1
|
Belz TF. Synthesis of a Glycosylphosphatidylinositol (GPI) Fragment as a Potential Substrate for Mannoprotein Transglycosidases. Synlett 2021. [DOI: 10.1055/a-1523-1638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractA glycophosphatidylinositol tetrasaccharide fragment was synthesized to mimic the core features of primary model, that of Saccharomyces cerevisiae. The salient feature of this approach is centered on the quick access to various α-1,2- and α-1,6-mannosyl and α-1,4-glycosyl linkages by using simple glycosylation and protective-group techniques. 1D and 2D-J-resolved NMR spectroscopy was used to verify the α-configuration of the new linkages. The tetrasaccharides obtained in this work are useful for examining fungal cell-wall glycoprotein cross-linking by transglycosidase enzymes for antifungal drug development.
Collapse
|
2
|
Silman I, Shnyrov VL, Ashani Y, Roth E, Nicolas A, Sussman JL, Weiner L. Torpedo californica acetylcholinesterase is stabilized by binding of a divalent metal ion to a novel and versatile 4D motif. Protein Sci 2021; 30:966-981. [PMID: 33686648 PMCID: PMC8040873 DOI: 10.1002/pro.4061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/07/2022]
Abstract
Stabilization of Torpedo californica acetylcholinesterase by the divalent cations Ca+2, Mg+2, and Mn+2 was investigated. All three substantially protect the enzyme from thermal inactivation. Electron paramagnetic resonance revealed one high‐affinity binding site for Mn+2 and several much weaker sites. Differential scanning calorimetry showed a single irreversible thermal transition. All three cations raise both the temperature of the transition and the activation energy, with the transition becoming more cooperative. The crystal structures of the Ca+2 and Mg+2 complexes with Torpedo acetylcholinesterase were solved. A principal binding site was identified. In both cases, it consists of four aspartates (a 4D motif), within which the divalent ion is embedded, together with several water molecules. It makes direct contact with two of the aspartates, and indirect contact, via waters, with the other two. The 4D motif has been identified in 31 acetylcholinesterase sequences and 28 butyrylcholinesterase sequences. Zebrafish acetylcholinesterase also contains the 4D motif; it, too, is stabilized by divalent metal ions. The ASSAM server retrieved 200 other proteins that display the 4D motif, in many of which it is occupied by a divalent cation. It is a very versatile motif, since, even though tightly conserved in terms of RMSD values, it can contain from one to as many as three divalent metal ions, together with a variable number of waters. This novel motif, which binds primarily divalent metal ions, is shared by a broad repertoire of proteins. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:Protein_Science:3. PDB‐ID(s): 7B38, 7B8E and 7B2W;
Collapse
Affiliation(s)
- Israel Silman
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
| | - Valery L. Shnyrov
- Department of Biochemistry and Molecular BiologyUniversidad de SalamancaSalamancaSpain
| | - Yacov Ashani
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Esther Roth
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
| | - Anne Nicolas
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
| | - Joel L. Sussman
- Department of Chemical and Structural BiologyWeizmann Institute of ScienceRehovotIsrael
- Structural Proteomics UnitWeizmann Institute of ScienceRehovotIsrael
| | - Lev Weiner
- Department of NeurobiologyWeizmann Institute of ScienceRehovotIsrael
- Department of Chemical Research SupportWeizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
3
|
The multiple biological roles of the cholinesterases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 162:41-56. [PMID: 33307019 DOI: 10.1016/j.pbiomolbio.2020.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022]
Abstract
It is tacitly assumed that the biological role of acetylcholinesterase is termination of synaptic transmission at cholinergic synapses. However, together with its structural homolog, butyrylcholinesterase, it is widely distributed both within and outside the nervous system, and, in many cases, the role of both enzymes remains obscure. The transient appearance of the cholinesterases in embryonic tissues is especially enigmatic. The two enzymes' extra-synaptic roles, which are known as 'non-classical' roles, are the topic of this review. Strong evidence has been presented that AChE and BChE play morphogenetic roles in a variety of eukaryotic systems, and they do so either by acting as adhesion proteins, or as trophic factors. As trophic factors, one mode of action is to directly regulate morphogenesis, such as neurite outgrowth, by poorly understood mechanisms. The other mode is by regulating levels of acetylcholine, which acts as the direct trophic factor. Alternate substrates have been sought for the cholinesterases. Quite recently, it was shown that levels of the aggression hormone, ghrelin, which also controls appetite, are regulated by butyrylcholinesterase. The rapid hydrolysis of acetylcholine by acetylcholinesterase generates high local proton concentrations. The possible biophysical and biological consequences of this effect are discussed. The biological significance of the acetylcholinesterases secreted by parasitic nematodes is reviewed, and, finally, the involvement of acetylcholinesterase in apoptosis is considered.
Collapse
|
4
|
Xu ML, Luk WK, Liu EY, Kong XP, Wu QY, Xia YJ, Dong TT, Tsim KW. Differentiation of erythroblast requires the dimeric form of acetylcholinesterase: Interference with erythropoietin receptor. Chem Biol Interact 2019; 308:317-322. [DOI: 10.1016/j.cbi.2019.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 12/14/2022]
|
5
|
Brewster JT, Dell’Acqua S, Thach DQ, Sessler JL. Classics in Chemical Neuroscience: Donepezil. ACS Chem Neurosci 2019; 10:155-167. [PMID: 30372021 DOI: 10.1021/acschemneuro.8b00517] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The discovery of acetylcholine and acetylcholinesterase provided the first insight into the intricacies of chemical signal transduction and neuronal communication. Further elucidation of the underlying mechanisms led to an attendant leveraging of this knowledge via the synthesis of new therapeutics designed to control aberrant biochemical processes. The central role of the cholinergic system within human memory and learning, as well as its implication in Alzheimer's disease, has made it a point of focus within the neuropharmacology and medicinal chemistry communities. This review is focused on donepezil and covers the background, synthetic routes, structure-activity relationships, binding interactions with acetylcholinesterase, pharmacokinetics and metabolism, efficacy, adverse effects, and historical importance of this leading therapeutic in the treatment of Alzheimer's disease and true Classic in Chemical Neuroscience.
Collapse
Affiliation(s)
- James T. Brewster
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| | - Simone Dell’Acqua
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Danny Q. Thach
- Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, United States
| |
Collapse
|
6
|
Thomas MP, Mills SJ, Potter BVL. The "Other" Inositols and Their Phosphates: Synthesis, Biology, and Medicine (with Recent Advances in myo-Inositol Chemistry). Angew Chem Int Ed Engl 2016; 55:1614-50. [PMID: 26694856 PMCID: PMC5156312 DOI: 10.1002/anie.201502227] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/24/2022]
Abstract
Cell signaling via inositol phosphates, in particular via the second messenger myo-inositol 1,4,5-trisphosphate, and phosphoinositides comprises a huge field of biology. Of the nine 1,2,3,4,5,6-cyclohexanehexol isomers, myo-inositol is pre-eminent, with "other" inositols (cis-, epi-, allo-, muco-, neo-, L-chiro-, D-chiro-, and scyllo-) and derivatives rarer or thought not to exist in nature. However, neo- and d-chiro-inositol hexakisphosphates were recently revealed in both terrestrial and aquatic ecosystems, thus highlighting the paucity of knowledge of the origins and potential biological functions of such stereoisomers, a prevalent group of environmental organic phosphates, and their parent inositols. Some "other" inositols are medically relevant, for example, scyllo-inositol (neurodegenerative diseases) and d-chiro-inositol (diabetes). It is timely to consider exploration of the roles and applications of the "other" isomers and their derivatives, likely by exploiting techniques now well developed for the myo series.
