1
|
Kaczmarczyk M, Regen F, Heuser I, Bajbouj M, Hellmann-Regen J. Inhibition of monoamine oxidase activity by repetitive transcranial magnetic stimulation: implications for inter-train interval and frequency. Eur Arch Psychiatry Clin Neurosci 2020; 270:119-126. [PMID: 30560291 DOI: 10.1007/s00406-018-0969-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a neuromodulation technique that stimulates cortical regions via time-varying electromagnetic fields; in several countries this technique has been approved as a treatment for major depressive disorder. One empirically established target in antidepressant pharmacotherapy is the flavin-containing monoamine oxidoreductase (MAO). The function of MAO enzymes is based on oxidation processes that may be sensitive towards strong electromagnetic fields. Therefore, we hypothesized that rTMS-induced electromagnetic fields impact the activity of this enzyme. Using crude synaptosomal cell preparations from human SH-SY5Y neuroblastoma cells and rat cortex as well as viable cells, we assessed the effects of rTMS on MAO-A and -B activity in a well-controlled in vitro set up. In short, samples were stimulated at maximal intensity with an equal number of total stimuli at frequencies of 5, 20, and 100 Hz. Sham stimulation was performed in parallel. Treatment at frequencies of 5 and 20 Hz significantly decreased mainly MAO-B activity in all tissue preparations and species, whereas 100 Hz stimulation remained without effect on any MAO activity. Our results support the hypothesis, that rTMS-induced electromagnetic fields affect MAO activity and provide further evidence for intracellular effects possibly contributing to therapeutic effects of this neuromodulatory method. On a cautionary note, however, our findings are solely based on in vitro evidence.
Collapse
Affiliation(s)
- Michael Kaczmarczyk
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Francesca Regen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Isabella Heuser
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Malek Bajbouj
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Julian Hellmann-Regen
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Klinik für Psychiatrie und Psychotherapie, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| |
Collapse
|
2
|
The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2018; 19:ijms19123824. [PMID: 30513656 PMCID: PMC6321244 DOI: 10.3390/ijms19123824] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
For a number of years, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) was synonymous with NOX2/gp91phox and was considered to be a peculiarity of professional phagocytic cells. Over the last decade, several more homologs have been identified and based on current research, the NOX family consists of NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 enzymes. NOXs are electron transporting membrane proteins that are responsible for reactive oxygen species (ROS) generation-primarily superoxide anion (O₂●-), although hydrogen peroxide (H₂O₂) can also be generated. Elevated ROS leads to oxidative stress (OS), which has been associated with a myriad of inflammatory and degenerative pathologies. Interestingly, OS is also the commonality in the pathophysiology of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). NOX enzymes are expressed in neurons, glial cells and cerebrovascular endothelial cells. NOX-mediated OS is identified as one of the main causes of cerebrovascular damage in neurodegenerative diseases. In this review, we will discuss recent developments in our understanding of the mechanisms linking NOX activity, OS and neurodegenerative diseases, with particular focus on the neurovascular component of these conditions. We conclude highlighting current challenges and future opportunities to combat age-related neurodegenerative disorders by targeting NOXs.
Collapse
|
3
|
Use of Raman spectroscopy for the identification of radical-mediated damages in human serum albumin. Anal Bioanal Chem 2011; 400:2921-31. [PMID: 21494773 DOI: 10.1007/s00216-011-4970-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/26/2011] [Accepted: 03/28/2011] [Indexed: 01/14/2023]
Abstract
Damages induced by free radicals on human serum albumin (HSA), the most prominent protein in plasma, were investigated by Raman spectroscopy. HSA underwent oxidative and reductive radical stress. Gamma-irradiation was used to simulate the endogenous formation of reactive radical species such as hydrogen atoms ((•)H), solvated electrons (e(aq)(-)) and hydroxyl radicals ((•)OH). Raman spectroscopy was shown to be a useful tool in identifying conformational changes of the protein structure and specific damages occurring at sensitive amino acid sites. In particular, the analysis of the S-S stretching region suggested the radical species caused modifications in the 17 disulphide bridges of HSA. The concomitant action of e(aq)(-) and (•)H atoms caused the formation of cyclic disulphide bridges, showing how cystine pairs act as efficient interceptors of reducing species, by direct scavenging and electron transfer reactions within the protein. This conclusion was further confirmed by the modifications visible in the Raman bands due to Phe and Tyr residues. As regards to protein folding, both oxidative and reductive radical stresses were able to cause a loss in α-helix content, although the latter remains the most abundant secondary structure component. β-turns motifs significantly increased as a consequence of the synergic action of e(aq)(-) and (•)H atoms, whereas a larger increase in the β-sheet content was found following the exposure to (•)OH and/or (•)H attack.
Collapse
|
4
|
Bender T, Leidhold C, Ruppert T, Franken S, Voos W. The role of protein quality control in mitochondrial protein homeostasis under oxidative stress. Proteomics 2010; 10:1426-43. [PMID: 20186747 DOI: 10.1002/pmic.200800619] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Mitochondria contribute significantly to the cellular production of ROS. The deleterious effects of increased ROS levels have been implicated in a wide variety of pathological reactions. Apart from a direct detoxification of ROS molecules, protein quality control mechanisms are thought to protect protein functions in the presence of elevated ROS levels. The reactivities of molecular chaperones and proteases remove damaged polypeptides, maintaining enzyme activities, thereby contributing to cellular survival both under normal and stress conditions. We characterized the impact of oxidative stress on mitochondrial protein homeostasis by performing a proteomic analysis of isolated yeast mitochondria, determining the changes in protein abundance after ROS treatments. We identified a set of mitochondrial proteins as substrates of ROS-dependent proteolysis. Enzymes containing oxidation-sensitive prosthetic groups like iron/sulfur clusters represented major targets of stress-dependent degradation. We found that several proteins involved in ROS detoxification were also affected. We identified the ATP-dependent protease Pim1/LON as a major factor in the degradation of ROS-modified soluble polypeptides localized in the matrix compartment. As Pim1/LON expression was induced significantly under ROS treatment, we propose that this protease system performs a crucial protective function under oxidative stress conditions.
Collapse
Affiliation(s)
- Tom Bender
- Institut für Biochemie und Molekularbiologie, Universität Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
5
|
Liu G, Beri R, Mueller A, Kamp DW. Molecular mechanisms of asbestos-induced lung epithelial cell apoptosis. Chem Biol Interact 2010; 188:309-18. [PMID: 20380827 DOI: 10.1016/j.cbi.2010.03.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/15/2010] [Accepted: 03/30/2010] [Indexed: 01/02/2023]
Abstract
Asbestos causes pulmonary fibrosis (asbestosis) and malignancies (bronchogenic lung cancer and mesothelioma) by mechanisms that are not fully elucidated. Accumulating evidence show that alveolar epithelial cell (AEC) apoptosis is a crucial initiating and perpetuating event in the development of pulmonary fibrosis following exposure to a wide variety of noxious stimuli, including asbestos. We review the important molecular mechanisms underlying asbestos-induced AEC apoptosis. Specifically, we focus on the role of asbestos in augmenting AEC apoptosis by the mitochondria- and p53-regulated death pathways that result from the production of iron-derived reactive oxygen species (ROS) and DNA damage. We summarize emerging evidence implicating the endoplasmic reticulum (ER) stress response in AEC apoptosis in patients with idiopathic pulmonary fibrosis (IPF), a disease with similarities to asbestosis. Finally, we discuss a recent finding that a mitochondrial oxidative DNA repair enzyme (8-oxoguanine DNA glycosylase; Ogg1) acts as a mitochondrial aconitase chaperone protein to prevent oxidant (asbestos and H(2)O(2))-induced AEC mitochondrial dysfunction and intrinsic apoptosis. The coupling of mitochondrial Ogg1 to mitochondrial aconitase is a novel mechanism linking metabolism to mitochondrial DNA that may be important in the pathophysiologic events resulting in oxidant-induced toxicity as seen in tumors, aging, and respiratory disorders (e.g. asbestosis, IPF). Collectively, these studies are illuminating the molecular basis of AEC apoptosis following asbestos exposure that may prove useful for developing novel therapeutic strategies. Importantly, the asbestos paradigm is elucidating pathophysiologic insights into other more common pulmonary diseases, such as IPF and lung cancer, for which better therapy is required.
