong mechanism. A scheme to explain the first half-reaction was developed that includes binding of water and CO to the oxidized form of center C, deprotonation of coordinated water to yield enzyme-bound hydroxyl, nucleophilic attack on coordinated CO by OH- to form enzyme-bound carboxyl, and deprotonation and decarboxylation to form CO2 and the reduced form of center C. In the second half-reaction, the reduced enzyme is reoxidized by an electron acceptor. CO oxidation was pH dependent. The pH dependence of kcat/Km for CO gave a single pKa of 7.7 and a maximum value at 55 degrees C and high pH of 9.1 x 10(6) M-1 s-1. The pH dependence of kcat followed a two-phase titration curve with pKa values of 7.1 and 9.5 and maximum value of kcat at 55 degrees C and high pH of 3250 s-1 (1310 mumol of CO oxidized min-1 mg-1). The pH dependencies of kcat/Km and kcat are interpreted to reflect the ionization of enzyme-bound water from binary and ternary complexes with center C. Reaction with thiocyanate, azide, or cyanate was found to cause a striking shift in the EPR spectrum of center C from gav = 1.82 (g = 2.01, 1.81, 1.65) to a two-component spectrum with gav = 2.15 (g = 2.34, 2.067, 2.03) and gav = 2.17 (g = 2.34, 2.115, 2.047). Thiocyanate acted as a mixed partial inhibitor with respect to CO. The inhibition constants were pH and temperature dependent. The pH dependencies of the inhibition constants gave pKa values of approximately 7.7. Binding of thiocyanate to the oxidized form of center C appears to be favored by a negative enthalpy that is offset by a decrease in entropy yielding a slightly unfavorable free energy of association.
Collapse
Affiliation(s)
- J Seravalli
- Department of Biochemistry, University of Nebraska, Lincoln 68583-0718, USA
| | | | | | | |
Collapse
|
31
|
Albracht SP. Nickel hydrogenases: in search of the active site. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1188:167-204. [PMID: 7803444 DOI: 10.1016/0005-2728(94)90036-1] [Citation(s) in RCA: 341] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- S P Albracht
- E.C. Slater Institute, BioCentrum Amsterdam, University of Amsterdam, The Netherlands
| |
Collapse
|
32
|
Characterization of the metal centers of the Ni/Fe-S component of the carbon-monoxide dehydrogenase enzyme complex from Methanosarcina thermophila. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36944-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
33
|
Shin W, Lindahl PA. Low spin quantitation of NiFeC EPR signal from carbon monoxide dehydrogenase is not due to damage incurred during protein purification. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1161:317-22. [PMID: 8381672 DOI: 10.1016/0167-4838(93)90231-f] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Evidence is presented that the O2-sensitive, nickel- and iron-containing enzyme carbon monoxide dehydrogenase from Clostridium thermoaceticum was purified without significantly inactivating either its CO oxidation or CO/acetyl-CoA exchange activities. All CO oxidation activity from the crude extract was recovered in the purified enzyme (and side fractions). The exchange activity could not be quantified similarly, because the crude extract and early purification step fractions exhibited little or no exchange activity. Later purification fractions exhibited much more exchange activity, suggesting that an inhibitor was present in the impure fractions. The NiFeC EPR signal intensity was used as an indicator of the enzyme's capacity to catalyze exchange. This signal was extremely sensitive to oxygen; exposure to as little as 0.5 equiv/mol enzyme dimer resulted in substantial loss of intensity. The NiFeC intensities at each step in the purification were virtually invariant, indicating that the enzyme had not been exposed to oxygen and had not been inactivated towards catalyzing exchange. The ability to purify carbon monoxide dehydrogenase (CODH) without inactivating nearly any of the molecules suggests that it is quite stable under anaerobic conditions. The purified enzyme, which could not have lost functional metal ions during purification, contained 1.9 Ni and 11.3 Fe, similar to previous reports. The NiFeC EPR signal intensity from each purification fraction (0.2 spins/mol enzyme dimer) was as low as from previous preparations, indicating that its low spin quantitation is not the result of damage incurred during purification. If the low intensity arises from heterogeneity as proposed earlier, the heterogeneity must originate prior to purification.