Collapse
Affiliation(s)
- Mark P Thomas
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Stephen J Mills
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Barry V L Potter
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
7
|
Thomas MP, Mills SJ, Potter BVL. Die “anderen” Inositole und ihre Phosphate: Synthese, Biologie und Medizin (sowie jüngste Fortschritte in dermyo-Inositolchemie). Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mark P. Thomas
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Stephen J. Mills
- Department of Pharmacy & Pharmacology; University of Bath; Claverton Down Bath BA2 7AY Vereinigtes Königreich
| | - Barry V. L. Potter
- Department of Pharmacology; University of Oxford; Mansfield Road Oxford OX1 3QT Vereinigtes Königreich
| |
Collapse
|
8
|
Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE? Mol Neurobiol 2014; 52:45-56. [PMID: 25112677 DOI: 10.1007/s12035-014-8842-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/30/2014] [Indexed: 01/18/2023]
Abstract
Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.
Collapse
|
9
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
10
|
Tsai YH, Liu X, Seeberger PH. Chemical biology of glycosylphosphatidylinositol anchors. Angew Chem Int Ed Engl 2012; 51:11438-56. [PMID: 23086912 DOI: 10.1002/anie.201203912] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Indexed: 01/21/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) are complex glycolipids that are covalently linked to the C-terminus of proteins as a posttranslational modification. They anchor the attached protein to the cell membrane and are essential for normal functioning of eukaryotic cells. GPI-anchored proteins are structurally and functionally diverse. Many GPIs have been structurally characterized but comprehension of their biological functions, beyond the simple physical anchoring, remains largely speculative. Work on functional elucidation at a molecular level is still limited. This Review focuses on the roles of GPI unraveled by using synthetic molecules and summarizes the structural diversity of GPIs, as well as their biological and chemical syntheses.
Collapse
Affiliation(s)
- Yu-Hsuan Tsai
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14424 Potsdam, Germany
| | | | | |
Collapse
|
11
|
Tsai YH, Liu X, Seeberger PH. Chemische Biologie der Glycosylphosphatidylinosit-Anker. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203912] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Luk WKW, Chen VP, Choi RCY, Tsim KWK. N-linked glycosylation of dimeric acetylcholinesterase in erythrocytes is essential for enzyme maturation and membrane targeting. FEBS J 2012; 279:3229-39. [PMID: 22805525 DOI: 10.1111/j.1742-4658.2012.08708.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholinesterase (AChE) is well-known for its cholinergic functions in the nervous system; however, this enzyme is also found in other tissues where its function is still not understood. AChE is synthesized through alternative splicing as splicing variants, with isoforms including read-through (AChE(R)), tailed (AChE(T)) and hydrophobic (AChE(H)). In human erythrocytes, AChE(H) is a glycophosphatidylinositol-linked dimer on the plasma membrane. Three N-linked glycosylation sites have been identified in the catalytic domain of human AChE. Here, we investigate the roles of glycosylation in assembly and trafficking of human AChE(H). In transfected fibroblasts, expression of AChE(H) was able to mimic the function of the dimeric form of AChE on the erythrocyte membrane. A glycan-depleted form was constructed by site-directed mutagenesis. By comparison with the wild-type AChE(H), the mutant had a much lower enzymatic activity and a much higher K(m) value. In addition, the mutant was dimerized in the endoplasmic reticulum, but was not trafficked to the Golgi apparatus. The results suggest that the glycosylation may affect AChE(H) enzymatic activity and trafficking, but not dimer formation. The present findings indicate the significance of N-glycosylation in controlling the biosynthesis of the AChE(H) dimer form.
Collapse
Affiliation(s)
- Wilson K W Luk
- Division of Life Science, Center for Chinese Medicine and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong, China
| | | | | | | |
Collapse
|
13
|
Abstract
Biomarkers are of tremendous importance for the prediction, diagnosis, and observation of the therapeutic success of common complex multifactorial metabolic diseases, such as type II diabetes and obesity. However, the predictive power of the traditional biomarkers used (eg, plasma metabolites and cytokines, body parameters) is apparently not sufficient for reliable monitoring of stage-dependent pathogenesis starting with the healthy state via its initiation and development to the established disease and further progression to late clinical outcomes. Moreover, the elucidation of putative considerable differences in the underlying pathogenetic pathways (eg, related to cellular/tissue origin, epigenetic and environmental effects) within the patient population and, consequently, the differentiation between individual options for disease prevention and therapy - hallmarks of personalized medicine - plays only a minor role in the traditional biomarker concept of metabolic diseases. In contrast, multidimensional and interdependent patterns of genetic, epigenetic, and phenotypic markers presumably will add a novel quality to predictive values, provided they can be followed routinely along the complete individual disease pathway with sufficient precision. These requirements may be fulfilled by small membrane vesicles, which are so-called exosomes and microvesicles (EMVs) that are released via two distinct molecular mechanisms from a wide variety of tissue and blood cells into the circulation in response to normal and stress/pathogenic conditions and are equipped with a multitude of transmembrane, soluble and glycosylphosphatidylinositol-anchored proteins, mRNAs, and microRNAs. Based on the currently available data, EMVs seem to reflect the diverse functional and dysfunctional states of the releasing cells and tissues along the complete individual pathogenetic pathways underlying metabolic diseases. A critical step in further validation of EMVs as biomarkers will rely on the identification of unequivocal correlations between critical disease states and specific EMV signatures, which in future may be determined in rapid and convenient fashion using nanoparticle-driven biosensors.
Collapse
Affiliation(s)
- Günter Müller
- Department of Biology I, Genetics, Ludwig-Maximilians University Munich, Biocenter, Munich, Germany
| |
Collapse
|
14
|
Structural remodeling, trafficking and functions of glycosylphosphatidylinositol-anchored proteins. Prog Lipid Res 2011; 50:411-24. [PMID: 21658410 DOI: 10.1016/j.plipres.2011.05.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Glycosylphosphatidylinositol (GPI) is a glycolipid that is covalently attached to proteins as a post-translational modification. Such modification leads to the anchoring of the protein to the outer leaflet of the plasma membrane. Proteins that are decorated with GPIs have unique properties in terms of their physical nature. In particular, these proteins tend to accumulate in lipid rafts, which are critical for the functions and trafficking of GPI-anchored proteins (GPI-APs). Recent studies mainly using mutant cells revealed that various structural remodeling reactions occur to GPIs present in GPI-APs as they are transported from the endoplasmic reticulum to the cell surface. This review examines the recent progress describing the mechanisms of structural remodeling of mammalian GPI-anchors, such as inositol deacylation, glycan remodeling and fatty acid remodeling, with particular focus on their trafficking and functions, as well as the pathogenesis involving GPI-APs and their deficiency.