Collapse
Affiliation(s)
- Gang Liu
- Department of Medicine, Pulmonary & Critical Care Medicine, Jesse Brown VA Medical Center and Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
6
|
Nathan CF, Tsunawaki S. Secretion of toxic oxygen products by macrophages: regulatory cytokines and their effects on the oxidase. CIBA FOUNDATION SYMPOSIUM 2008; 118:211-30. [PMID: 3089712 DOI: 10.1002/9780470720998.ch14] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We are attempting to identify cytokines that regulate macrophage secretion of reactive oxygen intermediates (ROI) and to analyse the biochemical basis of their effects. In both humans and mice, interferon-gamma (IFN-gamma) appears to be the chief factor secreted by clonally unselected lymphocytes that enhances macrophage oxidative metabolism and antiprotozoal activity. In vivo administration of recombinant IFN-gamma enhances the ROI secretory capacity of monocytes in humans, and the secretion of ROI and killing of protozoa by peritoneal macrophages in mice. A protein secreted by murine tumours and certain non-malignant cells exerts opposing effects. This macrophage deactivation factor (MDF) both blocks the induction of activation by IFN-gamma and reverses pre-existent activation. MDF action is non-toxic and selective, suppressing the secretion of ROI, killing of intracellular protozoa, and expression of Ia antigen, without inhibiting secretion of several other products, or synthesis of protein, ingestion of particles or adherence to culture vessels. The suppressive effect of MDF is reversed over several days after its removal. This reversal is hastened by IFN-gamma. Profound suppression of oxidative metabolism accompanies the differentiation of murine monocytes into Kupffer cells. The capacity of Kupffer cells to secrete ROI and kill intracellular protozoa remains deficient even after exposure to IFN-gamma. Thus, four states of macrophage activation can provisionally be discerned: the transition of mouse peritoneal macrophages from the non-activated to the activated state is accompanied by a ninefold increase in affinity of the superoxide-producing enzyme for NADPH, without a marked increase in cellular Vmax or content of cytochrome b559. The MDF-induced transition of mouse peritoneal macrophages from the activated to the deactivated state is accompanied by both an increase in Km and a decrease in apparent V max of the oxidase. There are no changes in the phorbol myristate acetate receptor number or affinity, glucose transport, NADPH levels, cytochrome b559 content, catalase (EC 1.11.1.6) GSH, GSH peroxidase (EC 1.11.1.9), GSH reductase (EC 1.6.4.2) or myeloperoxidase, consistent with the suppressed ROI secretory capacity and antiprotozoal activity of these cells. The Kupffer cell, whose non-responsiveness to IFN-gamma may mark it as inactivated, appears to lack detectable NADPH oxidase activity, despite the probable presence of cytochrome b559, and in this regard differs from both non-activated and deactivated macrophages.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
7
|
Rossi F, Bellavite P, Papini E. Respiratory response of phagocytes: terminal NADPH oxidase and the mechanisms of its activation. CIBA FOUNDATION SYMPOSIUM 2008; 118:172-95. [PMID: 3015513 DOI: 10.1002/9780470720998.ch12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The chemical composition, properties and activation mechanism of the O2(-)-forming NADPH oxidase of phagocytes were investigated, using partially purified enzyme preparations. Highly active NADPH oxidase was extracted as an aggregate of high Mr from the membranes of neutrophils and macrophages. The enzyme complex contained phospholipids and cytochrome b-245, very little FAD and almost no quinones or NAD(P)H-dye reductase activity. The purification of a polypeptide with a relative molecular mass of 31 500 strictly paralleled the purification of NADPH oxidase, suggesting that this polypeptide is a component of the enzyme. This protein was identified as cytochrome b -245 after dissociation of the proteolipid complex and purification of the cytochrome moiety. The 31 500 Mr protein was phosphorylated in enzyme preparations from activated but not from resting cells. The results indicate that: cytochrome b-245 is a major component of NADPH oxidase; the involvement of NAD(P)H dye reductases in the O2(-)-forming activity is questionable; the cytochrome b-245: FAD ratio in the enzyme complex is much higher than that indicated in crude preparations; the Mr of pig neutrophil cytochrome b-245 is 31 500; the activation of the O-2-forming system involves a process of phosphorylation of cytochrome b-245.
Collapse
|
8
|
Callahan LA, Supinski GS. Diaphragm and cardiac mitochondrial creatine kinases are impaired in sepsis. J Appl Physiol (1985) 2006; 102:44-53. [PMID: 16916915 DOI: 10.1152/japplphysiol.01204.2005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous studies indicate that ATP formation by the electron transport chain is impaired in sepsis. However, it is not known whether sepsis affects the mitochondrial ATP transport system. We hypothesized that sepsis inactivates the mitochondrial creatine kinase (MtCK)-high energy phosphate transport system. To examine this issue, we assessed the effects of endotoxin administration on mitochondrial membrane-bound creatine kinase, an important trans-mitochondrial ATP transport system. Diaphragms and hearts were isolated from control (n = 12) and endotoxin-treated (8 mg.kg(-1).day(-1); n = 13) rats after pentobarbital anesthesia. We isolated mitochondria using techniques that allow evaluation of the functional coupling of mitochondrial creatine kinase MtCK activity to oxidative phosphorylation. MtCK functional activity was established by 1) determining ATP/creatine-stimulated oxygen consumption and 2) assessing total creatine kinase activity in mitochondria using an enzyme-linked assay. We examined MtCK protein content using Western blots. Endotoxin markedly reduced diaphragm and cardiac MtCK activity, as determined both by ATP/creatine-stimulated oxygen consumption and by the enzyme-linked assay (e.g., ATP/creatine-stimulated mitochondrial respiration was 173.8 +/- 7.3, 60.5 +/- 9.3, 210.7 +/- 18.9, was 67.9 +/- 7.3 natoms O.min(-1).mg(-1) in diaphragm control, diaphragm septic, cardiac control, and cardiac septic samples, respectively; P < 0.001 for each tissue comparison). Endotoxin also reduced diaphragm and cardiac MtCK protein levels (e.g., protein levels declined by 39.5% in diaphragm mitochondria and by 44.2% in cardiac mitochondria; P < 0.001 and P = 0.009, respectively, comparing sepsis to control conditions). Our data indicate that endotoxin markedly impairs the MtCK-ATP transporter system; this phenomenon may have significant effects on diaphragm and cardiac function.
Collapse
Affiliation(s)
- Leigh A Callahan
- Pulmonary and Critical Care Division, Department of Medicine, Medical College of Georgia, Augusta, Georgia, USA.
| | | |
Collapse
|
9
|
Bota DA, Davies KJ. Protein degradation in mitochondria: implications for oxidative stress, aging and disease: a novel etiological classification of mitochondrial proteolytic disorders. Mitochondrion 2005; 1:33-49. [PMID: 16120267 DOI: 10.1016/s1567-7249(01)00005-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2001] [Accepted: 03/16/2001] [Indexed: 01/12/2023]
Abstract
The mitochondrial genome encodes just a small number of subunits of the respiratory chain. All the other mitochondrial proteins are encoded in the nucleus and produced in the cytosol. Various enzymes participate in the activation and intramitochondrial transport of imported proteins. To finally take their place in the various mitochondrial compartments, the targeting signals of imported proteins have to be cleaved by mitochondrial processing peptidases. Mitochondria must also be able to eliminate peptides that are internally synthesized in excess, as well as those that are improperly assembled, and those with abnormal conformation caused by mutation or oxidative damage. Damaged mitochondrial proteins can be removed in two ways: either through lysosomal autophagy, that can account for at most 25-30% of the biochemically estimated rates of average mitochondrial catabolism; or through an intramitochondrial proteinolytic pathway. Mitochondrial proteases have been extensively studied in yeast, but evidence in recent years has demonstrated the existence of similar systems in mammalian cells, and has pointed to the possible importance of mitochondrial proteolytic enzymes in human diseases and ageing. A number of mitochondrial diseases have been identified whose mechanisms involve proteolytic dysfunction. Similar mechanisms probably play a role in diminished resistance to oxidative stress, and in the aging process. In this paper we review current knowledge of mammalian mitochondrial proteolysis, under normal conditions and in several disease states, and we propose an etiological classification of human diseases characterized by a decline or loss of function of mitochondrial proteolytic enzymes.