Collapse
Affiliation(s)
- W Shin
- Department of Chemistry, Texas A&M University, College Station 77843
| | | |
Collapse
|
34
|
Shin W, Lindahl PA. Function and CO binding properties of the NiFe complex in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochemistry 1992; 31:12870-5. [PMID: 1334436 DOI: 10.1021/bi00166a023] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adding 1,10-phenanthroline to carbon monoxide dehydrogenase from Clostridium thermoaceticum results in the complete loss of the NiFeC EPR signal and the CO/acetyl-CoA exchange activity. Other EPR signals characteristic of the enzyme (the gav = 1.94 and gav = 1.86 signals) and the CO oxidation activity are completely unaffected by the 1,10-phenanthroline treatment. This indicates that there are two catalytic sites on the enzyme; the NiFe complex is required for catalyzing the exchange and acetyl-CoA synthase reactions, while some other site is responsible for CO oxidation. The strength of CO binding to the NiFe complex was examined by titrating dithionite-reduced enzyme with CO. During the titration, the NiFeC EPR signal developed to a final spin intensity of 0.23 spin/alpha beta. The resulting CO titration curve (NiFeC spins/alpha beta vs CO pha beta) was fitted using two reactions: binding of CO to the oxidized NiFe complex, and reduction of the CO-bound species to a form that exhibits the NiFeC signal. Best fits yielded apparent binding constants between 6000 and 14,000 M-1 (Kd = 70-165 microM). This sizable range is due to uncertainty whether CO binds to all or only a small fraction (approximately 23%) of the NiFe complexes. Reduction of the CO-bound NiFe complex is apparently required to activate it for catalysis. The electron used for this reduction originates from the CO oxidation site, suggesting that delivery of a low-potential electron to the CO-bound NiFe complex is the physiological function of the CO oxidation reaction catalyzed by this enzyme.
Collapse
Affiliation(s)
- W Shin
- Department of Chemistry, Texas A&M University, College Station 77843
| | | |
Collapse
|
35
|
Blake AJ, Gould RO, Halcrow MA, Holder AJ, Hyde TI, Schröder M. Nickel thioether chemistry: a re-examination of the electrochemistry of [Ni([9]aneS3)2]2+. The single-crystal X-ray structure of a nickel(III) thioether complex, [NiIII([9]aneS3)2][H5O2]3[ClO4]6([9]aneS3= 1,4,7-trithiacyclononane). ACTA ACUST UNITED AC 1992. [DOI: 10.1039/dt9920003427] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Shanmugasundaram T, Wood HG. Interaction of ferredoxin with carbon monoxide dehydrogenase from Clostridium thermoaceticum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)48368-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
37
|
Jetten MS, Pierik AJ, Hagen WR. EPR characterization of a high-spin system in carbon monoxide dehydrogenase from Methanothrix soehngenii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 202:1291-7. [PMID: 1662611 DOI: 10.1111/j.1432-1033.1991.tb16502.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Carbon monoxide dehydrogenase and methyl-coenzyme M reductase were purified from 61Ni-enriched and natural-abundance nickel-grown cells of the methanogenic archae Methanothrix soehngenii. The nickel-EPR signal from cofactor F-430 in methyl-CoM reductase was of substoichiometric intensity and exhibited near-axial symmetry with g = 2.153, 2.221 and resolved porphinoid nitrogen superhyperfine splittings of approximately 1 mT. In the spectrum from 61Ni-enriched enzyme a well-resolved parallel I = 3/2 nickel hyperfine splitting was observed, A parallel = 4.4 mT. From a computer simulation of this spectrum the final enrichment in 61Ni was estimated to be 69%, while the original enrichment of the nickel metal was 87%. Carbon monoxide dehydrogenase isolated from the same batch exhibited four different EPR spectra. However, in none of these signals could any splitting or broadening from 61Ni be detected. Also, the characteristic g = 2.08 EPR