Collapse
|
15
|
|
16
|
Teese MG, Campbell PM, Scott C, Gordon KHJ, Southon A, Hovan D, Robin C, Russell RJ, Oakeshott JG. Gene identification and proteomic analysis of the esterases of the cotton bollworm, Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2010; 40:1-16. [PMID: 20005949 DOI: 10.1016/j.ibmb.2009.12.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 12/03/2009] [Accepted: 12/03/2009] [Indexed: 05/28/2023]
Abstract
Some of the resistance of Helicoverpa armigera to conventional insecticides such as organophosphates and synthetic pyrethroids appears to be due to metabolic detoxification by carboxylesterases. To investigate the H. armigera carboxyl/cholinesterases, we created a data set of 39 putative paralogous H. armigera carboxyl/cholinesterase sequences from cDNA libraries and other sources. Phylogenetic analysis revealed a close relationship between these sequences and 70 carboxyl/cholinesterases from the recently sequenced genome of the silkworm, Bombyx mori, including several conserved clades of non-catalytic proteins. A juvenile hormone esterase candidate from H. armigera was identified, and B. mori orthologues were proposed for 31% of the sequences examined, however low similarity was found between lepidopteran sequences and esterases previously associated with insecticide resistance from other insect orders. A proteomic analysis of larval esterases then enabled us to match seven of the H. armigera carboxyl/cholinesterase sequences to specific esterase isozymes. All identified sequences were predicted to encode catalytically active carboxylesterases, including six proteins with N-terminal signal peptides and N-glycans, with two also containing C-terminal signals for glycosylphosphatidylinositol anchor attachment. Five of these sequences were matched to zones of activity on native PAGE at relative mobility values previously associated with insecticide resistance in this species.
Collapse
Affiliation(s)
- Mark G Teese
- CSIRO Entomology, GPO Box 1700, Canberra ACT 2601, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maeda Y, Fujita M, Kinoshita T. GPI-Anchor: Update for Biosynthesis and Remodeling. TRENDS GLYCOSCI GLYC 2010. [DOI: 10.4052/tigg.22.182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Abstract
d-chiro-inositol (DCI) and pinitol (1d-3-O-methyl-chiro-inositol) are distinctive inositols reported to possess insulin-mimetic properties. DCI-containing compounds are abundant in common laboratory animal feed. By GC-MS of 6 m-HCl hydrolysates, Purina Laboratory Rodent Diet 5001 (diet 5001) contained 0.23 % total DCI by weight with most found in the lucerne and soya meal components. In contrast, only traces of l-chiro-inositol were observed. The DCI moiety was present in a water-soluble non-ionic form of which most was shown to be pinitol. To measure the absorption of dietary inositols, rats were fed diet 5001 in a balance study or given purified pinitol or [2H6]DCI. More than 98 % of the total DCI fed to rats as diet 5001, purified pinitol or [2H6]DCI was absorbed from the gastrointestinal tract. Rats chronically on diet 5001 consumed 921 mumol total DCI/kg body weight per d but excreted less than 5.3 % in the stools and urine, suggesting that the bulk was metabolised. The levels of pinitol or DCI in plasma, stools or urine remained relatively stable in mice fed Purina PicoLab Rodent Diet 20 5053 over a 5-week period, whereas these values declined to very low levels in mice fed a pinitol/DCI-deficient chemically defined diet. To test whether DCI was synthesised or converted from myo-inositol, mice were treated with heavy water or [2H6]myo-inositol. DCI was neither synthesised endogenously from 2H-labelled water nor converted from [2H6]myo-inositol. DCI and pinitol in rodents appear to be derived solely from the diet.
Collapse
|
19
|
Ikezawa H. The Physiological Action of Bacterial Phosphatidylinositol-Specific Phospholipase C the Release of Ectoenzymes and Other Effects. ACTA ACUST UNITED AC 2008. [DOI: 10.3109/15569548609012704] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
|
21
|
Poisson G, Chauve C, Chen X, Bergeron A. FragAnchor: a large-scale predictor of glycosylphosphatidylinositol anchors in eukaryote protein sequences by qualitative scoring. GENOMICS PROTEOMICS & BIOINFORMATICS 2007; 5:121-30. [PMID: 17893077 PMCID: PMC5054108 DOI: 10.1016/s1672-0229(07)60022-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A glycosylphosphatidylinositol (GPI) anchor is a common but complex C-terminal post-translational modification of extracellular proteins in eukaryotes. Here we investigate the problem of correctly annotating GPI-anchored proteins for the growing number of sequences in public databases. We developed a computational system, called FragAnchor, based on the tandem use of a neural network (NN) and a hidden Markov model (HMM). Firstly, NN selects potential GPI-anchored proteins in a dataset, then HMM parses these potential GPI signals and refines the prediction by qualitative scoring. FragAnchor correctly predicted 91% of all the GPI-anchored proteins annotated in the Swiss-Prot database. In a large-scale analysis of 29 eukaryote proteomes, FragAnchor predicted that the percentage of highly probable GPI-anchored proteins is between 0.21% and 2.01%. The distinctive feature of FragAnchor, compared with other systems, is that it targets only the C-terminus of a protein, making it less sensitive to the background noise found in databases and possible incomplete protein sequences. Moreover, FragAnchor can be used to predict GPI-anchored proteins in all eukaryotes. Finally, by using qualitative scoring, the predictions combine both sensitivity and information content. The predictor is publicly available at http://navet.ics.hawaii.edu/~fraganchor/NNHMM/NNHMM.html.
Collapse
Affiliation(s)
- Guylaine Poisson
- Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
| | | | | | | |
Collapse
|
22
|
Riggs BM, Lansley TA, Ryals PE. Phosphatidylinositol synthase of Tetrahymena: inositol isomers as substrates in phosphatidylinositol biosynthesis and headgroup exchange reactions. J Eukaryot Microbiol 2007; 54:119-24. [PMID: 17403152 DOI: 10.1111/j.1550-7408.2007.00242.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatidylinositol (PtdIns) synthase in microsomal fractions derived from Tetrahymena vorax was studied to determine its activity requirements. The suitability of inositol isomers as substrates for the synthase and in headgroup exchange reactions also was investigated. Tetrahymena PtdIn synthase activity was optimum in the presence of 2 mM MgCl2 plus 2 mM MnCl2, a pH of 7.8, and a temperature of 30 degrees C. The enzyme retained approximately 80% of its activity after incubation at 70 degrees C for 10 min. PtdIns headgroup exchange activity was maximal in the presence of cytidine monophosphate. By following either the accumulation of radiolabeled reaction products or the loss of radiolabel from precursors, each of the inositol isomers tested appeared to serve as substrates for both the PtdIns synthase and PtdIns:inositol phosphatidyl transferase activities. In each case, myo-inositol and scyllo-inositol were the preferred substrates. The data suggest two routes for the formation of phosphatidyl-non-myo-inositols in Tetrahymena and the potential for the production of novel, non-myo-inositol-containing second messengers.
