1
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk. Nat Commun 2024; 15:4272. [PMID: 38769321 PMCID: PMC11106087 DOI: 10.1038/s41467-024-48163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.
Collapse
Affiliation(s)
- Vivek Singh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Tokyo, Japan
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Asem Hassan
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Andreas Naschberger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Keiichi Izumikawa
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Juni Andréll
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Antoni Barrientos
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
Kapur N, Alam MA, Hassan SA, Patel PH, Wempe LA, Bhogoju S, Goretsky T, Kim JH, Herzog J, Ge Y, Awuah SG, Byndloss M, Baumler AJ, Zadeh MM, Sartor RB, Barrett T. Enhanced mucosal mitochondrial function corrects dysbiosis and OXPHOS metabolism in IBD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.584471. [PMID: 38559035 PMCID: PMC10979996 DOI: 10.1101/2024.03.14.584471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Mitochondrial (Mito) dysfunction in IBD reduces mucosal O2 consumption and increases O2 delivery to the microbiome. Increased enteric O2 promotes blooms of facultative anaerobes (eg. Proteobacteria ) and restricts obligate anaerobes (eg. Firmicutes ). Dysbiotic metabolites negatively affect host metabolism and immunity. Our novel compound (AuPhos) upregulates intestinal epithelial cell (IEC) mito function, attenuates colitis and corrects dysbiosis in humanized Il10-/- mice. We posit that AuPhos corrects IBD-associated dysbiotic metabolism. Methods Primary effect of AuPhos on mucosal Mito respiration and healing process was studied in ex vivo treated human colonic biopsies and piroxicam-accelerated (Px) Il10-/- mice. Secondary effect on microbiome was tested in DSS-colitis WT B6 and germ-free 129.SvEv WT or Il10-/- mice reconstituted with human IBD stool (Hu- Il10-/- ). Mice were treated orally with AuPhos (10- or 25- mg/kg; q3d) or vehicle, stool samples collected for fecal lipocalin-2 (f-LCN2) assay and microbiome analyses using 16S rRNA sequencing. AuPhos effect on microbial metabolites was determined using untargeted global metabolomics. AuPhos-induced hypoxia in IECs was assessed by Hypoxyprobe-1 staining in sections from pimonidazole HCl-infused DSS-mice. Effect of AuPhos on enteric oxygenation was assessed by E. coli Nissle 1917 WT (aerobic respiration-proficient) and cytochrome oxidase (cydA) mutant (aerobic respiration-deficient). Results Metagenomic (16S) analysis revealed AuPhos reduced relative abundances of Proteobacteria and increased blooms of Firmicutes in uninflamed B6 WT, DSS-colitis, Hu-WT and Hu- Il10-/- mice. AuPhos also increased hypoxyprobe-1 staining in surface IECs suggesting enhanced O2 utilization. AuPhos-induced anaerobiosis was confirmed by a significant increase in cydA mutant compared to WT (O2-utlizing) E.coli . Ex vivo treatment of human biopsies with AuPhos showed significant increase in Mito mass, and complexes I and IV. Further, gene expression analysis of AuPhos-treated biopsies showed increase in stem cell markers (Lgr4, Lgr5, Lrig1), with concomitant decreases in pro-inflammatory markers (IL1β,MCP1, RankL). Histological investigation of AuPhos-fed Px- Il10-/- mice showed significantly decreased colitis score in AuPhos-treated Px- Il10-/- mice, with decrease in mRNA of pro-inflammatory cytokines and increase in Mito complexes ( ND5 , ATP6 ). AuPhos significantly altered microbial metabolites associated with SCFA synthesis, FAO, TCA cycle, tryptophan and polyamine biosynthesis pathways. AuPhos increased pyruvate, 4-hydroxybutyrate, 2-hydroxyglutarate and succinate, suggesting an upregulation of pyruvate and glutarate pathways of butyrate production. AuPhos reduced IBD-associated primary bile acids (BA) with concomitant increase in secondary BA (SBA). AuPhos treatment significantly decreased acylcarnitines and increased L-carnitine reflective of enhanced FAO. AuPhos increases TCA cycle intermediates and creatine, energy reservoir substrates indicating enhanced OxPHOS. Besides, AuPhos also upregulates tryptophan metabolism, decreases Kynurenine and its derivatives, and increases polyamine biosynthesis pathway (Putresceine and Spermine). Conclusion These findings indicate that AuPhos-enhanced IEC mitochondrial function reduces enteric O2 delivery, which corrects disease-associated metabolomics by restoring short-chain fatty acids, SBA, AA and IEC energy metabolism. Graphical abstract
Collapse
|
3
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Structure of mitoribosome reveals mechanism of mRNA binding, tRNA interactions with L1 stalk, roles of cofactors and rRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542018. [PMID: 37503168 PMCID: PMC10369894 DOI: 10.1101/2023.05.24.542018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNA Val . The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transition in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide the most complete description so far of the structure and function of the human mitoribosome.
