1
|
Abstract
Self-adjuvanting vaccines, covalent conjugates between antigens and adjuvants, are chemically well-defined compared with conventional vaccines formulated through mixing antigens with adjuvants. Innate immune receptor ligands effectively induce acquired immunity through the activation of innate immunity, thereby enhancing host immune responses. Thus, innate immune receptor ligands are often used as adjuvants in self-adjuvanting vaccines. In a self-adjuvanting vaccine, the covalent linkage of antigen and adjuvant enables their simultaneous uptake into immune cells where the adjuvant consequently induces antigen-specific immune responses. Importantly, self-adjuvanting vaccines do not require immobilization to carrier proteins or co-administration of additional adjuvants and thus avoid inducing undesired immune responses. Because of these excellent properties, self-adjuvanting vaccines are expected to be candidates for next-generation vaccines. Here, we take an overview of vaccine adjuvants, mainly focusing on those utilized in self-adjuvanting vaccines and then we review recent reports on self-adjuvanting conjugate vaccines.
Collapse
|
2
|
Ledwoń P, Errante F, Papini AM, Rovero P, Latajka R. Peptides as Active Ingredients: A Challenge for Cosmeceutical Industry. Chem Biodivers 2021; 18:e2000833. [PMID: 33348441 DOI: 10.1002/cbdv.202000833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Cosmeceutical field, which merges cosmetics and pharmaceuticals, is nowadays a highly investigated research area, because a scientific demonstration of the claimed bioactivity of new cosmeceutical ingredients is increasingly requested. In fact, an aspect differentiating traditional cosmetics from cosmeceuticals is the identification and characterization of the active ingredients and demonstrating its efficacy in the claimed activity. An interesting group of bioactive cosmeceutical ingredients are peptides, which due to their particular properties, meets most of the requirements presented by the cosmeceutical industry when composing new formulas. In this context, beside bioactivity, two additional aspects have been recently considered, when dealing with peptides as cosmeceutical ingredients: bioavailability and stability. We describe herein novel methods applied in order to enhance peptides skin-penetration and stability, reviewing both scientific articles and patents, issued in the cosmeceutical arena.
Collapse
Affiliation(s)
- Patrycja Ledwoń
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Firenze, Italy.,Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| | - Fosca Errante
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Firenze, Italy.,Espikem S.r.l., 59100, Prato, Italy
| | - Anna Maria Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry 'Ugo Schiff', University of Florence, 50019, Sesto Fiorentino, Firenze, Italy
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Firenze, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, 50-370, Wroclaw, Poland
| |
Collapse
|
3
|
Manabe Y, Chang TC, Fukase K. Recent advances in self-adjuvanting glycoconjugate vaccines. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:61-71. [PMID: 34895656 DOI: 10.1016/j.ddtec.2020.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/21/2020] [Accepted: 11/26/2020] [Indexed: 01/02/2023]
Abstract
Compared to traditional vaccines that are formulated into mixtures of an adjuvant and an antigen, a self-adjuvanting vaccine consists of an antigen that is covalently conjugated to a well-defined adjuvant. In self-adjuvanting vaccines, innate immune receptor ligands are usually used as adjuvants. Innate immune receptor ligands effectively trigger acquired immunity through the activation of innate immunity to enhance host immune responses to antigens. When a self-adjuvanting vaccine is used, immune cells simultaneously uptake the antigen and the adjuvant because they are covalently linked. Consequently, the adjuvant can specifically induce immune responses against the conjugated antigen. Importantly, self-adjuvanting vaccines do not require co-administration of additional adjuvants or immobilization to carrier proteins, which enables avoidance of the use of highly toxic adjuvants or the induction of undesired immune responses. Given these excellent properties, self-adjuvanting vaccines are expected to serve as candidates for the next generation of vaccines. Herein, we review vaccine adjuvants, with a focus on the adjuvants used in self-adjuvanting vaccines, and then overview recent advances made with self-adjuvanting conjugate vaccines.
Collapse
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Japan; Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Japan.