Collapse
Affiliation(s)
- Bridget M Riggs
- Department of Biology, The University of West Florida, Pensacola, Florida 32514, USA
| | | | | |
Collapse
|
23
|
Bonilla JB, Cid MB, Contreras FX, Goñi FM, Martín-Lomas M. Phospholipase cleavage of D- and L-chiro-glycosylphosphoinositides asymmetrically incorporated into liposomal membranes. Chemistry 2006; 12:1513-28. [PMID: 16315198 DOI: 10.1002/chem.200500833] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The nature of chiro-inositol-containing inositolphosphoglycans (IPGs), reported to be putative insulin mediators, was studied by examination of the substrate specificities of the phosphatidylinositol-specific phospholipase C (PI-PLC) and the glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) by using a series of synthetic D- and L-chiro-glycosylphosphoinositides. 3-O-alpha-D-Glucosaminyl- (3) and -galactosaminyl-2-phosphatidyl-L-chiro-inositol (4), which show the maximum stereochemical similarity to the 6-O-alpha-D-glucosaminylphosphatidylinositol pseudodisaccharide motifs of GPI anchors, were synthesized and asymmetrically incorporated into phospholipid bilayers in the form of large unilamellar vesicles (LUVs). Similarly, 2-O-alpha-D-glucosaminyl- (5) and -galactosaminyl-1-phosphatidyl-D-chiro-inositol (6), which differ from the corresponding pseudodisaccharide motif of the GPI anchors only in the axial orientation of the phosphatidyl moiety, were also synthesized and asymmetrically inserted into LUVs. The cleavage of these synthetic molecules in the liposomal constructs by PI-PLC from Bacillus cereus and by GPI-PLD from bovine serum was studied with the use of 6-O-alpha-D-glucosaminylphosphatidylinositol (7) and the conserved GPI anchor structure (8) as positive controls. Although PI-PLC cleaved 3 and 4 with about the same efficiency as 7 and 8, this enzyme did not accept 5 or 6. GPI-PLD accepted both the L-chiro- (3 and 4) and the D-chiro- (5 and 6) glycosylinositolphosphoinositides. Therefore, IPGs containing L-chiro-inositol only are expected to be released from chiro-inositol-containing GPIs if the cleavage is effected by a PI-PLC, whereas GPI-PLD cleavage could result in both L-chiro- and D-chiro-inositol-containing IPGs.
Collapse
Affiliation(s)
- Julia B Bonilla
- Grupo de Carbohidratos, Instituto de Investigaciones Químicas, CSIC, Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | | | | | |
Collapse
|
24
|
Lauc G, Heffer-Lauc M. Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins. Biochim Biophys Acta Gen Subj 2005; 1760:584-602. [PMID: 16388904 DOI: 10.1016/j.bbagen.2005.11.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins have very different biosynthetic origin, but they have one thing in common: they are both comprised of a relatively large hydrophilic moiety tethered to a membrane by a relatively small lipid tail. Both gangliosides and GPI-anchored proteins can be actively shed from the membrane of one cell and taken up by other cells by insertion of their lipid anchors into the cell membrane. The process of shedding and uptake of gangliosides and GPI-anchored proteins has been independently discovered in several disciplines during the last few decades, but these discoveries were largely ignored by people working in other areas of science. By bringing together results from these, sometimes very distant disciplines, in this review, we give an overview of current knowledge about shedding and uptake of gangliosides and GPI-anchored proteins. Tumor cells and some pathogens apparently misuse this process for their own advantage, but its real physiological functions remain to be discovered.
Collapse
Affiliation(s)
- Gordan Lauc
- Department of Chemistry and Biochemistry, University of Osijek School of Medicine, Croatia.
| | | |
Collapse
|
25
|
Hyatt JL, Tsurkan L, Morton CL, Yoon KJP, Harel M, Brumshtein B, Silman I, Sussman JL, Wadkins RM, Potter PM. Inhibition of acetylcholinesterase by the anticancer prodrug CPT-11. Chem Biol Interact 2005; 157-158:247-52. [PMID: 16257398 DOI: 10.1016/j.cbi.2005.10.033] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
CPT-11 (irinotecan, 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxycamptothecin) is an anticancer prodrug that has been approved for the treatment of colon cancer. It is a member of the camptothecin class of drugs and activation to the active metabolite SN-38, is mediated by carboxylesterases (CE). SN-38 is a potent topoisomerase I poison and is highly effective at killing human tumor cells, with IC50 values in the low nM range. However, upon high dose administration of CPT-11 to cancer patients, a cholinergic syndrome is observed, that can be rapidly ameliorated by atropine. This suggests a direct interaction of the drug or its metabolites with acetylcholinesterase (AChE). Kinetic studies indicated that CPT-11 was primarily responsible for AChE inhibition with the 4-piperidinopiperidine moiety, the major determinant in the loss of enzyme activity. Structural analogs of 4-piperidinopiperidine however, did not inhibit AChE, including a benzyl piperazine derivate of CPT-11. These results suggest that novel anticancer drugs could be synthesized that do not inhibit AChE, or alternatively, that novel AChE inhibitors could be designed based around the camptothecin scaffold.
Collapse
Affiliation(s)
- Janice L Hyatt
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Parnas H, Slutsky I, Rashkovan G, Silman I, Wess J, Parnas I. Depolarization initiates phasic acetylcholine release by relief of a tonic block imposed by presynaptic M2 muscarinic receptors. J Neurophysiol 2005; 93:3257-69. [PMID: 15703226 DOI: 10.1152/jn.01131.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of presynaptic muscarinic autoreceptors in the initiation of phasic acetylcholine (ACh) release at frog and mouse neuromuscular junctions was studied by measuring the dependency of the amount (m) of ACh release on the level of presynaptic depolarization. Addition of methoctramine (a blocker of M2 muscarinic receptors), or of acetylcholinesterase (AChE), increased release in a voltage-dependent manner; enhancement of release declined as the depolarizing pulse amplitude increased. In frogs and wild-type mice the slope of log m/log pulse amplitude (PA) was reduced from about 7 in the control to about 4 in the presence of methoctramine or AChE. In M2 muscarinic receptor knockout mice, the slope of log m/log PA was much smaller (about 4) and was not further reduced by addition of either methoctramine or AChE. The effect of a brief (0.1 ms), but strong (-1.2 microA) depolarizing prepulse on the dependency of m on PA was also studied. The depolarizing prepulse had effects similar to those of methoctramine and AChE. In particular, it enhanced release of test pulses in a voltage-dependent manner and reduced the slope of log m/log PA from about 7 to about 4. Methoctramine + AChE occluded the prepulse effects. In knockout mice, the depolarizing prepulse had no effects. The cumulative results suggest that initiation of phasic ACh release is achieved by depolarization-mediated relief of a tonic block imposed by presynaptic M2 muscarinic receptors.
Collapse
Affiliation(s)
- H Parnas
- Department of Neurobiology, The Hebrew University, Jerusalem 91904, Israel.