Collapse
|
4
|
Bekebrede AF, Keijer J, Gerrits WJJ, de Boer VCJ. The Molecular and Physiological Effects of Protein-Derived Polyamines in the Intestine. Nutrients 2020; 12:E197. [PMID: 31940783 PMCID: PMC7020012 DOI: 10.3390/nu12010197] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Consumption of a high-protein diet increases protein entry into the colon. Colonic microbiota can ferment proteins, which results in the production of protein fermentation end-products, like polyamines. This review describes the effects of polyamines on biochemical, cellular and physiological processes, with a focus on the colon. Polyamines (mainly spermine, spermidine, putrescine and cadaverine) are involved in the regulation of protein translation and gene transcription. In this, the spermidine-derived hypusination modification of EIF5A plays an important role. In addition, polyamines regulate metabolic functions. Through hypusination of EIF5A, polyamines also regulate translation of mitochondrial proteins, thereby increasing their expression. They can also induce mitophagy through various pathways, which helps to remove damaged organelles and improves cell survival. In addition, polyamines increase mitochondrial substrate oxidation by increasing mitochondrial Ca2+-levels. Putrescine can even serve as an energy source for enterocytes in the small intestine. By regulating the formation of the mitochondrial permeability transition pore, polyamines help maintain mitochondrial membrane integrity. However, their catabolism may also reduce metabolic functions by depleting intracellular acetyl-CoA levels, or through production of toxic by-products. Lastly, polyamines support gut physiology, by supporting barrier function, inducing gut maturation and increasing longevity. Polyamines thus play many roles, and their impact is strongly tissue- and dose-dependent. However, whether diet-derived increases in colonic luminal polyamine levels also impact intestinal physiology has not been resolved yet.
Collapse
Affiliation(s)
- Anna F. Bekebrede
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (A.F.B.); (J.K.)
- Animal Nutrition Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands;
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (A.F.B.); (J.K.)
| | - Walter J. J. Gerrits
- Animal Nutrition Group, Wageningen University and Research, 6708 WD Wageningen, The Netherlands;
| | - Vincent C. J. de Boer
- Human and Animal Physiology, Wageningen University and Research, 6708 WD Wageningen, The Netherlands; (A.F.B.); (J.K.)
| |
Collapse
|
5
|
Liu G, Fang T, Yan T, Jia G, Zhao H, Chen X, Wu C, Wang J. Systemic responses of weaned rats to spermine against oxidative stress revealed by a metabolomic strategy. RSC Adv 2014. [DOI: 10.1039/c4ra09975c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Ca2+ -independent effects of spermine on pyruvate dehydrogenase complex activity in energized rat liver mitochondria incubated in the absence of exogenous Ca2+ and Mg2+. Amino Acids 2008; 36:449-56. [PMID: 18500430 DOI: 10.1007/s00726-008-0099-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/29/2008] [Indexed: 10/22/2022]
Abstract
In the absence of exogenous Ca(2+) and Mg(2+) and in the presence of EGTA, which favours the release of endogenous Ca(2+), the polyamine spermine is able to stimulate the activity of pyruvate dehydrogenase complex (PDC) of energized rat liver mitochondria (RLM). This stimulation exhibits a gradual concentration-dependent trend, which is maximum, about 140%, at 0.5 mM concentration, after 30 min of incubation. At concentrations higher than 0.5 mM, spermine still stimulates PDC, when compared with the control, but shows a slight dose-dependent decrease. Changes in PDC stimulation are very close to the phosphorylation level of the E(1alpha) subunit of PDC, which regulates the activity of the complex, but it is also the target of spermine. In other words, progressive dephosphorylation gradually enhances the stimulation of RLM and progressive phosphorylation slightly decreases it. These results provide the first evidence that, when transported in RLM, spermine can interact in various ways with PDC, showing dose-dependent behaviour. The interaction most probably takes place directly on a specific site for spermine on one of the regulatory enzymes of PDC, i.e. pyruvate dehydrogenase phosphatase (PDP). The interaction of spermine with PDC may also involve activation of another regulatory enzyme, pyruvate dehydrogenase kinase (PDK), resulting in an increase in E(1alpha) phosphorylation and consequently reduced stimulation of PDC at high polyamine concentrations. The different effects of spermine in RLM are discussed, considering the different activities of PDP and PDK isoenzymes. It is suggested that the polyamine at low concentrations stimulates the isoenzyme PDP(2) and at high concentrations it stimulates PDK(2).
Collapse
|
7
|
Gandre S, Bercovich Z, Kahana C. Mitochondrial localization of antizyme is determined by context-dependent alternative utilization of two AUG initiation codons. Mitochondrion 2005; 2:245-56. [PMID: 16120325 DOI: 10.1016/s1567-7249(02)00105-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2002] [Revised: 11/04/2002] [Accepted: 11/06/2002] [Indexed: 01/11/2023]
Abstract
Ornithine decarboxylase-antizyme (Az), a polyamine-induced protein that targets ornithine decarboxylase (ODC) to rapid degradation, is synthesized as two isoforms. Studies performed in vitro indicated that the 29 and 24.5 kDa isoforms originate from translation initiation at two alternative initiation codons. Using transient transfections we demonstrate here that also in cells the two isoforms are synthesized from two AUG codons with the second being utilized more efficiently. The more efficient utilization of the second AUG is due to its location within a better sequence context for translation initiation. By using immunostaining we demonstrate that only the less expressed long form of Az is localized in the mitochondria. Moreover, this long isoform of Az and not the more efficiently expressed short isoform is imported into mitochondria in an in vitro uptake assay. Our data therefore demonstrate that a single Az transcript gives rise to two Az proteins with different N-terminal sequence and that the longer Az form containing a potential N-terminal mitochondrial localization signal is transported to mitochondria.