Collapse
Affiliation(s)
- D A Bota
- Ethel Percy Andrus Gerontology Center and Division of Molecular Biology, University of Southern California, Los Angeles, CA-90089-0191, USA
| | | |
Collapse
|
10
|
Callahan LA, Supinski GS. Sepsis induces diaphragm electron transport chain dysfunction and protein depletion. Am J Respir Crit Care Med 2005; 172:861-8. [PMID: 15994462 DOI: 10.1164/rccm.200410-1344oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Sepsis significantly alters skeletal muscle mitochondrial function, but the mechanisms responsible for this abnormality are unknown. OBJECTIVES We postulated that endotoxin elicits specific changes in electron transport chain proteins that produce derangements in mitochondrial function. To examine this issue, we compared the effects of endotoxin-induced sepsis on mitochondrial ATP (adenosine triphosphate) formation and electron transport chain protein composition. METHODS AND MEASUREMENTS Diaphragm mitochondrial oxygen consumption and mitochondrial nicotinamide adenine dinucleotide, reduced form, oxidase assays were measured in control rats (n=13) and rats given endotoxin (8 mg/kg/d) for 12 (n=14), 24 (n=14), 36 (n=14), and 48 h (n=13). Electron transport chain subunits from Complexes I, III, IV, and V were isolated using Blue Native polyacrylamide gel electrophoresis techniques. MAIN RESULTS Endotoxin administration: 1) elicited large reductions in mitochondrial oxygen consumption (e.g., 201+/-3.9 SE natoms O/min/mg for controls and 101+/-4.5 SE natoms O/minutes/mg after 48 h endotoxin, p<0.001), in nicotinamide adenine dinucleotide, reduced form, oxidase activity (p<0.002), and in uncoupled respiration (p<0.001) and 2) induced selective reductions in two subunits of Complex I, three subunits of Complex III, one subunit of Complex IV, and one subunit of Complex V. The time course of depletion of protein subunits mirrored alterations in oxygen consumption. CONCLUSIONS Our data indicate that endotoxin selectively depletes critical components of the electron transport chain that diminishes electron flow, reduces proton pumping and decreases ATP formation.
Collapse
Affiliation(s)
- Leigh A Callahan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta GA 30912-3135, USA.
| | | |
Collapse
|
11
|
Venditti P, De Rosa R, Di Meo S. Effect of thyroid state on susceptibility to oxidants and swelling of mitochondria from rat tissues. Free Radic Biol Med 2003; 35:485-94. [PMID: 12927598 DOI: 10.1016/s0891-5849(03)00331-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effects of the thyroid state on oxidative damage, antioxidant capacity, susceptibility to in vitro oxidative stress and Ca(2+)-induced permeabilization of mitochondria from rat tissues (liver, heart, and gastrocnemious muscle) were examined. Hypothyroidism was induced by administering methimazole in drinking water for 15 d. Hyperthyroidism was elicited by a 10 d treatment of hypothyroid rats with triiodothyronine (10 micro g/100 g body weight). Mitochondrial levels of hydroperoxides and protein-bound carbonyls significantly decreased in hypothyroid tissues and were reported above euthroid values in hypothyroid rats after T(3) treatment. Mitochondrial vitamin E levels were not affected by changes of animal thyroid state. Mitochondrial Coenzyme Q9 levels decreased in liver and heart from hypothyroid rats and increased in all hyperthyroid tissues, while Coenzyme Q10 levels decreased in hypothyroid liver and increased in all hyperthyroid tissues. The antioxidant capacity of mitochondria was not significantly different in hypothyroid and euthyroid tissues, whereas it decreased in the hyperthyroid ones. Susceptibility to in vitro oxidative challenge decreased in mitochondria from hypothyroid tissues and increased in mitochondria from hyperthyroid tissues, while susceptibility to Ca(2+)-induced swelling decreased only in hypothyroid liver mitochondria and increased in mitochondria from all hyperthyroid tissues. The tissue-dependence of the mitochondrial susceptibility to stressful conditions in altered thyroid states can be explained by different thyroid hormone-induced changes in mitochondrial ROS production and relative amounts of mitochondrial hemoproteins and antioxidants. We suggest that susceptibilities to oxidants and Ca(2+)-induced swelling may have important implications for the thyroid hormone regulation of the turnover of proteins and whole mitochondria, respectively.
Collapse
Affiliation(s)
- Paola Venditti
- Dipartimento di Fisiologia Generale ed Ambientale, Università di Napoli, Napoli, Italy
| | | | | |
Collapse
|
12
|
Maianski NA, Roos D, Kuijpers TW. Tumor necrosis factor alpha induces a caspase-independent death pathway in human neutrophils. Blood 2003; 101:1987-95. [PMID: 12393608 DOI: 10.1182/blood-2002-02-0522] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tumor necrosis factor alpha (TNF-alpha) is a cytokine with multiple roles in the immune system, including the induction and potentiation of cellular functions in neutrophils (PMNs). TNF-alpha also induces apoptotic signals leading to the activation of several caspases, which are involved in different steps of the process of cell death. Inhibition of caspases usually increases cell survival. Here, we found that inhibition of caspases by the general caspase inhibitor zVAD-fmk did not prevent TNF-alpha-induced PMN death. After 6 hours of incubation, TNF-alpha alone caused PMN death with characteristic apoptotic features (typical morphologic changes, DNA laddering, external phosphatidyl serine [PS] exposure in the plasma membrane, Bax clustering and translocation to the mitochondria, and degradation of mitochondria), which coincided with activation of caspase-8 and caspase-3. However, in the presence of TNF-alpha, PMNs died even when caspases were completely inhibited. This type of cell death lacked nuclear features of apoptosis (ie, no DNA laddering but aberrant hyperlobulated nuclei without typical chromatin condensation) and demonstrated no Bax redistribution, but it did show mitochondria clustering and plasma membrane PS exposure. In contrast, Fas-triggered PMN apoptosis was completely blocked by zVAD-fmk. Experiments with scavengers of reactive oxygen species (ROS) and with inhibitors of mitochondrial respiration, with PMN-derived cytoplasts (which lack mitochondria) and with PMNs from patients with chronic granulomatous disease (which have impaired nicotinamide adenine dinucleotide phosphate [NADPH] oxidase) indicated that TNF-alpha/zVAD-fmk-induced cell death depends on mitochondria-derived ROS. Thus, TNF-alpha can induce a "classical," caspase-dependent and a "nonclassical" caspase-independent cell death.
Collapse
Affiliation(s)
- Nikolai A Maianski
- Sanquin Research at Central Laboratory of the Netherlands Blood Transfusion Service, Landsteiner Laboratory, and Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
13
|
Bota DA, Davies KJA. Lon protease preferentially degrades oxidized mitochondrial aconitase by an ATP-stimulated mechanism. Nat Cell Biol 2002; 4:674-80. [PMID: 12198491 DOI: 10.1038/ncb836] [Citation(s) in RCA: 425] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial aconitase is sensitive to oxidative inactivation and can aggregate and accumulate in many age-related disorders. Here we report that Lon protease, an ATP-stimulated mitochondrial matrix protein, selectively recognizes and degrades the oxidized, hydrophobic form of aconitase after mild oxidative modification, but that severe oxidation results in aconitase aggregation, which makes it a poor substrate for Lon. Similarly, a morpholino oligodeoxynucleotide directed against the lon gene markedly decreases the amount of Lon protein, Lon activity and aconitase degradation in WI-38 VA-13 human lung fibroblasts and causes accumulation of oxidatively modified aconitase. The ATP-stimulated Lon protease may be an essential defence against the stress of life in an oxygen environment. By recognizing minor oxidative changes to protein structure and rapidly degrading the mildly modified protein, Lon protease may prevent extensive oxidation, aggregation and accumulation of aconitase, which could otherwise compromise mitochondrial function and cellular viability. Aconitase is probably only one of many mitochondrial matrix proteins that are preferentially degraded by Lon protease after oxidative modification.