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The transport characteristics of (1D)chiro-inositol by the ciliate Tetrahymena were examined in competition studies employing [3H](1D)chiro-inositol. (1D)chiro-Inositol transport was competed by unlabeled (1D)chiro-inositol, myo-inositol, scyllo-inositol, and D-glucose in a concentration-dependent manner. Conversely, (1D)chiro-inositol competed for [3H]myo- and [3H]scyllo-inositol transport. Lineweaver-Burke analysis of the competition data indicated a Km of 10.3 mM and a Bmax of 4.7 nmol/min/mg for (1D)chiro-inositol. Transport of (1D)chiro-inositol was inhibited by cytochalasin B, an inhibitor of facilitated glucose transporters, and phlorizin, an inhibitor of sodium-dependent transporters. Removal of sodium from the radiolabeling buffer also inhibited uptake. The presence of 0.64 mM calcium or magnesium ions exerted negligible effects on transport, although potassium was inhibitory. [3H](1D)chiro-Inositol was shown to be incorporated into Tetrahymena phosphoinositides.
Collapse
Affiliation(s)
- Michael C Kersting
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | | |
Collapse
|
28
|
Kersting MC, Boyette M, Massey JH, Ryals PE. Identification of the inositol isomers present in Tetrahymena. J Eukaryot Microbiol 2003; 50:164-8. [PMID: 12836872 DOI: 10.1111/j.1550-7408.2003.tb00111.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The inositol isomer composition of phosphoinositides, polyphosphoinositols, phosphatidylinositol-linked glycans, and glycosyl phosphatidylinositol-anchored proteins of logarithmic phase Tetrahymena vorax was determined by GC-MS analysis of trimethylsilylimadazole derivatives. The most abundant inositol found was the myo-isomer; however, appreciable percentages of scylloinositol were present in the free inositol pool, phosphatidylinositol-linked glycan fraction, and glycosyl phosphatidylinositol-anchored protein fraction. Trace quantities of chiro- and neo-inositols also were present.
Collapse
Affiliation(s)
- Michael C Kersting
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | | | | | | |
Collapse
|
29
|
|
30
|
Slutsky I, Silman I, Parnas I, Parnas H. Presynaptic M(2) muscarinic receptors are involved in controlling the kinetics of ACh release at the frog neuromuscular junction. J Physiol 2001; 536:717-25. [PMID: 11691867 PMCID: PMC2278896 DOI: 10.1111/j.1469-7793.2001.00717.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2001] [Accepted: 06/28/2001] [Indexed: 11/29/2022] Open
Abstract
1. Macropatch recording was used to study release of acetylcholine in the frog neuromuscular junction evoked by either direct local depolarization or by an action potential. 2. The quantal content was established by directly counting the released quanta. The time course of release was obtained by constructing synaptic delay histograms. 3. Perfusion of the neuromuscular junction with methoctramine, a selective M(2)/M(4) muscarinic antagonist, increased the quantal content and slowed the exponential decay of the synaptic delay histograms. Addition of the agonist muscarine reversed these effects. 4. Addition of acetylcholinesterase prolonged the decay of the delay histogram, and muscarine reversed this effect. 5. Methoctramine slowed the rise time of the postsynaptic current produced by axon stimulation without affecting either the excitatory nerve terminal current or the presynaptic Ca(2+) current. 6. These results show that presynaptic M(2) muscarinic receptors are involved in the process which terminates evoked ACh release.
Collapse
Affiliation(s)
- I Slutsky
- The Otto Loewi Minerva Center for Cellular and Molecular Neurobiology, Department of Neurobiology, The Hebrew University, Jerusalem, Israel
| | | | | | | |
Collapse
|
31
|
Coussen F, Ayon A, Le Goff A, Leroy J, Massoulié J, Bon S. Addition of a glycophosphatidylinositol to acetylcholinesterase. Processing, degradation, and secretion. J Biol Chem 2001; 276:27881-92. [PMID: 11337488 DOI: 10.1074/jbc.m010817200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We introduced various mutations and modifications in the GPI anchoring signal of rat acetylcholinesterase (AChE). 1) The resulting mutants, expressed in transiently transfected COS cells, were initially produced at the same rate, in an active form, but the fraction of GPI-anchored AChE and the steady state level of AChE activity varied over a wide range. 2) Productive interaction with the GPI addition machinery led to GPI anchoring, secretion of uncleaved protein, and secretion of a cleaved protein, in variable proportions. Unproductive interaction led to degradation; poorly processed molecules were degraded rather than retained intracellularly or secreted. 3) An efficient glypiation appeared necessary but not sufficient for a high level of secretion; the cleaved, secreted protein was possibly generated as a by-product of transamidation. 4) Glypiation was influenced by a wider context than the triplet omega/omega + 1/omega + 2, particularly omega - 1. 5) Glypiation was not affected by the closeness of the omega site to the alpha(10) helix of the catalytic domain. 6) A cysteine could simultaneously form a disulfide bond and serve as an omega site; however, there was a mutual interference between glypiation and the formation of an intercatenary disulfide bond, at a short distance upstream of omega. 7) Glypiation was not affected by the presence of an N-glycosylation site at omega or in its vicinity or by the addition of a short hydrophilic, highly charged peptide (FLAG; DYKDDDDK) at the C terminus of the hydrophobic region.
Collapse
Affiliation(s)
- F Coussen
- Laboratoire de Neurobiologie Moléculaire et Cellulaire, CNRS UMR 8544, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
The discovery of the first neurotransmitter--acetylcholine--was soon followed by the discovery of its hydrolysing enzyme, acetylcholinesterase. The role of acetylcholinesterase in terminating acetylcholine-mediated neurotransmission made it the focus of intense research for much of the past century. But the complexity of acetylcholinesterase gene regulation and recent evidence for some of the long-suspected 'non-classical' actions of this enzyme have more recently driven a profound revolution in acetylcholinesterase research. Although our understanding of the additional roles of acetylcholinesterase is incomplete, the time is ripe to summarize the evidence on a remarkable diversity of acetylcholinesterase functions.
Collapse
|
33
|
Ferguson MA. The structure, biosynthesis and functions of glycosylphosphatidylinositol anchors, and the contributions of trypanosome research. J Cell Sci 1999; 112 ( Pt 17):2799-809. [PMID: 10444375 DOI: 10.1242/jcs.112.17.2799] [Citation(s) in RCA: 420] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The discovery of glycosylphosphatidylinositol (GPI) membrane anchors has had a significant impact on several areas of eukaryote cell biology. Studies of the African trypanosome, which expresses a dense surface coat of GPI-anchored variant surface glycoprotein, have played important roles in establishing the general structure of GPI membrane anchors and in delineating the pathway of GPI biosynthesis. The major cell-surface molecules of related parasites are also rich in GPI-anchored glycoproteins and/or GPI-related glycophospholipids, and differences in substrate specificity between enzymes of trypanosomal and mammalian GPI biosynthesis may have potential for the development of anti-parasite therapies. Apart from providing stable membrane anchorage, GPI anchors have been implicated in the sequestration of GPI-anchored proteins into specialised membrane microdomains, known as lipid rafts, and in signal transduction events.