Collapse
Affiliation(s)
- Shilpa Gandre
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
8
|
Clarkson AN, Liu H, Pearson L, Kapoor M, Harrison JC, Sammut IA, Jackson DM, Appleton I. Neuroprotective effects of spermine following hypoxia‐ischemia‐induced brain damage: A mechanistic study. FASEB J 2004; 18:1114-6. [PMID: 15132986 DOI: 10.1096/fj.03-1203fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The polyamines (spermine, putrescine, and spermidine) can have neurotoxic or neuroprotective properties in models of neurodegeneration. However, assessment in a model of hypoxia-ischemia (HI) has not been defined. Furthermore, the putative mechanisms of neuroprotection have not been elucidated. Therefore, the present study examined the effects of the polyamines in a rat pup model of HI and determined effects on key enzymes involved in inflammation, namely, nitric oxide synthase (NOS) and arginase. In addition, effects on mitochondrial function were investigated. The polyamines or saline were administered i.p. at 10mg/kg/day for 6 days post-HI. Histological assessment 7 days post-HI revealed that only spermine significantly (P<0.01) reduced infarct size from 46.14 +/- 10.4 mm3 (HI + saline) to 4.9 +/- 2.7 mm3. NOS activity was significantly increased following spermine treatment in the left (ligated) hemisphere compared with nonintervention controls (P<0.01) and HI + saline (P<0.05). In contrast, spermine decreased arginase activity compared with HI + saline but was still significantly elevated in comparison to nonintervention controls (P<0.01). Assessment of mitochondrial function in the HI + saline group, revealed significant and extensive damage to complex-I (P<0.01) and IV (P<0.001) and loss of citrate synthase activity (P<0.05). No effect on complex II-III was observed. Spermine treatment significantly prevented all these effects. This study has therefore confirmed the neuroprotective effects of spermine in vivo. However, for the first time, we have shown that this effect may, in part, be due to increased NOS activity and preservation of mitochondrial function.
Collapse
Affiliation(s)
- Andrew N Clarkson
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Votyakova TV, Wallace HM, Dunbar B, Wilson SB. The covalent attachment of polyamines to proteins in plant mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 260:250-7. [PMID: 10091605 DOI: 10.1046/j.1432-1327.1999.00147.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant mitochondria from both potato and mung bean incorporated radioactivity into acid insoluble material when incubated with labelled polyamines (spermine, spermidine and putrescine). Extensive washing of mitochondrial precipitates with trichloroacetic acid and the excess of cold polyamine failed to remove bound radioactivity. Addition of nonradioactive polyamine stopped further incorporation of radioactivity but did not release radioactivity already bound. The radioactivity is incorporated into the membrane fraction. The labelling process has all the features of an enzymatic reaction: it is long lasting with distinctive kinetics peculiar to each polyamine, it is temperature dependent and is affected by N-ethylmaleimide. The latter inhibits the incorporation of putrescine but stimulates the incorporation of spermine and spermidine. Treatment of prelabelled mitochondria with pepsin releases bound radioactivity thus indicating protein to be the ligand for the attachment of polyamines. HPLC of mitochondrial hydrolysates revealed that the radioactivity bound to mitochondria is polyamines; traces of acetyl polyamines were also found in some samples. On autoradiograms of SDS/PAGE gels several radioactive bands of proteins were detected. Protein sequencing of labelled spots from a 2D gel gave a sequence which was 60% identical to catalase. We suggest that the attachment of polyamines to mitochondrial proteins occurs cotranslationally possibly via transglutaminases.
Collapse
Affiliation(s)
- T V Votyakova
- Department of Molecular and Cell Biology, University of Aberdeen, Scotland
| | | | | | | |
Collapse
|
10
|
Rustenbeck I, Eggers G, Reiter H, Münster W, Lenzen S. Polyamine modulation of mitochondrial calcium transport. I. Stimulatory and inhibitory effects of aliphatic polyamines, aminoglucosides and other polyamine analogues on mitochondrial calcium uptake. Biochem Pharmacol 1998; 56:977-85. [PMID: 9776308 DOI: 10.1016/s0006-2952(98)00232-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this study, the regulation of mitochondrial Ca2+ transport by polyamines structurally related to spermine and by analogous polycationic compounds was characterized. Similar to spermine, a number of amino groups containing cationic compounds exerted a dual effect on Ca2+ transport of isolated rat liver mitochondria: a decrease in Ca2+ uptake velocity and an enhancement of Ca2+ accumulation. In contrast to the effects of spermine and other aliphatic polyamines, however, the accumulation-enhancing effect of aminoglucosides, basic polypeptides, and metal-amine complexes turned into an inhibition of Ca2+ accumulation at higher concentrations. Within groups of structurally related compounds, the potency to decrease Ca2+ uptake velocity and to enhance Ca2+ accumulation correlated with the number of cationic charges. The presence of multiple, distributed cationic charges was a necessary, but not sufficient criterion for effects on mitochondrial Ca2+ transport, because cationic polyamines and basic oligopeptides which did not enhance mitochondrial Ca2+ accumulation could be identified. Spermine was not able to antagonize the blocking of Ca2+ uptake by ruthenium red, but rather showed an apparent synergism, which can be explained as a displacement of membrane-bound Ca2+ by spermine. The aminoglucosides, gentamicin and neomycin, but not the inactive polyamine bis(hexamethylene)-triamine, inhibited the binding of spermine to intact mitochondria. Apparently, the binding of spermine, gentamicin, and a number of polyamine analogues to low-affinity binding sites at mitochondria, which have low, but distinct structural requirements and which may correspond to phospholipid headgroups, indirectly influences the activity state of the mitochondrial Ca2+ uniporter. The ability of aminoglucosides to displace spermine from the mitochondria and to inhibit mitochondrial Ca2+ accumulation may contribute to the mitochondrial lesions, which are known to occur early in the course of aminoglucoside-induced nephrotoxicity.