Collapse
Affiliation(s)
- Daniela A Bota
- Ethel Percy Andrus Gerontology Center, and Division of Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089-0191, USA
| | | |
Collapse
|
14
|
Fujino T, Ishikawa T, Inoue M, Beppu M, Kikugawa K. Characterization of membrane-bound serine protease related to degradation of oxidatively damaged erythrocyte membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1374:47-55. [PMID: 9814851 DOI: 10.1016/s0005-2736(98)00131-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has been shown that erythrocyte membrane proteins become susceptible to degradation by membrane-bound serine protease activity after oxidative modification of the membranes (M. Beppu, M. Inoue, T. Ishikawa, K. Kikugawa, Biochim. Biophys. Acta 1196 (1994) 81-87). The aim of the present study was to clarify the presence of the serine protease in oxidized erythrocyte membranes and to characterize the selectivity of the enzyme to oxidized proteins. Human erythrocytes were oxidized in vitro with xanthine/xanthine oxidase/Fe(III) and oxidized membranes isolated. Proteolytic activity of the membranes toward spectrin obtained from oxidized membranes and bovine serum albumin oxidized with H2O2/horseradish peroxidase was increased by membrane oxidation, and the degradability of the substrates was increased by substrate oxidation. The proteolytic activity was inhibited by the serine protease inhibitor diisopropyl fluorophosphate (DFP). The 72 kDa and 80 kDa proteins in the membranes were labeled by [3H]DFP when detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing conditions and subsequent fluorography. The 72 kDa protein was found to be a serine enzyme, acetylcholine esterase. The 80 kDa protein appeared to be responsible for the degradation of oxidatively damaged proteins. The 80 kDa protein was loosely bound to membranes and readily solubilized into a 0.1% NP-40 detergent solution. The presence of the same 80 kDa protease in intact erythrocyte cytosol was suggested. The increased serine protease activity in oxidized membranes can result from the increased adherence of the cytosolic 80 kDa serine protease to the membranes due to oxidation.
Collapse
Affiliation(s)
- T Fujino
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | |
Collapse
|
15
|
Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P. Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 1998; 187:1477-85. [PMID: 9565639 PMCID: PMC2212268 DOI: 10.1084/jem.187.9.1477] [Citation(s) in RCA: 798] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Murine L929 fibrosarcoma cells treated with tumor necrosis factor (TNF) rapidly die in a necrotic way, due to excessive formation of reactive oxygen intermediates. We investigated the role of caspases in the necrotic cell death pathway. When the cytokine response modifier A (CrmA), a serpin-like caspase inhibitor of viral origin, was stably overexpressed in L929 cells, the latter became 1,000-fold more sensitive to TNF-mediated cell death. In addition, TNF sensitization was also observed when the cells were pretreated with Ac-YVAD-cmk or zDEVD-fmk, which inhibits caspase-1- and caspase-3-like proteases, respectively. zVAD-fmk and zD-fmk, two broad-spectrum inhibitors of caspases, also rendered the cells more sensitive, since the half-maximal dose for TNF-mediated necrosis decreased by a factor of 1,000. The presence of zVAD-fmk also resulted in a more rapid increase of TNF-mediated production of oxygen radicals. zVAD-fmk-dependent sensitization of TNF cytotoxicity could be completely inhibited by the oxygen radical scavenger butylated hydroxyanisole. These results indicate an involvement of caspases in protection against TNF-induced formation of oxygen radicals and necrosis.
Collapse
Affiliation(s)
- D Vercammen
- Laboratory of Molecular Biology, Flanders Interuniversity Institute for Biotechnology and University of Ghent, B-9000 Ghent, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Dean RT, Fu S, Stocker R, Davies MJ. Biochemistry and pathology of radical-mediated protein oxidation. Biochem J 1997; 324 ( Pt 1):1-18. [PMID: 9164834 PMCID: PMC1218394 DOI: 10.1042/bj3240001] [Citation(s) in RCA: 1133] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Radical-mediated damage to proteins may be initiated by electron leakage, metal-ion-dependent reactions and autoxidation of lipids and sugars. The consequent protein oxidation is O2-dependent, and involves several propagating radicals, notably alkoxyl radicals. Its products include several categories of reactive species, and a range of stable products whose chemistry is currently being elucidated. Among the reactive products, protein hydroperoxides can generate further radical fluxes on reaction with transition-metal ions; protein-bound reductants (notably dopa) can reduce transition-metal ions and thereby facilitate their reaction with hydroperoxides; and aldehydes may participate in Schiff-base formation and other reactions. Cells can detoxify some of the reactive species, e.g. by reducing protein hydroperoxides to unreactive hydroxides. Oxidized proteins are often functionally inactive and their unfolding is associated with enhanced susceptibility to proteinases. Thus cells can generally remove oxidized proteins by proteolysis. However, certain oxidized proteins are poorly handled by cells, and together with possible alterations in the rate of production of oxidized proteins, this may contribute to the observed accumulation and damaging actions of oxidized proteins during aging and in pathologies such as diabetes, atherosclerosis and neurodegenerative diseases. Protein oxidation may also sometimes play controlling roles in cellular remodelling and cell growth. Proteins are also key targets in defensive cytolysis and in inflammatory self-damage. The possibility of selective protection against protein oxidation (antioxidation) is raised.
Collapse
Affiliation(s)
- R T Dean
- Cell Biology Unit, The Heart Research Institute, 145-147 Missenden Road, Camperdown, Sydney, NSW 2050, Australia
| | | | | | | |
Collapse
|
17
|
Fernandes R, Pereira P, Ramalho JS, Mota MC, Oliveira CR. An experimental model for the evaluation of lipid peroxidation in lens membranes. Curr Eye Res 1996; 15:395-402. [PMID: 8670739 DOI: 10.3109/02713689608995830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Lipid peroxidation has been associated with a number of specific manifestations related both to lens aging and cataract development. The assessment of the effect of various naturally occurring prooxidants as well as the development of antioxidant strategies has often been limited by the lack of appropriate and simple experimental models. In this study we discuss the adaptation of a method based on the incorporation of a fluorescent probe (parinaric acid) into biological membranes to monitor early stages of lipid peroxidation. After establishing the appropriate conditions, the method can be successfully applied to study peroxidation in bovine lens membranes, allowing for the evaluation of the effect of several free radical generating systems, including the following metal-dependent initiators: ascorbate/ iron, hydrogen peroxide/copper and cumene hydroperoxide/ copper. The inhibitory effect of the chelating agent diethylene-triaminepenta-acetic acid and the competitive hydroxyl radical scavenger sorbitol, was consistently observed on parinaric acid degradation, on hydroxyl radical yield and on the amount of thiobarbituric acid reactive material produced. It could be shown that oxidative degradation of the probe gives direct information on lens membrane susceptibility to a specific peroxidation system. Parinaric acid can therefore be used as an efficient oxidation probe to evaluate oxidative damage inflicted to lens membranes by different systems, allowing also the evaluation of the antioxidant effect of various drugs including those with potential anticataractogenic effect.
Collapse
Affiliation(s)
- R Fernandes
- Department of Ophthalmology and Visual Sciences, Coimbra University Hospitals, Portugal
| | | | | | | | | |
Collapse
|
18
|
Forsmark-Andrée P, Dallner G, Ernster L. Endogenous ubiquinol prevents protein modification accompanying lipid peroxidation in beef heart submitochondrial particles. Free Radic Biol Med 1995; 19:749-57. [PMID: 8582647 DOI: 10.1016/0891-5849(95)00076-a] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article is a study of the relationship between lipid peroxidation and protein modification in beef heart submitochondrial particles, and the protective effect of endogenous ubiquinol (reduced coenzyme Q) against these effects. ADP-Fe3+ and ascorbate were used to initiate lipid peroxidation and protein modification, which were monitored by measuring TBARS and protein carbonylation, respectively. Endogenous ubiquinone was reduced by the addition of succinate and antimycin. The parameters investigated included extraction and reincorporation of ubiquinone, and comparison of the effect of ubiquinol with those of various antioxidant compounds and enzymes, as well as the iron chelator EDTA. Under all conditions employed there was a close correlation between lipid peroxidation and protein carbonylation, and the inhibition of these effects by endogenous ubiquinol. SDS-PAGE analysis revealed a differential effect on individual protein components and its prevention by ubiquinol. Conceivable mechanisms behind the observed oxidative modifications of membrane phospholipids and proteins and of the role of ubiquinol in preventing these effects are considered.