signal found in some other carbon monoxide dehydrogenases and ascribed to a Ni-Fe-C complex, was never observed by us under any conditions of detection (4 to 100 K) and incubation in the presence of ferricyanide, dithionite, CO, coenzyme A, or acetyl-coenzyme A. Novel, high-spin EPR was found in the oxidized enzyme with effective g-values at g = 14.5, 9.6, 5.5, 4.6, 4.2, 3.8. The lines at g = 14.5 and 5.5 were tentatively ascribed to an S = 9/2 system (approximately 0.3 spins/alpha beta) with rhombicity E/D = 0.047 and D less than 0. The other signals were assigned to an S = 5/2 system (0.1 spins/alpha beta) with E/D = 0.27. Both sets of signals disappear upon reduction with Em,7.5 = - 280 mV. With a very similar reduction potential, Em,7.5 = - 261 mV, an S = 1/2 signal (0.1 spins/alpha beta) appears with the unusual g-tensor 2.005, 1.894, 1.733. Upon further lowering of the potential the putative double cubane signal also appears. At a potential E approximately - 320 mV the double cubane is only reduced by a few percent and this allows the detection of individual cubane EPR not subjected to dipolar interaction; a single spectral component is observed with g-tensor 2.048, 1.943, 1.894.
Collapse
Affiliation(s)
- M S Jetten
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | |
Collapse
|
38
|
Gorst C, Ragsdale S. Characterization of the NiFeCO complex of carbon monoxide dehydrogenase as a catalytically competent intermediate in the pathway of acetyl-coenzyme A synthesis. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(18)54763-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
39
|
Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide. J Biol Chem 1991. [DOI: 10.1016/s0021-9258(19)67831-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
40
|
Jetten MS, Hagen WR, Pierik AJ, Stams AJ, Zehnder AJ. Paramagnetic centers and acetyl-coenzyme A/CO exchange activity of carbon monoxide dehydrogenase from Methanothrix soehngenii. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 195:385-91. [PMID: 1847679 DOI: 10.1111/j.1432-1033.1991.tb15717.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Carbon monoxide (CO) dehydrogenase was purified, both aerobically and anaerobically, to apparent homogeneity from Methanothrix soehngenii. The enzyme contained 18 +/- 2 (n = 6) mol Fe/mol and 2.0 +/- 0.1 (n = 6) mol Ni/mol. Electron paramagnetic resonance (EPR) spectra of the aerobically purified CO dehydrogenase showed one sharp EPR signal at g = 2.014 with several characteristics of a [3Fe-4S]1+ cluster. The integrated intensity of this signal was low, 0.03 S = 1/2 spin/alpha beta dimer. The 3Fe spectrum was not affected by incubation with CO or acetyl-coenzyme A, but could be reduced by dithionite. The spectrum of the reduced, aerobically purified enzyme showed complex EPR spectra, which had several properties typical of two [4Fe-4S]1+ clusters, whose S = 1/2 spins weakly interacted by dipolar coupling. The integrated intensity was 0.1-0.2 spin/alpha beta dimer. The anaerobically isolated enzyme showed EPR spectra different from the reduced aerobically purified enzyme. Two major signals were apparent. One with g values of 2.05, 1.93 and 1.865, and an Em7.5 of -410 mV, which quantified to 0.9 S = 1/2 spin/alpha beta dimer. The other signal with g values of 1.997, 1.886 and 1.725, and an Em7.5 of -230 mV gave 0.1 spin/alpha beta dimer. When the enzyme was incubated with its physiological substrate acetyl-coenzyme A, these two major signals disappeared. Incubation of the enzyme under CO atmosphere resulted in a partial disappearance of the spectral component with g = 1.997, 1.886, 1.725. Acetyl-coenzyme A/CO exchange activity, 35 nmol.min-1.mg-1 protein, which corresponded to 7 mol CO exchanged min-1 mol-1 enzyme, could be detected in anaerobic enzyme preparations, but was absent in aerobic preparations. Carbon dioxide also exchanged with C-1 of acetyl-coenzyme A, but at a much lower rate than CO and to a much lower extent.