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Japan; Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, Japan.
| |
Collapse
|
4
|
Aiga T, Manabe Y, Ito K, Chang T, Kabayama K, Ohshima S, Kametani Y, Miura A, Furukawa H, Inaba H, Matsuura K, Fukase K. Immunological Evaluation of Co‐Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self‐Adjuvanting Anti‐Breast‐Cancer Vaccine Candidates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Taku Aiga
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Keita Ito
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Tsung‐Che Chang
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Kazuya Kabayama
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Shino Ohshima
- School of Medicine Tokai University Isehara Kanagawa 259-1193 Japan
| | - Yoshie Kametani
- School of Medicine Tokai University Isehara Kanagawa 259-1193 Japan
| | - Ayane Miura
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| | - Hiroto Furukawa
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology Graduate School of Engineering Center for Research on Green Sustainable Chemistry Tottori University 4-101 Koyama-Minami Tottori 680-8552 Japan
| | - Koichi Fukase
- Department of Chemistry Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
- Core for Medicine and Science Collaborative Research and Education Project Research Center for Fundamental Sciences Graduate School of Science Osaka University 1-1 Machikaneyama, Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
5
|
Aiga T, Manabe Y, Ito K, Chang TC, Kabayama K, Ohshima S, Kametani Y, Miura A, Furukawa H, Inaba H, Matsuura K, Fukase K. Immunological Evaluation of Co-Assembling a Lipidated Peptide Antigen and Lipophilic Adjuvants: Self-Adjuvanting Anti-Breast-Cancer Vaccine Candidates. Angew Chem Int Ed Engl 2020; 59:17705-17711. [PMID: 32583549 DOI: 10.1002/anie.202007999] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Indexed: 12/22/2022]
Abstract
Co-assembling vaccines composed of a lipidated HER2-derived antigenic CH401 peptide and either a lipophilic adjuvant, Pam3 CSK4 , α-GalCer, or lipid A 506, were evaluated as breast cancer vaccine candidates. This vaccine design was aimed to inherit both antigen multivalency and antigen-specific immunostimulation properties, observed in reported self-adjuvanting vaccine candidates, by using self-assembly and adjuvant-conjugated antigens. Under vaccination concentrations, respective lipophilic adjuvants underwent co-assembly with lipidated CH401, which boosted the anti-CH401 IgG and IgM production. In particular, α-GalCer was responsible for the most significant immune activation. Therefore, the newly developed vaccine design enabled the optimization of adjuvants against the antigenic CH401 peptide in a simple preparatory manner. Overall, the co-assembling vaccine design opens the door for efficient and practical self-adjuvanting vaccine development.
Collapse
Affiliation(s)
- Taku Aiga
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Keita Ito
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Tsung-Che Chang
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Shino Ohshima
- School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Yoshie Kametani
- School of Medicine, Tokai University, Isehara, Kanagawa, 259-1193, Japan
| | - Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Hiroto Furukawa
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Hiroshi Inaba
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Center for Research on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-Minami, Tottori, 680-8552, Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.,Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| |
Collapse
|
6
|
Nakata T, Yasuda M, Fujita M, Kataoka H, Kiura K, Sano H, Shibata K. CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the receptor complex of Toll-like receptors 2 and 1 without binding to the complex. Cell Microbiol 2006; 8:1899-909. [PMID: 16848791 DOI: 10.1111/j.1462-5822.2006.00756.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
It has demonstrated that the recognition of triacylated lipopeptides by Toll-like receptor (TLR) 2 requires TLR1 as a coreceptor. In the NF-kappaB reporter assay system in which human embryonic kidney 293 cells were transfected with TLR2 and TLR1 together with an NF-kappaB luciferase reporter gene, S-(2,3-bispalmitoyloxypropyl)-N-palmitoyl-Cys-Lys-Lys-Lys-Lys (Pam(3)CSK(4)) and Pam(3)CSSNA were recognized by TLR2/TLR1, but the recognition level was unexpectedly very low. However, cotransfection of CD14 drastically enhanced the recognition of triacylated lipopeptides by TLR2/TLR1. The CD14-induced enhancement did not occur without cotransfection of TLR1. Both CD14(dS39-A48), a mutant with deletion of the part of possible N-terminal ligand-binding pocket, and anti-CD14 monoclonal antibody reduced the CD14-induced enhancement. Transfection of a TIR domain-deficient mutant of TLR2 (TLR2(dE772-S784)) or TLR1 (TLR1(dQ636-K779)) completely abrogated the CD14-induced enhancement. Soluble recombinant CD14 added extracellularly enhanced the recognition of Pam(3)CSSNA by TLR2/TLR1. Immunoprecipitation analysis demonstrated that CD14 was not associated with TLR2 but that TLR1 was associated with TLR2. In addition, surface plasmon resonance-based assay demonstrated that CD14 binds to Pam(3)CSK(4) at a dissociation constant of 5.7 microM. This study suggests that CD14 directly binds to triacylated lipopeptides and facilitates recognition of the lipopeptides by the TLR2/TLR1 complex without binding to the receptor complex.