Collapse
Affiliation(s)
- P Forsmark-Andrée
- Division for Medical Cell Biology, Clinical Research Centre at NOVUM, Karolinska Institute, Huddinge, Sweden
| | | | | |
Collapse
|
19
|
Beppu M, Inoue M, Ishikawa T, Kikugawa K. Presence of membrane-bound proteinases that preferentially degrade oxidatively damaged erythrocyte membrane proteins as secondary antioxidant defense. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1196:81-7. [PMID: 7986814 DOI: 10.1016/0005-2736(94)90298-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Human erythrocytes were oxidized with xanthine/xanthine oxidase/ferric ion or ADP/ferric ion at 37 degrees C for several hours. Band 3 protein and spectrin of the oxidized cells were found to be significantly modified as analyzed by radiolabeling with tritiated borohydride. Sodium dodecylsulfate-polyacrylamide gel electrophoresis of the xanthine/xanthine oxidase/ferric iron-oxidized cells and subsequent immunoblotting with anti band 3 protein showed that band 3 protein was fragmented into smaller molecular-weight fragments. When the cell membrane obtained from the oxidized cells were incubated at pH 7.4 and 37 degrees C for several hours in the presence of alpha-tocopherol, extensive degradation of band 3 protein and spectrin was observed. Band 3 protein was found to be most susceptible to the degradation. Degradation of band 3 protein was also observed after similar incubation of the membrane from the ADP/ferric ion-oxidized cells. Membrane-bound serine- and metalloproteinases were responsible for the degradation of band 3 protein, because the degradation was remarkably inhibited by diisopropyl fluorophosphate and phenylmethylsulfonyl fluoride, and partially by ethylenediaminetetraacetic acid. Hence, the membrane proteins became susceptible to membrane-bound proteinases by oxidative stress. This observation suggests that these membrane-bound proteinases exist to remove oxidatively damaged proteins from the cell membrane.
Collapse
Affiliation(s)
- M Beppu
- Tokyo College of Pharmacy, Japan
| | | | | | | |
Collapse
|
20
|
Abstract
A massive expansion of mountain tourism and the practice of sports at altitude (mountaineering, skiing, cycling, hang-gliding, parapente, etc) has been observed in the last decades. This emphasis on new forms of sports and recreation represented as a social phenomenon is accompanied by an increase in the mountain associated-disorders and related-accidents. These include headache, lassitude, pain, difficulty in breathing, rapid heartbeat, and in the worst of the cases loss of consciousness, always possible, manifest by poor judgement, fatigue, etc, and death. However, medical studies are rare, mainly because the molecular mechanisms of tissue damage induced by oxygen free radicals are still poorly understood. Therefore, the goals of the present report are: 1) to summarize the main adaptations of the body at high altitude, introducing the concepts of altitude sickness and oxygen free radicals and their relation; 2) to propose a mechanism of action of oxygen free radicals in the development of this pathology, with special attention in hypoxia and related mechanisms; 3) to suggest a role for antioxidants in the therapy of altitude-related disorders.
Collapse
Affiliation(s)
- E Roche
- Departement de Biochimie Clinique, CMU, Genève, Switzerland
| | | |
Collapse
|
21
|
Giulivi C, Davies KJ. Dityrosine: a marker for oxidatively modified proteins and selective proteolysis. Methods Enzymol 1994; 233:363-71. [PMID: 8015471 DOI: 10.1016/s0076-6879(94)33042-5] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- C Giulivi
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles 90033
| | | |
Collapse
|
22
|
Abstract
Possible mechanisms of cytochrome P450 self-inactivation during catalytic turnover have been considered. Two ways of hemoprotein inactivation are so far known. The first, studied extensively by many authors, is the formation of active substrate intermediates, capable of modifying heme and apoenzyme. The second way, revealed quite recently and resulting from uncoupled cytochrome P450-catalyzed monooxygenase reactions, is yet to be clarified. Briefly, it involves formation of hydrogen peroxide in the hemoprotein active center, which interacts with the enzyme associated Fe2+, thereby generating hydroxyl radicals that bleach the heme and modify the apoenzyme. This mechanism operates with substrates and cytochrome P450 forms with partially coupled monooxygenase reactions, thus causing the formation of hydrogen peroxide as a byproduct.
Collapse
Affiliation(s)
- I I Karuzina
- Institute of Biological and Medical Chemistry, Russian Academy of Medical Sciences, Moscow
| | | |
Collapse
|
23
|
Dean RT, Gieseg S, Davies MJ. Reactive species and their accumulation on radical-damaged proteins. Trends Biochem Sci 1993; 18:437-41. [PMID: 8291091 DOI: 10.1016/0968-0004(93)90145-d] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Hydroperoxides and catechols are described as novel reactive products of radical attack on proteins. These species, like other components of oxidized and otherwise damaged proteins, may accumulate in some biological systems. We propose that the reactive species may then attack other biomolecules, and constitute both a marker and a mechanism of age-related pathologies.
Collapse
Affiliation(s)
- R T Dean
- Cell Biology Group, Heart Research Institute, Sydney, NSW, Australia
| | | | | |
Collapse
|
24
|
Mehrotra S, Viswanathan PN, Kakkar P. Influence of some biological response modifiers on swelling of rat liver mitochondria in vitro. Mol Cell Biochem 1993; 124:101-6. [PMID: 8232281 DOI: 10.1007/bf00929201] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In order to understand any involvement of altered calcium functions in peroxidative membrane damage, the effect of a few chemicals, known to modify specific biological responses involving calcium related functions on mitochondrial swelling in vitro was studied. Histamine caused swelling, whereas antihistamines reduced calcium induced swelling. Anti-inflammatory agents aspirin and indomethacin did not affect the initial rapid phase of swelling but reduced the swelling during the later phase. The uncouplers of oxidative phosphorylation and electron transport chain blockers such as dinitrophenol (DNP), antimycin-A and rotenone reduced swelling and the respiratory inhibitors KCN and sodium azide completely abolished it. Trifluoperazine, an anti-calmodulin agent did not influence the initial phase of calcium induced swelling but in the subsequent phase swelling was reduced. c-AMP as well as calcium ionophores, calcimycin and lasalocid acid, potentiated swelling. Thus agents capable of modulating calcium functions could influence the in vitro swelling of mitochondria.
Collapse
Affiliation(s)
- S Mehrotra
- Ecotoxicology Section, Industrial Toxicology Research Centre, Lucknow, India
| | | | | |
Collapse
|
25
|
Giulivi C, Davies K. Dityrosine and tyrosine oxidation products are endogenous markers for the selective proteolysis of oxidatively modified red blood cell hemoglobin by (the 19 S) proteasome. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)52938-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
26
|
Miura T, Muraoka S, Ogiso T. Oxidative damage to bovine serum albumin induced by hydroxyl radical generating systems of xanthine oxidase + EDTA-Fe3+ and ascorbate + EDTA-Fe3+. Chem Biol Interact 1992; 85:243-54. [PMID: 1337312 DOI: 10.1016/0009-2797(92)90065-s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oxidative damage to bovine serum albumin (BSA) was induced by hydroxyl radical (HO.) generating systems of xanthine oxidase (XO) + EDTA-Fe3+ and ascorbate + EDTA-Fe3+. Formation of bityrosine and loss of tryptophan were observed in the ascorbate + EDTA-Fe3+ system and carbonyl formation was induced by both systems. Mannitol and ethanol very strongly inhibited the carbonyl and/or bityrosine formation, indicating that the oxidative damage to BSA was due to HO(.). The sulfhydryl (SH) groups of BSA were very sensitive to the XO + EDTA-Fe3+ but not to the ascorbate + EDTA-Fe3+ system. Catalase but not hydroxyl radical scavengers or superoxide dismutase strongly inhibited the loss of SH groups, indicating that H2O2 is involved in their oxidation. Fragmentation of BSA was observed during exposure to the XO + EDTA-Fe3+ and ascorbate + EDTA-Fe3+ systems and the products presented a broad band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. Little formation of amine groups was observed in these systems, indicating that little peptide bond cleavage occurred. BSA exposed to the ascorbate + EDTA-Fe3+ system was more readily degraded by trypsin than that exposed to the XO + EDTA-Fe3+ system. Elastase degraded BSA exposed to the ascorbate + EDTA-Fe3+ system but not to the XO + EDTA-Fe3+ system.
Collapse
Affiliation(s)
- T Miura
- Department of Biochemistry, Hokkaido Institute of Pharmaceutical Sciences, Otaru, Japan
| | | | | |
Collapse
|
27
|
Abstract
Numerous experimental data reviewed in the present article indicate that free radical mechanisms contribute to ethanol-induced liver injury. Increased generation of oxygen- and ethanol-derived free radicals has been observed at the microsomal level, especially through the intervention of the ethanol-inducible cytochrome P450 isoform (CYP2E1). Furthermore, an ethanol-linked enhancement in free radical generation can occur through the cytosolic xanthine and/or aldehyde oxidases, as well as through the mitochondrial respiratory chain. Ethanol administration also elicits hepatic disturbances in the availability of non-safely-sequestered iron derivatives and in the antioxidant defense. The resulting oxidative stress leads, in some experimental conditions, to enhanced lipid peroxidation and can also affect other important cellular components, such as proteins or DNA. The reported production of a chemoattractant for human neutrophils may be of special importance in the pathogenesis of alcoholic hepatitis. Free radical mechanisms also appear to be implicated in the toxicity of ethanol on various extrahepatic tissues. Most of the experimental data available concern the gastric mucosa, the central nervous system, the heart, and the testes. Clinical studies have not yet demonstrated the role of free radical mechanisms in the pathogenesis of ethanol-induced cellular injury in alcoholics. However, many data support the involvement of such mechanisms and suggest that dietary and/or pharmacological agents able to prevent an ethanol-induced oxidative stress may reduce the incidence of ethanol toxicity in humans.