Collapse
Affiliation(s)
- M A Ferguson
- Division of Molecular Parasitology and Biological Chemistry, Department of Biochemistry, The Wellcome Trust Building, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
34
|
Ryals PE, Kersting MC. Sodium-dependent uptake of [3H]scyllo-inositol by Tetrahymena: incorporation into phosphatidylinositol, phosphatidylinositol-linked glycans, and polyphosphoinositols. Arch Biochem Biophys 1999; 366:261-6. [PMID: 10356291 DOI: 10.1006/abbi.1999.1211] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
[3H]Scyllo-inositol was taken up by Tetrahymena cells through a sodium-dependent pathway wherein unlabeled scyllo- and myo-inositol competed for uptake. d-Glucose was a competitor of [3H]myo-inositol uptake, but did not appear to compete for [3H]scyllo-inositol uptake. Transport of [3H]scyllo- and [3H]myo-inositol was inhibited when sodium was removed from the labeling buffer and by phlorizin, an inhibitor of sodium-dependent transporters. Cytochalasin B, an inhibitor of facilitated glucose transporters, had no significant effect on inositol transport. Internalized [3H]scyllo-inositol was readily incorporated intact into phosphatidylinositol, phosphatidylinositol-linked glycans, and polyphosphoinositols. Distribution of [3H]scyllo- and [3H]myo-inositol radioactivity into individual polyphosphoinositols was found to differ.
Collapse
Affiliation(s)
- P E Ryals
- Department of Biochemistry and Molecular Biology, Mississippi State University, Mississippi State 39762, USA.
| | | |
Collapse
|
35
|
Massoulié J, Anselmet A, Bon S, Krejci E, Legay C, Morel N, Simon S. The polymorphism of acetylcholinesterase: post-translational processing, quaternary associations and localization. Chem Biol Interact 1999; 119-120:29-42. [PMID: 10421436 DOI: 10.1016/s0009-2797(99)00011-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The molecular forms of acetylcholinesterase (AChE) correspond to various quaternary structures and modes of anchoring of the enzyme. In vertebrates, these molecules are generated from a single gene: the catalytic domain may be associated with several types of C-terminal peptides, that define distinct types of catalytic subunits (AChE(S), AChE(H), AChE(T)) and determine their post-translational maturation. AChE(S) generates soluble monomers, in the venom of Elapid snakes. AChE(H) generates GPI-anchored dimers, in Torpedo muscles and on mammalian blood cells. AChE(T) is the only type of catalytic subunit that exists in all vertebrate cholinesterases; it produces the major forms in adult brain and muscle. AChE(T) generates multiple structures, ranging from monomers and dimers to collagen-tailed and hydrophobic-tailed forms, in which catalytic tetramers are associated with anchoring proteins that attach them to the basal lamina or to cell membranes. In the collagen-tailed forms, AChE(T) subunits are associated with a specific collagen, ColQ, which is encoded by a single gene in mammals. ColQ contains a short peptidic motif, the proline-rich attachment domain (PRAD), that triggers the formation of AChE(T) tetramers, from monomers and dimers. The critical feature of this motif is the presence of a string of prolines, and in fact synthetic polyproline shows a similar capacity to organize AChE(T) tetramers. Although the COLQ gene produces multiple transcripts, it does not generate the hydrophobic tail. P, which anchors AChE in mammalian brain membranes. The coordinated expression of AChE(T) subunits and anchoring proteins determines the pattern of molecular forms and therefore the localization and functionality of the enzyme.
Collapse
Affiliation(s)
- J Massoulié
- Laboratoire de Neurobiologie Cellulaire et Moléculaire, CNRS URA 1857, Ecole Normale Supérieure, Paris, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Larner J, Allan G, Kessler C, Reamer P, Gunn R, Huang LC. Phosphoinositol glycan derived mediators and insulin resistance. Prospects for diagnosis and therapy. J Basic Clin Physiol Pharmacol 1999; 9:127-37. [PMID: 10212830 DOI: 10.1515/jbcpp.1998.9.2-4.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While much work remains, the evidence has become strong that IPG generation following insulin action is a significant signaling mechanism. A considerable body of data has established IPG release by insulin and other growth factors from cell membranes, cells and in human blood and muscle biopsies in vivo. Two separate IPG species containing D-chiro-inositol and myo-inositol have been separated by ion exchange. These IPGs have separate actions in vitro and are both active as insulin surrogates in vivo. A deficiency of the chiro-inositol system has been demonstrated in urine and tissues in humans and directly related to insulin resistance. Accordingly, D-chiro-inositol was administered to STZ diabetic rats and rhesus monkeys and shown to decrease hyperglycemia and enhance glucose disposal. Two trials in humans with impaired glucose tolerance and women with PCOS have now also proven successful. Thus, the pathophysiology in the chiro-inositol system related to insulin resistance and its reversal by chiro-inositol administration, in addition to the basic work, argues strongly for the physiological significance of this novel signaling system in the control of glucose metabolism.
Collapse
Affiliation(s)
- J Larner
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908, USA
| | | | | | | | | | | |
Collapse
|
37
|
Irvine RF. Manganese-stimulated phosphatidylinositol headgroup exchange in rat liver microsomes. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1393:292-8. [PMID: 9748635 DOI: 10.1016/s0005-2760(98)00083-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Manganese-dependent, CMP-independent incorporation of myo-[3H]inositol into phospholipids of rat liver microsomes was studied in an attempt to clarify the physiological significance of this headgroup-exchange reaction. The enzyme responsible worked best with Mn2+ as a co-factor, but Mg2+ at physiological concentrations supported a significant rate of incorporation. The K(m) for myo-inositol was around 11 microM, yet incorporation of myo-[3H]inositol was unaffected by as much as 5 mM choline, ethanolamine, glycerol or serine; as this is a reversible reaction, these data imply that phosphatidylinositol is the most likely lipid substrate. Similarly, other inositols showed an apparent affinity at least two orders of magnitude lower than myo-inositol. Glucosamine alpha 1-6 myo-inositol also had a low affinity for the enzyme, making it unlikely that this headgroup-exchange activity is part of a metabolic pathway for glycosyl phosphatidylinositols. The phosphatidylinositol radiolabelled by headgroup exchange was deacylated and deglycerated, and the resulting inositol phosphate headgroup cochromatographed on anion exchange HPLC with myo-inositol l-phosphate. The simplest interpretation of all the data is the apparent paradox that this enzyme functions at a slow rate under physiological conditions to remove the myo-inositol headgroup from phosphatidylinositol, only to replace it with another myo-inositol.