Collapse
Affiliation(s)
- I Rustenbeck
- Institute of Pharmacology and Toxicology, University of Göttingen, Germany
| | | | | | | | | |
Collapse
|
11
|
Marverti G, Piccinini G, Ghiaroni S, Barbieri D, Quaglino D, Moruzzi MS. N1,N12-bis(ethyl)spermine effect on growth of cis-diamminedichloroplatinum(II)-sensitive and -resistant human ovarian-carcinoma cell lines. Int J Cancer 1998; 78:33-40. [PMID: 9724091 DOI: 10.1002/(sici)1097-0215(19980925)78:1<33::aid-ijc7>3.0.co;2-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The results presented here demonstrate that a cis-diamminedichloroplatinum(II) (DDP)-resistant human ovarian-carcinoma cell line is also cross-resistant to the spermine analogue N1,N12-bis(ethyl)spermine (BESPM). We report that C13* cells, which are approximately 20-fold resistant to DDP, similarly showed 7-fold resistance to BESPM by colony-forming assay with an IC50 value of 24.6 +/- 2 microM vs. 3.4 +/- 0.8 microM of 2008 cells. Resistance appears to be the result of many effects, such as different morphological and functional modifications of mitochondria. Furthermore, although BESPM accumulation was almost identical in sensitive and resistant cells, the intracellular polyamine pool of the 2 cell lines was differentially affected by this polyamine analogue. In fact, when spermidine (SPD) was still detectable in C13* cells, in 2008 cells it was not, and the spermine (SPM) content was always more markedly reduced in sensitive cells than in the resistant variant. The lower polyamine content of 2008 cells could be related to a higher degree of induction of spermidine/ spermine N1-acetyltransferase (SSAT) activity by BESPM in sensitive cells than in their resistant counterpart. Despite the observed cross-resistance, the combination of the 2 drugs resulted in supra-additive and synergistic effects in both cell lines, depending on concentration, as assessed by median-effect analysis of the survival data. The effectiveness of this combination was also confirmed by the increased accumulation of cells in the G2/M phase of the cell cycle in both cell lines. Taken together, these data suggest that BESPM effect on cell growth of DDP-sensitive and DDP-resistant cells involves multiple mechanisms that are differently modulated by the DDP-resistant phenotype.
Collapse
Affiliation(s)
- G Marverti
- Department of Biomedical Sciences, University of Modena, Italy
| | | | | | | | | | | |
Collapse
|
12
|
George P, Louisot P, Levrat C. A possible involvement of endogenous polyamines in the TNF-alpha cellular sensitivity. FEBS Lett 1998; 425:371-5. [PMID: 9559682 DOI: 10.1016/s0014-5793(98)00268-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A critical step in the cytotoxic action mechanism of tumor necrosis factor-alpha (TNF-alpha) involves, among mitochondrial dysfunctions, an early change of the inner membrane permeability displaying the characteristics of permeability transition. Cytosolic polyamines, especially spermine, are known to inhibit it. Our results show that spermine is only detectable in the TNF-alpha resistant C6 cells while N1-acetylspermidine is present in the TNF-alpha sensitive WEHI-164 cells, and putrescine and spermidine are found in both. TNF-alpha treatment does not change this distribution but only induces a quantitative alteration in TNF-alpha sensitive cells. Omission of glutamine (energetic substrate) from the culture media alters neither the TNF-alpha responsiveness of both cell lines nor their polyamine distributions, only their quantitative polyamine contents.
Collapse
Affiliation(s)
- P George
- Department of Biochemistry, INSERM-CNRS 189, Lyon-Sud Medical School, Oullins, France
| | | | | |
Collapse
|
13
|
Madesh M, Balasubramanian KA. Activation of intestinal mitochondrial phospholipase D by polyamines and monoamines. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1348:324-30. [PMID: 9366248 DOI: 10.1016/s0005-2760(97)00074-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Intestinal mitochondria have a phospholipase D (PLD) activity which was stimulated by polyamines and monoamines resulting in the formation of phosphatidic acid (PA) from endogenous phospholipids. When stimulated by polyamines, mitochondrial PLD utilized endogenous phosphatidylethanolamine (PE) as substrate whereas stimulated by monoamines, both PE and phosphatidylcholine (PC) were hydrolysed. Stimulation of PA formation by spermine was enhanced by the presence of calcium. Since polyamines are known to alter the calcium transport by mitochondria and PA is known to possess an ionophore effect, stimulation of PA formation in mitochondria by polyamines suggests that polyamine-induced alteration in calcium homeostasis might involve a PA related mechanism.
Collapse
Affiliation(s)
- M Madesh
- Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore, India
| | | |
Collapse
|
14
|
Affiliation(s)
- M Zoratti
- CNR Unit for the Physiology of Mitochondria, Department of Biomedical Sciences, Padova, Italy
| | | |
Collapse
|
15
|
Abstract
Spermine has been identified as a potent antioxidant and an anti-inflammatory agent. The compound is present in all organisms and all organs. The concentration is exceptionally high in skin, and I propose that spermine constitutes a prime defence against radiation damage. This hypothesis is substantiated by the fact that ornithine decarboxylase (ODC), the rate-controlling enzyme of spermine biosynthesis, is induced by UVB-irradiation and oxidative stress. On the contrary, inhibition of ODC makes cells more sensitive to radiation damage. The antioxidative effect of spermine may be due to metal chelation and/or to prevention of superoxide generation from stimulated neutrophils. This paper reviews the antioxidative and anti-inflammatory effects of spermine, and suggests that spermine is an important antioxidant of epidermis.