Collapse
Affiliation(s)
- R Nordmann
- Department of Biomedical Research on Alcoholism, University René Descartes (Paris V), France
| | | | | |
Collapse
|
28
|
Pigeolet E, Remacle J. Susceptibility of glutathione peroxidase to proteolysis after oxidative alteration by peroxides and hydroxyl radicals. Free Radic Biol Med 1991; 11:191-5. [PMID: 1657737 DOI: 10.1016/0891-5849(91)90171-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Glutathione peroxidase is a key enzyme in the antioxidant system of the cells. This enzyme has been shown to be irreversibly inactivated by H2O2, tert-butyl hydroperoxide (tert-BHP) and hydroxyl radicals when incubated without GSH. We observed that in our experimental conditions glutathione peroxidase was not degraded by trypsin or chymotrypsin while degraded by pronase, papaïn, pepsin, and lysosomal proteases. Hydroxyl radicals and superoxide anions but not H2O2 or tert-BHP could also fragment the enzyme on their own. A former incubation with H2O2, tert-BHP, or hydroxyl radicals also increased the proteolytic susceptibility of glutathione peroxidase. Like superoxide dismutase (SOD) and other oxidatively denatured proteins, glutathione peroxidase inactivated by peroxides or free radicals seems to be degraded preferentially by proteases. As hydroxyl radicals can fragment the enzyme by themselves, the increased proteolytic susceptibility afterwards is easily understood while the increased susceptibility induced by H2O2 and tert-BHP seems to be more specific.
Collapse
Affiliation(s)
- E Pigeolet
- Laboratoire de Biochimie Cellulaire, Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium
| | | |
Collapse
|
29
|
LeBel CP, Bondy SC. Persistent protein damage despite reduced oxygen radical formation in the aging rat brain. Int J Dev Neurosci 1991; 9:139-46. [PMID: 2058416 DOI: 10.1016/0736-5748(91)90004-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The relation between cerebral oxygen radicals and the aging process was investigated in crude synaptosomal (P2) fractions from rats. The rate of formation of oxygen radicals was measured using the probe 2',7'-dichlorofluorescein diacetate (DCFH-DA), which is de-esterified and subsequently oxidized by oxygen radicals to a fluorescent product 2',7'-dichlorofluorescein (DCF). There was a significant age-dependent decrease in the formation rate of oxygen radicals, observed by decreased formation of DCF. No difference in oxygen radical formation was apparent between age groups following an in vitro challenge with an ascorbate/FeSO4 mixture. This age-dependent decrease in cerebral oxygen radical generation coincided with age-dependent increases in superoxide dismutase. No age-related alterations in lipid order in either the hydrophilic or lipophilic membrane regions were observed using fluorescence polarization analysis. Age-dependent losses in cerebral P2 tryptophan fluorescence (a measure of protein degradation), and increased liberation of [14C]protein fragments into the acid-soluble fraction (a measure of overall proteolytic activity) were observed. Results suggest that aging does not proceed as a result of elevated rates of generation of oxygen radicals, a finding that does not support the proposed free radical theory of aging. The observed age-dependent decrease in the formation of oxygen radicals does not effect membrane lipid order. These findings implicate modifications in proteins and activated protein catabolic pathways as major contributing factors in the normal physiological process of senescence.
Collapse
Affiliation(s)
- C P LeBel
- Department of Community and Environmental Medicine, University of California, Irvine 92717
| | | |
Collapse
|
30
|
al-Rubeai M, Emery AN. Mechanisms and kinetics of monoclonal antibody synthesis and secretion in synchronous and asynchronous hybridoma cell cultures. J Biotechnol 1990; 16:67-85. [PMID: 1366816 DOI: 10.1016/0168-1656(90)90066-k] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetics of monoclonal antibody synthesis and secretion have been studied in synchronous and asynchronous mouse hybridoma cell cultures. Pulse-labelling of IgG followed by immunoprecipitation and quantitation of synthesized and secreted IgG in synchronous cultures show maximum production during G1/S phases. Secretion takes place through exocytotic release of vesicle contents. Pulse-chase experiments show that 71% of the synthesized IgG is secreted within 8 h of the pulsing period and only a further 4% is secreted by 22 h. Higher specific antibody production (QA) is obtained if (a) cells are arrested and then maintained in G1/S phases, (b) viability is decreased during the death phase of batch culture, (c) the dilution rate is decreased in continuous culture or (d) cells are subjected to hydrodynamically induced stress. The increase in QA in all these cases is mainly due to the passive release of the accumulated intracellular antibody. DNA and protein synthetic activity peak during the early exponential phase and decline rapidly during mid and late exponential and death phases. Metabolic activity however peaks up to 20 h after the peak in DNA synthesis, and declines similarly during the death phase. The data are consistent with the idea that slow growth and higher death rates increase QA and that Ig secretion is probably subject to complex intracellular control.
Collapse
Affiliation(s)
- M al-Rubeai
- Centre for Biochemical Engineering, School of Chemical Engineering, University of Birmingham, U.K
| | | |
Collapse
|
31
|
Affiliation(s)
- E R Stadtman
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
32
|
Richter M, Rühle W, Wild A. Studies on the mechanism of photosystem II photoinhibition II. The involvement of toxic oxygen species. PHOTOSYNTHESIS RESEARCH 1990; 24:237-243. [PMID: 24420076 DOI: 10.1007/bf00032311] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/1990] [Indexed: 06/03/2023]
Abstract
In a previous paper it was shown that photoinhibition of reaction centre II of spinach thylakoids was predominantly caused by the degradation of D1-protein. An initial inactivation step at the QB-site was distinguished from its breakdown. The present paper deals with the question as to whether this loss of QB-function is caused by oxygen radical attack. For this purpose the photoinhibition of thylakoids was induced at 20°C in the presence of either superoxide dismutase and catalase or the antioxidants glutathione and ascorbic acid. This resulted in comparable though not total protection of D1-protein, photochemistry and fluorescence from photoinhibition. The combined action of both the enzymatic and the non-enzymatic radical scavenging systems brought about an even more pronounced protective effect against photoinhibition than did either of the two systems singularly at saturating concentrations. The results signify a major contribution of activated oxygen species to the degradation process of D1-protein and the related phenomena of photoinhibition. Thylakoids treated with hydroxyl radicals generated through a Fenton reaction showed a loss of atrazine binding sites, electron transport capacity and variable fluorescence in a similar manner, though not to the same extent, as usually observed following photoinhibitory treatment.
Collapse
Affiliation(s)
- M Richter
- Institute of General Botany of the Johannes Gutenberg University, Saarstr. 21, D-6500, Mainz, FRG
| | | | | |
Collapse
|
33
|
|
34
|
Murakami K, Jahngen JH, Lin SW, Davies KJ, Taylor A. Lens proteasome shows enhanced rates of degradation of hydroxyl radical modified alpha-crystallin. Free Radic Biol Med 1990; 8:217-22. [PMID: 2341052 DOI: 10.1016/0891-5849(90)90066-r] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Proteasome, a high molecular weight protease complex (HMP, approximately 600 kDa) was isolated from bovine eye lens epithelium tissue. In contrast with prior reports, lens proteasome degraded the major lens protein alpha-crystallin and S-carboxymethylated bovine serum albumin at 37 degrees C, mostly to trichloroacetic acid precipitable polypeptides. The proteasome, thus isolated, was labile at 55 degrees C. As indicated by the ability of p-chloromercuribenzoate and N-ethylmaleimide to block activity, a thiol group is required for activity. Alpha-crystallin was oxidized by exposure to 60Co-irradiation under an atmosphere of N2O (1-50 kilorads). This dose delivered 0.1-5.7 mol of hydroxyl radicals per mol of crystallin. Irradiation resulted in increased heterogeneity, aggregation, and fragmentation of the crystallin preparation. The proteolytic susceptibility of alpha-crystallin to the lens HMP was enhanced by the irradiation in a dose-dependent manner up to 20 kilorads (.OH concentration up to 2.3 mol per mol of alpha-crystallin). When 50 kilorads (5.7 mol .OH per mol of alpha-crystallin) was used, there was extensive aggregation and no enhancement in proteolysis over the unirradiated sample. The data indicate that the lens HMP can degrade mildly photooxidized lens proteins, but proteins which are extensively damaged are not degraded and may accumulate. This may be related to cataract formation.