Collapse
Affiliation(s)
- M S Jetten
- Department of Microbiology, Wageningen Agricultural University, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Abstract
We know of three routes that organisms have evolved to synthesize complex organic molecules from CO2: the Calvin cycle, the reverse tricarboxylic acid cycle, and the reductive acetyl-CoA pathway. This review describes the enzymatic steps involved in the acetyl-CoA pathway, also called the Wood pathway, which is the major mechanism of CO2 fixation under anaerobic conditions. The acetyl-CoA pathway is also able to form acetyl-CoA from carbon monoxide. There are two parts to the acetyl-CoA pathway: (1) reduction of CO2 to methyltetrahydrofolate (methyl-H4folate) and (2) synthesis of acetyl-CoA from methyl-H4folate, a carboxyl donor such as CO or CO2, and CoA. This pathway is unique in that the major intermediates are enzyme-bound and are often organometallic complexes. Our current understanding of the pathway is based on radioactive and stable isotope tracer studies, purification of the component enzymes (some extremely oxygen sensitive), and identification of the enzyme-bound intermediates by chromatographic, spectroscopic, and electrochemical techniques. This review describes the remarkable series of enzymatic steps involved in acetyl-CoA formation by this pathway that is a key component of the global carbon cycle.
Collapse
Affiliation(s)
- S W Ragsdale
- Department of Chemistry, University of Wisconsin-Milwaukee
| |
Collapse
|
42
|
|
43
|
Lindahl PA, Ragsdale SW, Münck E. Mössbauer study of CO dehydrogenase from Clostridium thermoaceticum. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39676-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
CO dehydrogenase from Clostridium thermoaceticum. EPR and electrochemical studies in CO2 and argon atmospheres. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39675-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Krzycki JA, Prince RC. EPR observation of carbon monoxide dehydrogenase, methylreductase and corrinoid in intact Methanosarcina barkeri during methanogenesis from acetate. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 1990. [DOI: 10.1016/0005-2728(90)90215-p] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Paramagnetic centers of carbon monoxide dehydrogenase from aceticlastic Methanosarcina barkeri. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)83223-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
47
|
Fauque G, Peck HD, Moura JJ, Huynh BH, Berlier Y, DerVartanian DV, Teixeira M, Przybyla AE, Lespinat PA, Moura I. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol Rev 1988; 4:299-344. [PMID: 3078655 DOI: 10.1111/j.1574-6968.1988.tb02748.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Three types of hydrogenases have been isolated from the sulfate-reducing bacteria of the genus Desulfovibrio. They differ in their subunit and metal compositions, physico-chemical characteristics, amino acid sequences, immunological reactivities, gene structures and their catalytic properties. Broadly, the hydrogenases can be considered as 'iron only' hydrogenases and nickel-containing hydrogenases. The iron-sulfur-containing hydrogenase ([Fe] hydrogenase) contains two ferredoxin-type (4Fe-4S) clusters and an atypical iron-sulfur center believed to be involved in the activation of H2. The [Fe] hydrogenase has the highest specific activity in the evolution and consumption of hydrogen and in the proton-deuterium exchange reaction and this enzyme is the most sensitive to CO and NO2-. It is not present in all species of Desulfovibrio. The nickel-(iron-sulfur)-containing hydrogenases [( NiFe] hydrogenases) possess two (4Fe-4S) centers and one (3Fe-xS) cluster in addition to nickel and have been found in all species of Desulfovibrio so far investigated. The redox active nickel is ligated by at least two cysteinyl thiolate residues and the [NiFe] hydrogenases are particularly resistant to inhibitors such as CO and NO2-. The genes encoding the large and small subunits of a periplasmic and a membrane-bound species of the [NiFe] hydrogenase have been cloned in Escherichia (E.) coli and sequenced. Their derived