Collapse
Affiliation(s)
- Takashi Nakata
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Nishi 7, Kita 13, Kita-ku, Sapporo 060-8586, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Shibata KI, Fujita M, Morita M. Structure-function Relationship of Mycoplasmal Lipoproteins/lipopeptides and Their Recognition by Toll-like Receptor 2. J Oral Biosci 2004. [DOI: 10.1016/s1349-0079(04)80003-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Okusawa T, Fujita M, Nakamura JI, Into T, Yasuda M, Yoshimura A, Hara Y, Hasebe A, Golenbock DT, Morita M, Kuroki Y, Ogawa T, Shibata KI. Relationship between structures and biological activities of mycoplasmal diacylated lipopeptides and their recognition by toll-like receptors 2 and 6. Infect Immun 2004; 72:1657-65. [PMID: 14977973 PMCID: PMC355991 DOI: 10.1128/iai.72.3.1657-1665.2004] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The lipopeptide FSL-1 [S-(2,3-bispalmitoyloxypropyl)-Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe, Pam(2)CGDPKHPKSF] synthesized on the basis of the N-terminal structure of a Mycoplasma salivarium lipoprotein capable of activating normal human gingival fibroblasts to induce the cell surface expression of ICAM-1 revealed an activity to induce production of monocyte chemoattractant protein 1, interleukin-6 (IL-6), and IL-8. FSL-1 also activated macrophages to produce tumor necrosis factor alpha as the Mycoplasma fermentans-derived lipopeptide MALP-2 (Pam(2)CGNNDESNISFKEK), a potent macrophage-activating lipopeptide, did. The level of the activity of FSL-1 was higher than that of MALP-2. This result suggests that the difference in the amino acid sequence of the peptide portion affects the activity because the framework structure other than the amino acid sequence of the former is the same as that of the latter. To determine minimal structural requirements for the activity of FSL-1, the diacylglyceryl Cys and the peptide portions were examined for this activity. Both portions did not reveal the activity. A single amino acid substitution from Phe to Arg and a fatty acid substitution from palmitic acid to stearic acid drastically reduced the activity. Similar results were obtained in measuring the NF-kappaB reporter activity of FSL-1 to human embryonic kidney 293 cells transfected with Toll-like receptor 2 and 6, together with a NF-kappaB-dependent luciferase reporter plasmid. These results suggest that both the diacylglyceryl and the peptide portions of FSL-1 are indispensable for the expression of biological activities and for the recognition by Toll-like receptors 2 and 6 and that the recognition of FSL-1 by Toll-like receptors 2 and 6 appears to be hydrophobic.