Collapse
Affiliation(s)
- K Murakami
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111
| | | | | | | | | |
Collapse
|
35
|
Davies KJ. Protein oxidation and proteolytic degradation. General aspects and relationship to cataract formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1990; 264:503-11. [PMID: 2244532 DOI: 10.1007/978-1-4684-5730-8_77] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1) Intracellular proteins are subject to oxidative and photooxidative denaturation. 2) Proteolytic systems recognize and selectively degrade oxidatively denatured, and photooxidatively denatured proteins. By degrading mildly denatured proteins these proteolytic systems prevent further oxidative/photooxidative damage which could otherwise result in the formation of cross-linked (undigestible) proteins, or protein fragments with toxic biological activities. Proteolytic systems also provide amino acids for the synthesis of new (replacement) proteins. 3) A 700,000 dalton neutral endoproteinase, which we have called macroxyproteinase or M.O.P., appears to be mostly responsible for the degradation of oxidatively denatured proteins. M.O.P. has been shown to function in red blood cells and in the eye lens, and appears to also exist in many other mammalian cell types. 4) Cataract is a disease associated with aging, and with photooxidative denaturation (and cross-linking) of lens crystallins and other proteins. 5) Both cataract and aging of lens cells are associated with declining proteolytic capacity and diminished antioxidant protection. 6) Lens aging and in vivo photooxidative stress can cause opacity ("cataract"), cross-linking of crystallins, and diminished proteolytic capacity. 7) High levels of dietary ascorbate increase ascorbate concentrations in lens tissue, and are associated with greater resistance of lens proteins and lens proteolytic enzymes to oxidative/photooxidative stress in vitro.
Collapse
Affiliation(s)
- K J Davies
- Department of Biochemistry, University of Southern California, Los Angeles
| |
Collapse
|
36
|
Thomas SM, Gebicki JM, Dean RT. Radical initiated alpha-tocopherol depletion and lipid peroxidation in mitochondrial membranes. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 1002:189-97. [PMID: 2539189 DOI: 10.1016/0005-2760(89)90286-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The relationships between antioxidant status, lipid peroxidation and membrane protein integrity have been studied in an isolated mitochondrial membrane system. Tocopherol was shown to be present in both the outer and inner membrane of normal rat liver mitochondria; 77.3 and 22.3% of the total alpha-tocopherol was present in the outer and inner membranes, respectively. The endogenous alpha-tocopherol was depleted in a time-dependent manner by low levels of ferrous iron and by irradiation in the presence or absence of ferrous iron. This antioxidant depletion was followed by the appearance of lipid hydroperoxides. Fragmentation of monoamine oxidase, an integral outer membrane protein, was observed at irradiation doses that caused by antioxidant depletion and peroxide generation.
Collapse
Affiliation(s)
- S M Thomas
- Department of Biochemistry and Biology, Brunel University, Uxbridge, U.K
| | | | | |
Collapse
|
37
|
Thomas SM, Jessup W, Gebicki JM, Dean RT. A continuous-flow automated assay for iodometric estimation of hydroperoxides. Anal Biochem 1989; 176:353-9. [PMID: 2742125 DOI: 10.1016/0003-2697(89)90322-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An iodometric method for the analysis of hydroperoxides has been automated to allow analysis of aqueous biological samples (containing less than 20 mg/ml protein) and lipid hydroperoxide extracts. The evolution of triiodide ions is measured spectrophotometrically at 360 nm. Dependent on the type of sample, 30-60 samples can be analyzed per hour and the system allows detection of less than 100 pmol of peroxide. The assay is linear over a range of 100 pmol to 25 nmol. The sample volume used routinely was 80 microliters.
Collapse
Affiliation(s)
- S M Thomas
- Department of Biology/Biochemistry, Brunel University, Uxbridge, Middlesex, England
| | | | | | | |
Collapse
|
38
|
Pacifici RE, Salo DC, Davies KJ. Macroxyproteinase (M.O.P.): a 670 kDa proteinase complex that degrades oxidatively denatured proteins in red blood cells. Free Radic Biol Med 1989; 7:521-36. [PMID: 2558981 DOI: 10.1016/0891-5849(89)90028-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Erythrocytes and reticulocytes are shown to undergo rapid rates of protein degradation following exposure to oxidative stress. Experiments with ATP depletion revealed that, unlike the proteolysis of many other abnormal proteins, the degradation of oxidatively modified proteins is an ATP-independent process. Ion exchange chromatography (DEAE Sepharose CL-6B), ammonium sulfate precipitation, gel filtration chromatography (Sephacryl S-300 or Sepharose CL-6B), and a second ion exchange step were used to resolve the activity responsible for degrading oxidatively modified proteins from (dialyzed) cell-free extracts of erythrocytes and reticulocytes. Gel filtration studies revealed that some 70-80% of the activity in erythrocytes, and some 60-70% of the activity in reticulocytes, is expressed by a 670 kDa proteinase complex that is not stimulated by ATP (in fact, ATP is slightly inhibitory). This proteinase complex is inhibited by sulfhydryl reagents, serine reagents, and transition metal chelators, and has a pH optimum of 7.8. We propose the trivial name "macroxyproteinase" or "M.O.P." (abbreviated from Macro-Oxy-Proteinase) for the complex because of its large size, substrate preference (oxidatively modified proteins), and inhibitor profile (which indicates multiple catalytic sites). Electrophoresis studies of the 670 kDa M.O.P. complex revealed the presence of 8 distinct polypeptide subunits with the following apparent molecular sizes: 21.5, 25.3, 26.2, 28.1, 30.0, 31.9, 33.3, and 35.7 kDa. The large molecular size of the M.O.P. complex, its ATP- and ubiquitin-independence, its inhibitor profile, its distinctive subunit banding pattern in denaturing electrophoresis gels, its pH optimum, and its proteolytic profile with fluorogenic peptide substrates all indicate that M.O.P. is identical to 600-700 kDa neutral/alkaline proteinase complexes that have been isolated from a wide variety of eucaryotic cells and tissues, but for which no function has previously been clear. We propose that macroxyproteinase is responsible for catalyzing most of the selective degradation of oxidatively denatured proteins in red blood cells. We further suggest that M.O.P. may perform the same function in other eucaryotic cells and tissues.
Collapse
Affiliation(s)
- R E Pacifici
- Institute for Toxicology, University of Southern California, Los Angeles 90033
| | | | | |
Collapse
|
39
|
Abstract
The current hypothesis for the damage caused to mammalian tissues by hyperoxia is that oxygen radicals and related reactive oxygen metabolites are formed at rates which exceed the ability of the cells' natural antioxidant defense mechanisms to detoxify these deleterious products. In this review a very brief description of oxygen pathology is given together with data on the relevance of in vivo tissue pO2 levels. After a short historical account of the biochemistry of oxygen toxicity in the pre-radical days. the evidence for the current status of the radical theory is reviewed. This covers the probable sources of excess reactive oxygen metabolite generation under conditions of increased oxygen tension, and the measurement of the reactive species thought to be important in causing this damage. The large volume of circumstantial evidence, including the production of tolerance, raising or lowering antioxidant defenses and the administration of exogenously produced radicals is considered.
Collapse
Affiliation(s)
- D Jamieson
- School of Physiology and Pharmacology, University of New South Wales, Sydney, Australia
| |
Collapse
|
40
|
Dean RT, Wolff SP, McElligott MA. Histidine and proline are important sites of free radical damage to proteins. FREE RADICAL RESEARCH COMMUNICATIONS 1989; 7:97-103. [PMID: 2572516 DOI: 10.3109/10715768909087929] [Citation(s) in RCA: 67] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Our hypothesis that proline and histidine are major sites of damage during radical attack upon proteins, becoming respectively glutamate and aspartate, was investigated using proteins biosynthetically labelled with radioactive proline or histidine as targets. Free radicals were generated by copper and H2O2, or by gamma radiolysis. Protein-bound histidine was substantially converted into aspartate. Much proline was modified during radical attack, but it was not converted into glutamate. We conclude that histidine and proline are important sites of protein attack by radicals; protein cleavage may result from these reactions.