Collapse
Affiliation(s)
- E Løvaas
- Institute of Biology and Geology, University of Tromsø, Norway
| |
Collapse
|
16
|
Kovacevic Z, Day SH, Collett V, Brosnan JT, Brosnan ME. Activation of hepatic glutaminase by spermine. Biochem J 1995; 305 ( Pt 3):837-41. [PMID: 7848284 PMCID: PMC1136335 DOI: 10.1042/bj3050837] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Glutaminase activity in intact mitochondria from rat liver is activated by spermine, as indicated both by increased glutamate production from glutamine and by increased respiration with glutamine as sole substrate. Glutaminase activity assayed in membranes from frozen-thawed mitochondria, is activated by spermine about 6-fold at physiological concentrations of its other effectors (NH4+ at 0.7 mM, Pi 5 mM) and at pH 7.4. Spermine decreased the apparent Km for glutamine from 38 to 15 mM at 5 mM Pi, and increased the sensitivity of the enzyme for phosphate activation so that the concentration required for 50% stimulation decreased from 15 to 4 mM. Half-maximal spermine effects occurred at 0.15 mM, which is in the physiological range. Spermine was effective in the presence of physiological concentrations of Mg2+. We suggest that spermine may be a physiological activator of hepatic glutaminase.
Collapse
Affiliation(s)
- Z Kovacevic
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Canada
| | | | | | | | | |
Collapse
|
17
|
Cestaro B. Effects of arginine, S-adenosylmethionine and polyamines on nerve regeneration. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 1994; 154:32-41. [PMID: 7941963 DOI: 10.1111/j.1600-0404.1994.tb05407.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Axon growth and axon regeneration are complex processes requiring an adequate supply of certain metabolic precursors and nutrients. MATERIAL AND METHODS This article reviews the studies examining some of the processes of protein modification fundamental to both nerve regeneration and to the continuous and adequate supply of specific factors such as arginine, S-adenosylmethionine and polyamines. RESULTS The process of arginylation notably increases following nerve injury and during subsequent regeneration of the nerve, with the most likely function of arginine-modification of nerve proteins being the degradation of proteins damaged through injury. It appears that defective methyl group metabolism may be one of the leading causes of demyelination, as suggested by the observation of reduced cerebrospinal fluid concentrations of s-adenosylmethionine (SAMe) and 5-methyltetrahydrofolate, the key metabolites in methylation processes, in patients with a reduction in myelination of corticospinal tracts. Polyamine synthesis, which depends strongly on the availability of both SAMe and arginine, markedly increases in neurons soon after an injury. This "polyamine-response" has been found to be essential for the survival of the parent neurons after injury to their axons. Polyamines probably exert their effects through involvement in DNA, RNA and protein synthesis, or through post-translational modifications that are indicated as the most relevant events of the "axon reaction." CONCLUSIONS Nerve regeneration requires the presence of arginine, s-adenosylmethionine, and polyamines. Further studies are needed to explore the mechanisms involved in these processes.
Collapse
Affiliation(s)
- B Cestaro
- Department of Biological Chemistry, University of Milan School of Medicine, Italy
| |
Collapse
|
18
|
Kogure K, Fukuzawa K, Kawano H, Terada H. Spermine accelerates iron-induced lipid peroxidation in mitochondria by modification of membrane surface charge. Free Radic Biol Med 1993; 14:501-7. [PMID: 8394269 DOI: 10.1016/0891-5849(93)90107-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The polyamine spermine was found to make the mitochondrial membrane more susceptible to lipid peroxidation induced by adenosine 5'-diphosphate (ADP)/Fe2+. It shortened the lag time before induction of peroxidation, but did not affect the rate of lipid peroxidation. It had no effect on lipid peroxidation of electrically neutral egg yolk phosphatidylcholine liposomes, but had an effect on lipid peroxidation of negatively charged liposomes consisting of egg yolk phosphatidylcholine and bovine heart cardiolipin similar to that on peroxidation in mitochondria. Spermine decreased the negative zeta-potential of these negatively charged liposomes consisting of phosphatidylcholine and cardiolipin. These results suggest that the hydrophilic polycation spermine reduces the negative charge on the surface of mitochondrial membrane, possibly by its interaction with negatively charged polar heads of phospholipids, and that this neutralization of the surface charge renders the mitochondrial membrane more susceptible to induction of lipid peroxidation induced by ADP/Fe2+.
Collapse
Affiliation(s)
- K Kogure
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | |
Collapse
|
19
|
Lapidus RG, Sokolove PM. Inhibition by spermine of the inner membrane permeability transition of isolated rat heart mitochondria. FEBS Lett 1992; 313:314-8. [PMID: 1446752 DOI: 10.1016/0014-5793(92)81217-a] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of spermine on the permeability transition of the inner mitochondrial membrane of isolated rat heart mitochondria was evaluated. The permeability transition was triggered using a series of agents (t-butyl hydroperoxide, phenylarsine oxide, carboxyatractylate, and elevated Ca2+ and inorganic phosphate concentrations), and was monitored via Ca(2+)-release, mitochondrial swelling and pyridine nucleotide oxidation. By all three criteria, spermine inhibited the transition. A C50 of 0.38 +/- 0.06 (SD) mM was measured for inhibition.