Collapse
Affiliation(s)
- R F Irvine
- Department of Pharmacology, University of Cambridge, UK.
| |
Collapse
|
38
|
Poly WJ. Nongenetic variation, genetic-environmental interactions and altered gene expression. III. Posttranslational modifications. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART A, PHYSIOLOGY 1997; 118:551-72. [PMID: 9406434 DOI: 10.1016/s0300-9629(96)00041-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The use of protein electrophoretic data for determining the relationships among species or populations is widespread and generally accepted. However, posttranslational modifications have been discovered in many of the commonly analyzed proteins and enzymes. Posttranslational modifications often alter the electrophoretic mobility of the modified enzyme or protein. Because posttranslational modifications may affect only a fraction of the total enzyme or protein, an additional staining band often appears on gels as a result, and this may confound interpretations. Deamidation, acteylation, proteolytic modification, and oxidation of sulfhydryl groups are modifications that often result in an electrophoretic mobility shift. Sialic acid-induced heterogeneity has been documented for many enzymes, but neuraminidase treatment can often remove sialic acids and produce gel patterns that are easier to interpret. In some cases, ontogenetic and tissue-specific expression may be due to posttranslational modifications rather than gene control and restricted expression, respectively. Methods of preventing, detecting and eliminating posttranslational modifications are discussed. Some posttranslational modifications may be useful for detecting cryptic genetic polymorphisms.
Collapse
Affiliation(s)
- W J Poly
- Department of Zoology, Southern Illinois University, Carbondale, 62901-6501, USA
| |
Collapse
|
39
|
Nosjean O, Briolay A, Roux B. Mammalian GPI proteins: sorting, membrane residence and functions. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1331:153-86. [PMID: 9325440 DOI: 10.1016/s0304-4157(97)00005-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- O Nosjean
- Université Claude Bernard--Lyon 1, Laboratoire de Physico-chimie Biologique--UPRESA CNRS 5013, Villeurbanne, France.
| | | | | |
Collapse
|
40
|
Ortmeyer HK. Dietary myoinositol results in lower urine glucose and in lower postprandial plasma glucose in obese insulin resistant rhesus monkeys. OBESITY RESEARCH 1996; 4:569-75. [PMID: 8946442 DOI: 10.1002/j.1550-8528.1996.tb00271.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In a previous study, D-chiroinositol added to a meal (0.5 g/kg) resulted in significantly lower postprandial plasma glucose concentrations without an increase in insulin concentrations in obese insulin-resistant monkeys. The present report describes the effects of another isomer of inositol, myoinositol, on postprandial plasma glucose and insulin concentrations and on urine glucose concentrations in 6 similarly insulin-resistant monkeys. The three 5 day study periods included a control period (liquid diet ad libitum) and 2 experimental periods (liquid diet ad libitum with either 1.5 g/kg/day myoinositol or D-chiroinositol added). Twenty-four hour urine samples were collected during each 5 day period. On the sixth day of each period the monkeys were anesthetized 110 min after completing either the control meal (15 ml/kg) or the experimental meals (1.5 g/kg myoinositol or D-chiroinositol) and plasma samples were obtained at 120, 150, 180, 210, 240, 270 and 300 min. The plasma glucose concentration was lower after the meal with myoinositol compared to the control meal at 120, 150 and 180 min (p's < 0.05). The plasma insulin concentration was lower after the meal with myoinositol compared to the control meal at 150 and 180 min (p's < 0.05). In addition, 24 hour urine glucose concentrations were lower during the myoinositol diet compared to the control diet (p < 0.001). The plasma glucose concentration was lower after the meal with D-chiroinositol compared to the control meal at 150, 240, 270 and 300 min (p's < or = 0.05). In obese insulin-resistant monkeys, myoinositol added to the diet lowers urine glucose concentrations and both myoinositol and D-chiroinositol added to a meal lower postprandial plasma glucose concentrations without increasing postprandial insulin concentrations. Therefore, myoinositol, like D-chiroinositol, may be a useful agent for reducing meal-induced hyperglycemia without inducing hyperinsulinemia in insulin-resistant subjects.
Collapse
Affiliation(s)
- H K Ortmeyer
- Department of Physiology, School of Medicine, University of Maryland at Baltimore 21201, USA
| |
Collapse
|
41
|
Kreimer DI, Shin I, Shnyrov VL, Villar E, Silman I, Weiner L. Two partially unfolded states of Torpedo californica acetylcholinesterase. Protein Sci 1996; 5:1852-64. [PMID: 8880909 PMCID: PMC2143540 DOI: 10.1002/pro.5560050911] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chemical modification with sulfhydryl reagents of the single, nonconserved cysteine residue Cys231 in each subunit of a disulfide-linked dimer of Torpedo californica acetylcholinesterase produces a partially unfolded inactive state. Another partially unfolded state can be obtained by exposure of the enzyme to 1-2 M guanidine hydrochloride. Both these states display several important features of a molten globule, but differ in their spectroscopic (CD, intrinsic fluorescence) and hydrodynamic (Stokes radii) characteristics. With reversal of chemical modification of the former state or removal of denaturant from the latter, both states retain their physiochemical characteristics. Thus, acetylcholinesterase can exist in two molten globule states, both of which are long-lived under physiologic conditions without aggregating, and without either intraconverting or reverting to the native state. Both states undergo spontaneous intramolecular thioldisulfide exchange, implying that they are flexible. As revealed by differential scanning calorimetry, the state produced by chemical modification lacks any heat capacity peak, presumably due to aggregation during scanning, whereas the state produced by guanidine hydrochloride unfolds as a single cooperative unit, thermal transition being completely reversible. Sucrose gradient centrifugation reveals that reduction of the interchain disulfide of the native acetylcholinesterase dimer converts it to monomers, whereas, after such reduction, the two subunits remain completely associated in the partially unfolded state generated by guanidine hydrochloride, and partially associated in that produced by chemical modification. It is suggested that a novel hydrophobic core, generated across the subunit interfaces, is responsible for this noncovalent association. Transition from the unfolded state generated by chemical modification to that produced by guanidine hydrochloride is observed only in the presence of the denaturant, yielding, on extrapolation to zero guanidine hydrochloride, a high free energy barrier (ca. 23.8 kcal/mol) separating these two flexible, partially unfolded states.
Collapse
Affiliation(s)
- D I Kreimer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
42
|
Llanes C, Collman RG, Hrin R, Kolson DL. Acetylcholinesterase expression in NTera 2 human neuronal cells: a model for developmental expression in the nervous system. J Neurosci Res 1995; 42:791-802. [PMID: 8847741 DOI: 10.1002/jnr.490420608] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acetylcholinesterase (AChE; EC 3.1.1.7) is expressed in the central nervous system in multiple molecular forms that may subserve multiple functions and may be selectively lost in neurodegenerative illnesses such as Alzheimer's disease. AChE expression has been studied in primary cultures of developing vertebrate nervous system, but investigation has been limited by the lack of a suitable human CNS surrogate cell model system for in vitro studies and the inability of primary brain cultures to provide large numbers of pure neurons. To develop an in vitro model for studies of neuronal AChE expression and function, we utilized a neuronally committed human teratocarcinoma cell line, NTera 2, that can be induced to differentiate to a post-mitotic CNS neuronal phenotype. We found that NTera 2 cells express multiple molecular forms of AChE that are similar to CNS-derived AChE isoforms in velocity sedimentation profile, anion exchange elution profile, and sensitivity to inhibitors. At least two forms of AChE are expressed (G1 and G4), similar to human and rodent brain, and induction of NTera 2 cell differentiation results in an increased G4/G1 ratio, which is characteristic of mature neurons. As in primary CNS neurons, AChE is present in NTera 2 cells in both the cytosolic fraction and in the outer membrane, and is also released in a soluble form. These observations indicate that NTera 2 cells provide a useful human model system for studies of expression of cell-associated and soluble cell-free AChE in developing and mature human neurons and for elucidating the potential role(s) of acetylcholinesterase metabolism in both normal development and neurodegenerative disease states.