Collapse
Affiliation(s)
- R T Dean
- Cell Biology Research Group, Brunel University, Uxbridge, Middlesex, U.K
| | | | | |
Collapse
|
41
|
Marcillat O, Zhang Y, Lin SW, Davies KJ. Mitochondria contain a proteolytic system which can recognize and degrade oxidatively-denatured proteins. Biochem J 1988; 254:677-83. [PMID: 3196285 PMCID: PMC1135138 DOI: 10.1042/bj2540677] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
When incubated with mitochondria in an air atmosphere, menadione and doxorubicin (which redox cycle with the respiratory chain to produce oxygen radicals), as well as xanthine oxidase plus xanthine (which generate superoxide and H2O2), stimulated the degradation of newly-synthesized [( 3H]leucine-labelled) mitochondrial polypeptides. No stimulation was observed in an N2 atmosphere, ATP was not required, and xanthine oxidase was not effective without xanthine. Various forms of oxidative stress induced varying degrees of protein cross-linking, protein fragmentation and proteolysis, as judged by gel electrophoresis and amino acid analysis. To learn more about the proteolytic enzymes involved in degradation, we undertook studies with purified protein substrates which had been exposed to oxidative stress (OH or H2O2) in vitro. Despite mitochondrial contamination with acid proteases of lysosomal (and other) origin, pH profiles revealed distinct proteolytic activities at both pH 4 and pH 8. The pH 8 activity preferentially degraded the oxidatively-denatured forms of haemoglobin, albumin and superoxide dismutase; was unaffected by digitonin; and exhibited a several-fold increase in activity upon mitochondrial disruption (highest activity being found in the matrix). In contrast, the pH 4 activity was dramatically decreased by digitonin treatment (to reduce lysosomal contamination); was unaffected by mitochondrial disruption; and showed no preference for oxidatively-denatured proteins. The pH 8 activity was not stimulated by ATP, but was inhibited by EDTA, haemin and phenylmethylsulphonyl fluoride. In contrast, the contaminating pH 4 activity was only inhibited by pepstatin and leupeptin. Thus, our experiments reveal a distinct mitochondrial (matrix) proteolytic pathway which can preferentially degrade oxidatively-denatured proteins.
Collapse
Affiliation(s)
- O Marcillat
- Institute for Toxicology, University of Southern California, Los Angeles 90033
| | | | | | | |
Collapse
|
42
|
Arduini A, Mezzetti A, Porreca E, Lapenna D, DeJulia J, Marzio L, Polidoro G, Cuccurullo F. Effect of ischemia and reperfusion on antioxidant enzymes and mitochondrial inner membrane proteins in perfused rat heart. BIOCHIMICA ET BIOPHYSICA ACTA 1988; 970:113-21. [PMID: 3382695 DOI: 10.1016/0167-4889(88)90169-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experiments were performed to investigate the effects of 60 min severe global ischemia followed by 30 min reperfusion on the antioxidant enzymatic system in the isolated perfused rat heart. Ischemia induced a significant increase of cytoplasmic and mitochondrial selenium-dependent glutathione peroxidase (EC 1.11.1.9) activity. In reperfused hearts, only the mitochondrial form showed a further significant increase. Glutathione reductase (EC 1.6.4.2) was increased in ischemic hearts, whilst the reperfused hearts showed a decrease towards the level found in aerobic hearts. Mitochondrial superoxide dismutase (EC 1.15.1.1) activity was depressed in ischemic as well as in reperfused hearts, though the cytoplasmic form was unmodified. Catalase (EC 1.11.1.6), glucose-6-phosphate dehydrogenase (EC 1.1.1.49) and glutathione transferase (EC 2.5.1.18) activities were unchanged throughout the experiment. Ischemia and reperfusion induced a significant fall in tissue-reduced glutathione content concomitant with an increase of its oxidized form. We have also studied the mitochondrial inner membrane proteins for both molecular weight, with Coomassie blue, and thiol status, with monobromobimane stain, using a sodium dodecyl sulfate polyacrylamide gel electrophoresis technique. Neither ischemia nor reperfusion effected any relevant modification of the molecular weight of the mitochondrial inner-membrane proteins either in the presence or absence of a reducing agent. However, two of these proteins with an apparent molecular weight of 52,0000 and 12,000 showed a decrease in the monobromobimane stain, probably due to the oxidation of their thiol groups.
Collapse
Affiliation(s)
- A Arduini
- Istituto di Scienze Biochimiche, Università degli Studi G.D. Annunzio Chieti, Italy
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
1. Chemiluminescence and benzoic acid hydroxylation were used to detect oxygen-centred free-radical production by 2.5 mM-H2O2 and 100 microM-Cu2+. Free radicals could not be detected by these methods when H2O2 was replaced with 10 mM-t-butyl hydroperoxide (TBH) or 10 mM-cumene hydroperoxide (CH). The inclusion of the thiol compound dithioerythritol (DTET; 100 microM) increased radical production by H2O2 and Cu2+ as judged by both assays. Mannitol scavenged radicals in the chemiluminescence system in a dose-dependent manner. 2. H2O2, TBH and CH, each with Cu2+, gave rise to substantial fragmentation of the protein bovine serum albumin (BSA). This fragmentation could be increased by the inclusion of DTET. Omission of Cu2+ or the addition of the chelator DETAPAC (diethylenetriaminepenta-acetic acid; 1 mM) lead to virtual abolition of fragmentation. Autoxidized lipid in the presence of Cu2+ caused protein fragmentation by reactions of lipid hydroperoxides. 3. Polyacrylamide-gel electrophoresis in the presence of SDS confirmed that production of fragments had occurred. 4. Susceptibility of BSA to enzymic hydrolysis by two different proteinases acting at pH 5 and pH 7.2 was increased after a limited exposure to hydroperoxides in the presence of Cu2+. 5. These results may have biological significance, particularly for proteins in lipid environments (e.g. membrane proteins and lipoproteins).
Collapse
Affiliation(s)
- J V Hunt
- Department of Applied Biology, Brunel University, Uxbridge, Middx., U.K
| | | | | |
Collapse
|
44
|
Halliwell B, Gutteridge JM. Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease. HUMAN TOXICOLOGY 1988; 7:7-13. [PMID: 3278973 DOI: 10.1177/096032718800700102] [Citation(s) in RCA: 131] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- B Halliwell
- Department of Biochemistry, King's College, London
| | | |
Collapse
|
45
|
Affiliation(s)
- K J Davies
- Institute for Toxicology, University of Southern California, Los Angeles 90033
| |
Collapse
|
46
|
Dean RT, Cheeseman KH. Vitamin E protects proteins against free radical damage in lipid environments. Biochem Biophys Res Commun 1987; 148:1277-82. [PMID: 3689396 DOI: 10.1016/s0006-291x(87)80271-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The fragmentation of the membrane protein monoamine oxidase in submitochondrial particles was induced by defined free radicals during radiolysis and by a system dependent on hydrogen peroxide and a transition metal. By injection of alpha-tocopherol in vivo, the levels of this physiological antioxidant in the mitochondrial preparations could be elevated more than ten-fold. In both radical-generating systems the presence of high levels of alpha-tocopherol in the membrane substantially retarded the protein fragmentation, in parallel with lipid peroxidation. It is suggested that membrane-bound proteins are damaged during lipid peroxidation and that alpha-tocopherol protects cells against both types of damage.
Collapse
Affiliation(s)
- R T Dean
- Cell Biology Research Group, Brunel University, Uxbridge, Middlesex, U.K
| | | |
Collapse
|
47
|
Dean RT. A mechanism for accelerated degradation of intracellular proteins after limited damage by free radicals. FEBS Lett 1987; 220:278-82. [PMID: 3038618 DOI: 10.1016/0014-5793(87)80829-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
I propose that limited free radical attack upon proteins, occurring continuously in cells, creates new N-termini (notably aspartate and glutamate) which render the proteins more susceptible to proteolysis by the ubiquitin conjugation system. I suggest that these reactions are a significant part of the previously described 'N-end' and 'PEST' rules, which indicate amino acid termini or sequences which tend to dictate short protein half-lives. I also argue that the N-end rule may apply to sequestered intracellular sites, such as mitochondria, these also being sites of radical generation.
Collapse
|
48
|
|
49
|
|
50
|
Davies KJ, Delsignore ME. Protein damage and degradation by oxygen radicals. III. Modification of secondary and tertiary structure. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48020-9] [Citation(s) in RCA: 248] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|