Collapse
Affiliation(s)
- Tsugumi Okusawa
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Nishi 7, Kita 13, Kita-kuSapporo 060-8586, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Fujita M, Into T, Yasuda M, Okusawa T, Hamahira S, Kuroki Y, Eto A, Nisizawa T, Morita M, Shibata KI. Involvement of Leucine Residues at Positions 107, 112, and 115 in a Leucine-Rich Repeat Motif of Human Toll-Like Receptor 2 in the Recognition of Diacylated Lipoproteins and Lipopeptides andStaphylococcus aureusPeptidoglycans. THE JOURNAL OF IMMUNOLOGY 2003; 171:3675-83. [PMID: 14500665 DOI: 10.4049/jimmunol.171.7.3675] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
S-(2,3-bispalmitoyloxypropyl)Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) derived from Mycoplasma salivarium stimulated NF-kappaB reporter activity in human embryonic kidney 293 (HEK293) cells transfected with Toll-like receptor 2 (TLR2) or cotransfected with TLR2 and TLR6, but not in HEK293 cells transfected with TLR6, in a dose-dependent manner. The activity was significantly higher in HEK293 cells transfected with both TLR2 and TLR6 than in HEK293 cells transfected with only TLR2. The deletion mutant TLR2(DeltaS40-I64) (a TLR2 mutant with a deletion of the region of Ser(40) to Ile(64)) failed to activate NF-kappaB in response to FSL-1. The deletion mutant TLR2(DeltaC30-S39) induced NF-kappaB reporter activity, but the level of activity was significantly reduced compared with that induced by wild-type TLR2. A TLR2 point mutant with a substitution of Glu(178) to Ala (TLR2(E178A)), TLR2(E180A), TLR2(E190A), and TLR2(L132E) induced NF-kappaB activation when stimulated with FSL-1, M. salivarium lipoproteins, and Staphylococcus aureus peptidoglycans, but TLR2(L107E), TLR2(L112E) (a TLR2 point mutant with a substitution of Leu(112) to Glu), and TLR2(L115E) failed to induce NF-kappaB activation, suggesting that these residues are essential for their signaling. Flow cytometric analysis demonstrated that TLR2(L115E), TLR2(L112E), and TLR2(DeltaS40-I64) were expressed on the cell surface of the transfectants as wild-type TLR2 and TLR2(E190A) were. In addition, these mutants, except for TLR2(E180A), functioned as dominant negative form of TLR2. This study strongly suggested that the extracellular region of Ser(40)-Ile(64) and leucine residues at positions 107, 112, and 115 in a leucine-rich repeat motif of TLR2 are involved in the recognition of mycoplasmal diacylated lipoproteins and lipopeptides and in the recognition of S. aureus peptidoglycans.
Collapse
Affiliation(s)
- Mari Fujita
- Department of Oral Pathobiological Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dmitriev BA, Ovchinnikov MV, Lapina EB, Pluzhnikova GN, Lopyrev IV, Chernyak AYa. Glycopeptidolipids--a new class of artificial antigens with carbohydrate determinants. Synthesis of artificial antigen with type-specific oligosaccharide hapten from Neisseria meningitidis group B. Glycoconj J 1992; 9:168-73. [PMID: 1422136 DOI: 10.1007/bf00731161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic lipopeptide N-palmitoyltyrosyl-seryl-seryl-asparaginyl-alanine, an analogue of B-mitogenic tripalmitoyl-pentapeptide from Escherichia coli lipoprotein, was coupled with an oligosaccharide hapten from Neisseria meningitidis lipooligosaccharide to give a glycopeptidolipid conjugate--the artificial antigen of a new type processing the type-specific microbial determinant.
Collapse
Affiliation(s)
- B A Dmitriev
- N.F. Gamaleya Institute for Epidemiology and Microbiology, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
11
|
Wolf B, Bessler WG. [Electron energy loss spectroscopy (EELS) as a method for the localization of antigens and other substances in cells and tissues]. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 1990; 77:110-5. [PMID: 2188143 DOI: 10.1007/bf01134470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The localization of antigens and other substances in cells and tissues by electron microscopy is usually performed by immunohistochemical techniques employing labelled conventional or monoclonal antibodies. For the ultrastructural localization of the antibodies, they are coupled to electron-dense labels like gold or ferritin. Here, we demonstrate a novel method to localize antigens in cells, tissues, and on other supports. By electron energy loss spectroscopy (EELS) it is possible to directly analyze the distribution of antigens, metabolites or other substances without the use of labelled antibodies: as an example we demonstrate the distribution of the immunomodulator lipopeptide in B lymphocytes and macrophages. EELS represents a novel, sensitive, and generally applicable method for the detection and localization of antigens and other substances in biology and medicine.