amino acid sequences exhibit a high degree of homology (70%); however, they show no obvious metal-binding sites or homology with the derived amino acid sequence of the [Fe] hydrogenase. The third class is represented by the nickel-(iron-sulfur)-selenium-containing hydrogenases [( NiFe-Se] hydrogenases) which contain nickel and selenium in equimolecular amounts plus (4Fe-4S) centers and are only found in some species of Desulfovibrio. The genes encoding the large and small subunits of the periplasmic hydrogenase from Desulfovibrio (D.) baculatus (DSM 1743) have been cloned in E. coli and sequenced. The derived amino acid sequence exhibits homology (40%) with the sequence of the [NiFe] hydrogenase and the carboxy-terminus of the gene for the large subunit contains a codon (TGA) for selenocysteine in a position homologous to a codon (TGC) for cysteine in the large subunit of the [NiFe] hydrogenase. EXAFS and EPR studies with the 77Se-enriched D. baculatus hydrogenase indicate that selenium is a ligand to nickel and suggest that the redox active nickel is ligated by at least two cysteinyl thiolate and one selenocysteine selenolate residues.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- G Fauque
- Section Enzymologie et Biochimie Bactérienne, ARBS, CEN Cadarache, Saint-Paul-Lez-Durance, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Bell JM, Colby J, Williams E. CO oxidoreductase from Streptomyces strain G26 is a molybdenum hydroxylase. Biochem J 1988; 250:605-12. [PMID: 3355539 PMCID: PMC1148897 DOI: 10.1042/bj2500605] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CO oxidoreductase was purified to 95% homogeneity from crude mycelial extracts of Streptomyces G26. The purified preparation has a specific activity of 25.7 units/mg, a 13-fold improvement on crude soluble mycelial extracts. The native enzyme (Mr 282,000) is composed of non-identical subunits of Mr 110,000 and 33,000. It is a molybdenum hydroxylase containing 1.6 mol of FAD, 7.3 mol of Fe, 8.3 mol of acid-labile sulphide and 1.3 mol of Mo per mol of enzyme. Purified CO oxidoreductase catalyses the reduction of benzyl viologen, confirming the previously reported ability of this enzyme to interact with low-potential acceptors. Cytochrome c reduction cannot be accounted for entirely by non-enzymic reduction by superoxide radicals. NAD+ and NADP+ are not reduced, nor is clostridial ferredoxin.
Collapse
Affiliation(s)
- J M Bell
- North East Biotechnology Centre, Biology Department, Sunderland Polytechnic, U.K
| | | | | |
Collapse
|
49
|
|
50
|
Bonam D, McKenna MC, Stephens PJ, Ludden PW. Nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: in vivo and in vitro activation by exogenous nickel. Proc Natl Acad Sci U S A 1988; 85:31-5. [PMID: 2829176 PMCID: PMC279475 DOI: 10.1073/pnas.85.1.31] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An inactive, Ni-deficient form of carbon monoxide (CO) dehydrogenase [carbon-monoxide:(acceptor) oxidoreductase; EC 1.2.99.2], designated apo-CO dehydrogenase, accumulated in Rhodospirillum rubrum when cells were grown in the absence of Ni and treated with CO. In vivo, both CO dehydrogenase activity and hydrogenase activity increased several hundred fold upon addition of 2 microM NiCl2. Apo-CO dehydrogenase was purified to homogeneity and differed from holo-CO dehydrogenase only in its activity and Ni content, containing less than 0.2 mol of Ni per mol of protein, and a specific activity of 35 mumol of CO per min per mg. Optimal in vitro activation of purified apo-CO dehydrogenase resulted in an enzyme with a specific activity of 2640 mumol of CO per min per mg. No additional enzymes or low molecular weight cofactors were required for activation. Apo-CO dehydrogenase was not activated by MgCl2, MnCl2, CuCl2, ZnCl2, CoCl2, or Na2MoO4. 63Ni was incorporated into apo-CO dehydrogenase during activation. The electron paramagnetic resonance (EPR) spectra of dithionite-reduced apo- and holo-enzyme were identical, indicating that, in the reduced state, the Fe-S centers observed by EPR are unchanged in the apo-enzyme.
Collapse
Affiliation(s)
- D Bonam
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706
| | | | | | | |
Collapse
|