Collapse
Affiliation(s)
- R G Lapidus
- Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore 21201
| | | |
Collapse
|
20
|
Evidence that spermine, spermidine, and putrescine are transported electrophoretically in mitochondria by a specific polyamine uniporter. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)36975-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
21
|
Lenzen S, Münster W, Rustenbeck I. Dual effect of spermine on mitochondrial Ca2+ transport. Biochem J 1992; 286 ( Pt 2):597-602. [PMID: 1530590 PMCID: PMC1132939 DOI: 10.1042/bj2860597] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. A dual effect of the polyamine spermine on Ca2+ uptake by isolated rat liver, brain and heart mitochondria could be demonstrated by using a high-resolution system for studying mitochondrial Ca2+ transport. Depending on the experimental situation, spermine had an inhibiting or accelerating effects on mitochondrial Ca(2+)-uptake rate, but invariably increased the mitochondrial Ca2+ accumulation. 2. Both effects were concentration-dependent and clearly discernible on the basis of their different kinetic characteristics. For mitochondria from all three tissues the half-maximally effective concentration for inhibition of the initial rate of Ca2+ uptake was approx. 180 microM, whereas that for the subsequent stimulation of Ca2+ accumulation was approx. 50 microM. 3. Acceleration of the initial uptake rate could be seen when the mitochondria were preloaded with spermine during a 2 min preincubation period and thereafter incubated in a medium without spermine. 4. When such spermine-preloaded mitochondria were incubated in a spermine-containing medium, the increase in Ca(2+)-accumulation capacity was maintained in spite of an unchanged rate of Ca2+ uptake. 5. Mg2+ interacted with the effects of spermine in a differential manner, enhancing the initial inhibition of the rate of mitochondrial Ca2+ uptake and diminishing the subsequent stimulation of mitochondrial Ca2+ accumulation. 6. This dual effect of spermine on mitochondrial Ca2+ transport resolves the apparent paradox that a polycationic compound can act as a stimulator of Ca2+ uptake.
Collapse
Affiliation(s)
- S Lenzen
- Institute of Pharmacology and Toxicology, University of Göttingen, Federal Republic of Germany
| | | | | |
Collapse
|
22
|
Abstract
In spite of their abundance, the function of PAs in the adult nervous system remains enigmatic. It is postulated that after trauma, the induction of polyamine metabolism (i.e. the polyamine response), which is inherently transient, is an integral part of a protective biochemical program that is essential for neuronal survival. Several functions ascribed to PAs may assume importance in cellular defense. Thus, regulation of the ionic environment, modulation of signal pathways, control of cellular Ca2+ homeostasis, inhibition of lipid peroxidation, and interaction with nucleic acids are all putative sites for PA action. During maturation, the CNS, unlike the peripheral nervous system, undergoes changes which result in the expression of an incomplete polyamine response after trauma. This may be due to an altered pattern of gene expression, and/or restrictive compartmentalization of the PAs and their metabolizing enzymes. Induction of this partial polyamine response after injury results in a sustained accumulation of putrescine, which by itself may be harmful, without the concomitant increase in spermidine and spermine. Administration of exogenous PAs after trauma exerts a neuroprotective effect. Exogenous PAs are postulated to gain access into cells via an induced uptake system after trauma, and function similarly to newly synthesized PAs. Besides the injured neurons themselves, tissues which are connected or associated with these neurons may be potential targets where PAs could act to stimulate neurotrophic factor production. Based on the neuroprotective effects of PAs in laboratory animals and on their proposed role in mechanisms of neuronal survival, the development of PA-based compounds as therapeutic neuroprotective agents should be pursued.
Collapse
Affiliation(s)
- G M Gilad
- Neuropsychiatry Branch, NIMH Neurosciences Center at Saint Elizabeths, Washington, DC 20032
| | | |
Collapse
|
23
|
Gilad GM, Gilad VH. Polyamines can protect against ischemia-induced nerve cell death in gerbil forebrain. Exp Neurol 1991; 111:349-55. [PMID: 1999235 DOI: 10.1016/0014-4886(91)90102-i] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously demonstrated that administration of the polyamines putrescine, spermidine, or spermine can prevent neuronal degeneration in rats during naturally occurring cell death or after injurious treatments such as nerve injury or monosodium glutamate neurotoxicity. The present study demonstrates that also in adult gerbils polyamine treatment can protect forebrain neurons from degeneration after ischemia. Neurons in the hippocampus and striatum were rescued from delayed cell death after brief (5 min) global ischemia in gerbils which were treated with daily injections (10 mg/kg) of polyamines. The evidence accrued, so far, indicates that systemic polyamines can protect a wide variety of central and peripheral neurons from natural or induced degeneration.
Collapse
Affiliation(s)
- G M Gilad
- Neuropsychiatry Branch, NIMH Neuroscience Center, Saint Elizabeths, Washington, D.C. 20032
| | | |
Collapse
|
24
|
Yoshino M, Yamada Y, Murakami K. Activation by spermine of citrate synthase from porcine heart. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:200-2. [PMID: 1991136 DOI: 10.1016/0304-4165(91)90202-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spermine activated citrate synthase from porcine heart by decreasing the Km value for the substrate oxaloacetate without affecting the maximal velocity. Spermine markedly increased the maximal velocity of the saturation function with respect to acetyl-CoA as the substrate under conditions of intracellular concentrations of oxaloacetate, but the enzyme was not activated by spermine under conditions of higher concentrations of oxaloacetate. The concentration of spermine required for 50% activation of the enzyme was about 50 microM. Spermidine showed only a little activation, while putrescine caused no activation. Spermine, which contributes to an activation of Ca2(+)-sensitive dehydrogenases of the citric acid cycle by enhancing Ca2+ uptake into mitochondria, can activate citrate synthase directly, and is responsible for the stimulation of oxidative metabolism in mitochondria.