Collapse
Affiliation(s)
- B Wolf
- Arbeitsgruppe Medizinische Physik und Arbeitsgruppe Zelluläre Immunologie der Universität
| | | |
Collapse
|
12
|
Wolf B, Uhl B, Hauschildt S, Metzger J, Jung G, Bessler WG. Interaction of the lymphoid cell line BCL1 with lipopeptide analogues of bacterial lipoprotein: electron energy loss spectroscopy (EELS) as a novel method to detect the distribution of the activator within the cells. Immunobiology 1989; 180:93-100. [PMID: 2625355 DOI: 10.1016/s0171-2985(89)80033-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The lipopeptide Pam3Cys-Ser, a synthetic analogue of the N-terminal part of bacterial lipoprotein, constitutes a potent activator for B lymphocytes, monocytes/macrophages and several lymphoid cell lines. We applied the novel method of electron energy loss spectroscopy (EELS) to determine, after stimulation, the distribution of the activator within the cell compartments of the lipopeptide sensitive cell line BCL1. Our results show that the lipopeptide, 20 min after the addition to the cell culture, was found at different locations within the cell: A major amount of the mitogen was found in the plasma membrane. Remarkably, considerable amounts of the activator were also found on the cytoplasm, the nuclear membrane, and the nucleus. After 24 h, a substantial amount of the lipopeptide was still present within the cells. These findings should help to elucidate the molecular mechanism of lymphocyte stimulation by lipopeptides. The novel method of EELS, which was demonstrated here using lipopeptides as examples, constitutes a valuable tool of localizing any given compounds such as growth factors or drugs within cells.
Collapse
Affiliation(s)
- B Wolf
- Institut für Immunbiologie, Universitt Freiburg, Federal Republic of Germany
| | | | | | | | | | | |
Collapse
|
13
|
Wolf B, Hauschildt S, Uhl B, Metzger J, Jung G, Bessler WG. Localization of the cell activator lipopeptide in bone marrow-derived macrophages by electron energy loss spectroscopy (EELS). Immunol Lett 1989; 20:121-6. [PMID: 2714842 DOI: 10.1016/0165-2478(89)90096-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthetic lipopeptide analogues of bacterial lipoprotein constitute potent polyclonal activators for monocytes/macrophages and B lymphocytes. However, the fate of the lipopeptides after their interaction with target cells is as yet unknown. In order to follow the routes and to determine the distribution of the lipopeptide within macrophages after stimulation, we investigated lipopeptide-stimulated bone marrow-derived macrophages using the novel method of electron energy loss spectroscopy (EELS). Our results show that the lipopeptide was present in different compartments of the cell. The major amount of the activator was located within the cytoplasm and the plasma membrane, and minor quantities were detected within the nuclear membrane and the nucleus. The distribution of the lipopeptides varied depending on the duration of stimulation. Our results should help to elucidate the molecular mechanisms of macrophage stimulation by lipopeptides or other cell activators.
Collapse
Affiliation(s)
- B Wolf
- Arbeitsgruppen Elektronenmikroskopie, Albert-Ludwigs-Universität, Freiburg i.Br., F.R.G
| | | | | | | | | | | |
Collapse
|
14
|
Werner GH, Floc'h F, Migliore-Samour D, Jollès P. Immunomodulating peptides. EXPERIENTIA 1986; 42:521-31. [PMID: 3519270 DOI: 10.1007/bf01946691] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
15
|
Vordermeier M, Stäb K, Bessler WG. A defined fragment of bacterial protein I (OmpF) is a polyclonal B-cell activator. Infect Immun 1986; 51:233-9. [PMID: 3484458 PMCID: PMC261092 DOI: 10.1128/iai.51.1.233-239.1986] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protein I from the outer membrane of Escherichia coli and other members of the family Enterobacteriaceae is a potent mitogen and polyclonal B-lymphocyte activator. To determine the part of the polypeptide responsible for biological activity, we cleaved the molecule into defined polypeptide fragments of approximate molecular weights 24,000, 15,000, 9,000, 7,000, and 3,000 by using the cyanogen bromide method. The fragments were purified by gel permeation chromatography and by preparative polyacrylamide gel electrophoresis. They were investigated for mitogenicity and for the induction of immunoglobulin synthesis in lymphocyte cultures from several inbred mouse strains. The fragment of molecular weight 24,000 turned out to be a potent polyclonal B-lymphocyte activator comparable to native protein I. The low-molecular-weight fragments exhibited only marginal effects. Neither purified T lymphocytes nor thymocytes were activated. Our results show that a defined fragment of protein I is responsible for its lymphocyte-stimulating activity.
Collapse
|
16
|
Abstract
A large number of synthetic derivatives, inorganic compounds or naturally occurring substances are able to depress, regulate or enhance the immune response. Immunomodulators, among which some are chemically well defined and others are complex preparations, exhibit a great variety of chemical structures which are briefly reviewed, without details on their immunopharmacological properties. These molecules allow access to a new type of therapy which aims at acting on the host defense mechanisms.
Collapse
|