Collapse
Affiliation(s)
- C Llanes
- Department of Neurology, University of Pennsylvania Medical Center, Philadelphia, USA
| | | | | | | |
Collapse
|
43
|
Kreimer DI, Shnyrov VL, Villar E, Silman I, Weiner L. Irreversible thermal denaturation of Torpedo californica acetylcholinesterase. Protein Sci 1995; 4:2349-57. [PMID: 8563632 PMCID: PMC2143016 DOI: 10.1002/pro.5560041113] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Thermal denaturation of Torpedo californica acetylcholinesterase, a disulfide-linked homodimer with 537 amino acids in each subunit, was studied by differential scanning calorimetry. It displays a single calorimetric peak that is completely irreversible, the shape and temperature maximum depending on the scan rate. Thus, thermal denaturation of acetylcholinesterase is an irreversible process, under kinetic control, which is described well by the two-state kinetic scheme N-->D, with activation energy 131 +/- 8 kcal/mol. Analysis of the kinetics of denaturation in the thermal transition temperature range, by monitoring loss of enzymic activity, yields activation energy of 121 +/- 20 kcal/mol, similar to the value obtained by differential scanning calorimetry. Thermally denatured acetylcholinesterase displays spectroscopic characteristics typical of a molten globule state, similar to those of partially unfolded enzyme obtained by modification with thiol-specific reagents. Evidence is presented that the partially unfolded states produced by the two different treatments are thermodynamically favored relative to the native state.
Collapse
Affiliation(s)
- D I Kreimer
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- V L Stevens
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30335, USA
| |
Collapse
|
45
|
Eichler J, Kreimer D, Varon L, Silman I, Weiner L. A “molten globule” of Torpedo acetylcholinesterase undergoes thiol-disulfide exchange. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43778-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
46
|
Affiliation(s)
- K S Bruzik
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago 60612
| | | |
Collapse
|
47
|
Mehlert A, Varon L, Silman I, Homans SW, Ferguson MA. Structure of the glycosyl-phosphatidylinositol membrane anchor of acetylcholinesterase from the electric organ of the electric-fish, Torpedo californica. Biochem J 1993; 296 ( Pt 2):473-9. [PMID: 8257440 PMCID: PMC1137719 DOI: 10.1042/bj2960473] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The structure of the glycan moiety of the glycosyl-phosphatidylinositol (GPI) membrane anchor from Torpedo californica (electric fish) electric-organ acetylcholinesterase was solved using n.m.r., methylation analysis and chemical and enzymic micro-sequencing. Two structures were found to be present: Glc alpha 1-2Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6myo-inositol and Glc alpha 1-2Man alpha 1-2Man alpha 1-6(GalNAc beta 1-4)Man alpha 1-4GlcN alpha 1-6myo-inositol. The presence of glucose in this GPI anchor structure is a novel feature. The anchor was also shown to contain 2.3 residues of ethanolamine per molecule.
Collapse
Affiliation(s)
- A Mehlert
- Department of Biochemistry, University of Dundee, Scotland, U.K
| | | | | | | | | |
Collapse
|
48
|
|
49
|
Pak Y, Larner J. Identification and characterization of chiroinositol-containing phospholipids from bovine liver. Biochem Biophys Res Commun 1992; 184:1042-7. [PMID: 1575723 DOI: 10.1016/0006-291x(92)90696-i] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glycosylphosphatidylinositols and phosphatidylinositols, postulated as precursor species of insulin mediators, were investigated for the presence of myoinositol, chiroinositol, glucosamine and galactosamine in their carbohydrate moities. Our study of bovine liver lipids shows heterogeneity in glycosylphosphatidylinositols with at least two species containing 96-97% chiroinositol and 95-100% galactosamine, with molar ratios of chiroinositol: phosphate: galactosamine: galactose: mannose (1:1.8:1:3:2 and 1:1.2:1:1.6:1). Another species contained predominantly myoinositol and glucosamine. Furthermore, we identified phosphatidylinositols with either myoinositol or chiroinositol present. Thus, distinct myoinositol and chiroinositol species of glycosylphosphatidylinositols and phosphatidylinositols are present in bovine liver.
Collapse
Affiliation(s)
- Y Pak
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville 22908
| | | |
Collapse
|
50
|
Yoshihara Y, Oka S, Watanabe Y, Mori K. Developmentally and spatially regulated expression of HNK-1 carbohydrate antigen on a novel phosphatidylinositol-anchored glycoprotein in rat brain. J Biophys Biochem Cytol 1991; 115:731-44. [PMID: 1717490 PMCID: PMC2289177 DOI: 10.1083/jcb.115.3.731] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
HNK-1 carbohydrate antigen in an epitope expressed commonly in many cell surface adhesion and recognition molecules in the nervous system. We purified and characterized from rat brain a novel phosphatidylinositol (PI)-anchored 150-kD glycoprotein belonging to the HNK-1 family. The molecule (PI-GP150) was detected by combination of PI-specific phospholipase C treatment of brain membranes and Western blot analysis with mAb HNK-1. HNK-1-positive PI-GP150 was purified from the PI-PLC-released materials with three successive chromatographies (Sephacryl S-300, mAb HNK-1-Sepharose 4B, and Mono Q) and proven to be a novel molecule by immunoblot and structural analyses. Polyclonal antibody was raised against PI-GP150 and used to show that (a) PI-GP150 is expressed on the surface of neuronal cell bodies and their processes in culture, and (b) PI-GP150 appears during embryonic development and is present throughout all postnatal life in all brain regions. However, the expression of the HNK-1 epitope on PI-GP150 is regulated in both developmental stage-specific and region-specific manners. In newborn rats, the HNK-1 epitope is expressed on PI-GP150 throughout the brain. The level of HNK-1 epitope on PI-GP150 decreases after postnatal day 7 in hindbrain and becomes completely absent in adult myelencephalon and metencephalon. In contrast, HNK-1 epitope on PI-GP150 was constitutively expressed in telencephalon. Thus, while the HNK-1 carbohydrate epitope is strongly coupled to PI-GP150, its expression can be regulated independently of that of PI-GP150. The differential expression of the HNK-1 epitope at different rostro-caudal axial levels was observed also in other HNK-1 family molecules in brain membranes. These results suggest that the HNK-1 epitope plays an important role in adding region-specific and developmental stage-specific modifications on the function of the cell surface molecules.
Collapse
Affiliation(s)
- Y Yoshihara
- Department of Neuroscience, Osaka Bioscience Institute, Japan
| | | | | | | |
Collapse
|