Collapse
Affiliation(s)
- M Yoshino
- Department of Genetics, Institute for Developmental Research, Aichi Prefectural Colony, Kasugai, Japan
| | | | | |
Collapse
|
25
|
Affiliation(s)
- F Schuber
- Laboratoire de Chimie Enzymatique Université Louis Pasteur, Institut de Botanique, Strasbourg, France
| |
Collapse
|
26
|
Cabrini L, Tadolini B, Landi L, Fiorentini D, Sechi AM. The influence of polyunsaturated fatty acids on spermine inhibition of lipoperoxidation. Studies on liposomes prepared with microsomal and mitochondrial phospholipids of sea bass (Dicentrarchus labrax L.) and rat liver. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1989; 93:647-51. [PMID: 2758801 DOI: 10.1016/0305-0491(89)90390-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. Composition of phospholipids extracted from different organelles of European sea bass liver was determined and compared with that of phospholipids extracted from the same organelles of rat liver. 2. Spermine binding to the vesicles prepared from microsomal and mitochondrial phospholipids and their aggregation was studied: these parameters indicate that only the presence of acidic phospholipids and not their unsaturation was essential for polyamine action. 3. No correlation exists between polyunsaturated fatty acid and spermine inhibition of lipid peroxidation. In fact microsomal phospholipids, which have a low content of acidic phospholipids, and a prevalent presence of phosphatidylinositol, are not protected by spermine. 4. Mitochondrial phospholipids, which have high content of cardiolipin, elicit the capability of spermine to inhibit lipid peroxidation.
Collapse
Affiliation(s)
- L Cabrini
- Department of Biochemistry, University of Bologna, Italy
| | | | | | | | | |
Collapse
|
27
|
|
28
|
Diwan JJ, Yune HH, Bawa R, Haley T, Mannella CA. Enhanced uptake of spermidine and methylglyoxal-bis(guanylhydrazone) by rat liver mitochondria following outer membrane lysis. Biochem Pharmacol 1988; 37:957-61. [PMID: 3345205 DOI: 10.1016/0006-2952(88)90188-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Isolated rat liver mitochondria rapidly bound the 14C-labeled organic cations spermidine, a physiologically important polyamine, and methylglyoxal-bis(guanylhydrazone) (MGBG), an anticancer drug. This rapid, Mg2+-sensitive, respiration-independent binding is assumed to involve adsorption to anionic surface groups. A slower progressive uptake of the organic cations exhibited respiration dependence, indicating that it involves transport across the inner mitochondrial membrane into the matrix compartment. Addition of digitonin, to lyse the outer mitochondrial membrane, caused an increase in the mitochondrial content of the organic cations and enhanced the rate of progressive, respiration-dependent cation uptake. The data are consistent with the interpretation that the outer mitochondrial membrane limits access of the organic cations, spermidine and MGBG, to the inner mitochondrial membrane. This conclusion is supported also by published data indicating that outer membrane lysis enhances inhibitory effects of the organic cations on mitochondrial respiration. The uptake of spermidine by mitochondria was inhibited by MGBG.
Collapse
Affiliation(s)
- J J Diwan
- Biology Department, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
| | | | | | | | | |
Collapse
|
29
|
Toninello A, Siliprandi D, Castagnini P, Novello MC, Siliprandi N. Bidirectional transport of spermine across the inner membrane of liver mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 250:491-6. [PMID: 3076335 DOI: 10.1007/978-1-4684-5637-0_43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- A Toninello
- Centro Studio Fisiologia Mitocondriale CNR, Padova
| | | | | | | | | |
Collapse
|
30
|
Hernández-Yago J, González-Bosch C, Miralles VJ, Marcote MJ, Grisolía S. Polyamines stimulate the "in vitro" transport of the precursor of ornithine carbamoyltransferase into rat liver mitochondria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1988; 250:497-508. [PMID: 3255240 DOI: 10.1007/978-1-4684-5637-0_44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- J Hernández-Yago
- Instituto de Investigaciones Citológicas de la Caja de Ahorros de Valencia, Valencia, Spain
| | | | | | | | | |
Collapse
|
31
|
González-Bosch C, Miralles VJ, Hernández-Yago J, Grisolia S. Spermidine and spermine stimulate the transport of the precursor of ornithine carbamoyltransferase into rat liver mitochondria. Biochem Biophys Res Commun 1987; 149:21-6. [PMID: 3689412 DOI: 10.1016/0006-291x(87)91599-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have examined the effect of low molecular weight components of the transport mixture generally used for the import of rat liver pre-ornithine carbamoyltransferase by isolated rat liver mitochondria. These studies revealed that spermidine and spermine, at physiological concentrations, stimulate the transport of the precursor of ornithine carbamoyltransferase into mitochondria. This stimulatory effect of spermidine and spermine is concentration-dependent and is completely inhibited at higher than physiological concentrations (20 mM for spermidine and 4 mM for spermine). Magnesium ions, which also have a stimulatory effect, inhibit the stimulatory effect of spermidine.
Collapse
Affiliation(s)
- C González-Bosch
- Instituto de Investigaciones Citológicas, de la Caja de Ahorros de Valencia, Spain
| | | | | | | |
Collapse
|
32
|
|
33
|
Toninello A, Di Lisa F, Siliprandi D, Siliprandi N. Uptake of spermine by rat liver mitochondria and its influence on the transport of phosphate. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 815:399-404. [PMID: 3922414 DOI: 10.1016/0005-2736(85)90366-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Spermine, a polyamine present in the mammalian cells at rather high concentration, has, among other actions, a remarkable stabilizing effect on mitochondria, functions which have generally been attributed to the capability of this and other polyamines to bind to membrane anionic sites. In the present paper evidence is provided that at physiological concentrations spermine may also be transported into rat liver mitochondrial matrix space, provided that mitochondria are energized and inorganic phosphate is simultaneously transported. The close dependence of spermine transport is also demonstrated by the concurrent efflux of spermine and inorganic phosphate when mitochondria preloaded with the two ionic species are deenergized either with uncouplers or respiratory chain inhibitors. Furthermore, Mersalyl, the known inhibitor of phosphate transport, prevents both spermine uptake and release. Mg2+ inhibits the transport of spermine conceivably by competing for the some binding sites on the mitochondrial membrane. The physiological significance of these results is discussed.
Collapse
|
34
|
Abstract
This review surveys the literature about changes in polyamine contents and levels of activity of the enzymes involved in the polyamine biosynthetic pathway in organs of ageing mammals. The literature about changes in the polyamine levels in physiological fluids in healthy ageing humans is also reviewed. Generally speaking, decreases in the levels of the main polyamines (noticeably putrescine and spermidine) are observed in different mammalian organs with ageing. The polyamine levels in serum and in urine of healthy human beings are also age-related, declining progressively with increasing age. Some major enzymes (i.e., ornithine decarboxylase (EC 4.1.1.17) and S-adenosyl-L-methionine decarboxylase (EC 4.1.1.50) involved in the polyamine biosynthetic pathway show similar trends. Hormonal induction of ornithine decarboxylase activity is strongly reduced in organs of aged animals, as it is in neoplastic organs. There is also some evidence for an age-related decrease in the level of ornithine decarboxylase and its inducibility in mammalian cells cultured in vitro. Some in vitro effects of spermidine and spermine on aged structures or systems are briefly summarized. There is no evidence yet that this generally reduced capacity of mammalian aged organs for polyamine biosynthesis is one of the factors responsible for the well known high incidence of some neoplasias in elderly humans. In view of the typical stimulatory effects of the tumour promoters on polyamine biosynthesis in target tissues and the effects of senescence on the same metabolic pathway, it can be excluded that the ageing process has a tumour promoting effect by itself. However, although the exact mechanism responsible for the increased occurrence of some tumors during mammalian senescence is still obscure, there are enough experimental data (both in humans and in animals) to indicate that the reduced polyamine biosynthetic capacity of aged mammals can account for the slower course of some tumors in elderly patients.
Collapse
|
35
|
Nikula P, Alhonen-Hongisto L, Seppänen P, Jänne J. Inhibition of long-chain fatty acid oxidation by methylglyoxal bis(guanylhydrazone). Biochem Biophys Res Commun 1984; 120:9-14. [PMID: 6712703 DOI: 10.1016/0006-291x(84)91406-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Methylglyoxal bis(guanylhydrazone) (MGBG), an inhibitor of spermidine and spermine biosynthesis and clinically used anti-cancer drug, powerfully inhibited carnitine-dependent fatty acid oxidation in heart muscle homogenates. Equipotent inhibition was also produced by spermine whereas spermidine and putrescine were less effective. MGBG appeared to act as a competitive inhibitor in respect to carnitine. Even though MGBG and spermine equally effectively depressed palmitate oxidation in muscle homogenates in vitro, a striking difference existed between the compounds as regards their effects on fatty acid oxidation in cultured tumor cells. Micromolar concentrations of MGBG distinctly impaired palmitate utilization also in cultured L 1210 leukemia cells, whereas similar concentrations of spermine markedly enhanced the oxidation of the fatty acid. The inhibitory effect of MGBG in cultured tumor cells was, at least partly, reversed upon addition of exogenous carnitine. The finding indicating that MGBG impairs fatty acid utilization may be an explanation for the known hypoglycemic effect produced by the drug in most animal species as well as for some of the side-effects associated with its clinical use, most notably severe myalgia.
Collapse
|
36
|
Solaini G, Tadolini B. Spermine binding to submitochondrial particles and activation of adenosine triphosphatase. Biochem J 1984; 218:495-9. [PMID: 6231925 PMCID: PMC1153365 DOI: 10.1042/bj2180495] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Studies on the effects of polyamines on oligomycin-sensitive ATPase activity of ox heart submitochondrial particles showed that, of the polyamines tested, only spermine affected the enzyme activity. Spermine within the physiological concentration range increased the Vmax. of the enzyme, but the Km for ATP was virtually unaffected. Binding studies of [14C]spermine to submitochondrial particles, under the same conditions as used for the ATPase assay, showed that the spermine binds to submitochondrial particles in a co-operative way; Hill plots of the data gave a Hill coefficient of 2 and a Kd of 8 microM. When submitochondrial particles were treated with trypsin, ATPase was not stimulated by spermine and the amount of spermine bound concomitantly was drastically decreased. The ATPase activity of isolated F1-ATPase was not affected by spermine. Removal of the natural protein ATPase inhibitor did not suppress either the stimulation of the ATPase activity by spermine or the spermine binding to the particles. The results obtained suggested that the polyamine binds and acts at the level of the liaison between the coupling factor F1 and the membrane sector F0 of the ATPase complex.
Collapse
|