1
|
Gomes CP, Leão-Ferreira LR, Caruso-Neves C, Lopes AG. Adenosine reverses the stimulatory effect of angiotensin II on the renal Na+-ATPase activity through the A2 receptor. ACTA ACUST UNITED AC 2005; 129:9-15. [PMID: 15927692 DOI: 10.1016/j.regpep.2005.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 01/07/2005] [Indexed: 11/30/2022]
Abstract
In the present paper, we report the modulation of the Angiotensin II (Ang II)-stimulated Na+-ATPase activity of the proximal tubule basolateral membrane by adenosine (Ado). Preincubation of isolated basolateral membrane with 10(-8)M Ang II increases the Na+-ATPase activity from 7.5+/-0.3 (control) to 14.6+/-0.9 nmol Pi x mg(-1)x min(-1)nmol Pi x mg(-1) x min(-1) (p<0.05). Incubation of Ang II-stimulated enzyme with 10(-6)M Ado, in the presence of the A1 receptor antagonist DPCPX (10(-6)M), completely reverses the Ang II-induced effect bringing the Na+-ATPase activity to the basal level. The following evidences demonstrate involvement of the A2 receptor/Gs protein/adenylyl cyclase/PKA signaling pathway in the inhibitory effect induced by Ado on the Ang II-stimulated Na+-ATPase activity in the presence of the DPCPX: 1) the inhibitory effect of Ado is abolished by the A2 receptor selective antagonist DMPX (10(-8)M); 2) the effect induced by Ado is blocked by 10(-8)M GDPbetaS and mimicked by 10(-9)M cholera toxin and 10(-8)M GTPgammaS; 3) the stimulatory effect of Ang II is reduced by 10(-6)M forskolin, an activator of adenylyl cyclase, or 10(-6)M cAMP; 4) Ado stimulates PKA activity; 5) the inhibitory effect induced by this nucleoside is reversed by the PKA inhibitor peptide.
Collapse
Affiliation(s)
- C P Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro,CCS Bloco G, 21949-900, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
2
|
Wengert M, Berto C, Kaufman J, Leão-Ferreira LR, Paes-de-Carvalho R, Lopes AG, Caruso-Neves C. Stimulation of the proximal tubule Na+-ATPase activity by adenosine A(2A) receptor. Int J Biochem Cell Biol 2005; 37:155-65. [PMID: 15381158 DOI: 10.1016/j.biocel.2004.06.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2004] [Revised: 06/03/2004] [Accepted: 06/04/2004] [Indexed: 01/01/2023]
Abstract
The aim of this work was to determine the molecular mechanism involved in the stimulation of the pig kidney proximal tubule Na+-ATPase by adenosine (Ado). To study the role of A2 Ado receptors, we added in all experiments 10(-6)M DPCPX, an A1 receptor-selective antagonist, since we have previously shown that Ado inhibits the enzyme activity through this receptor. Ado increased the Na+-ATPase activity with maximal effect observed at 10(-6)M. The presence of both A(2A) and A(2B) receptors were demonstrated by immunoblotting using specific polyclonal antibodies. The stimulatory effect of Ado was completely abolished by 5 x 10(-9)M DMPX, an antagonist of A2 receptor, and 10(-7)M SCH 58261, an A(2A) receptor-selective antagonist. DMPA (10(-7)M), a specific agonist of A(2A) receptor mimicked the stimulatory effect of Ado. Involvement of a Gs protein/adenylate cyclase/PKA pathway was evidenced by: (a) the reversion of Ado-induced effect by GDPbetaS; (b) stimulation of the Na+-ATPase activity in a similar and non-additive manner to Ado by 10(-8)M cholera toxin, 10(-7)M GTPgammaS, 10(-6)M forskolin, 10(-7)M cAMP or 1.25 U catalytic subunit of PKA; (c) the reversion of the stimulatory effect of Ado by 10(-8)M PKA inhibitor peptide; (d) Ado-produced two-fold increase of the PKA activity, which was completely reversed by 10(-6)M DMPX. These are the first evidences showing the modulation of a renal primary active sodium transporter by Ado through A(2A) receptor.
Collapse
Affiliation(s)
- M Wengert
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, RJ, Brazil
| | | | | | | | | | | | | |
Collapse
|
3
|
De Souza AM, Lopes AG, Pizzino CP, Fossari RN, Miguel NCO, Cardozo FP, Abi-Abib R, Fernandes MS, Santos DPA, Caruso-Neves C. Angiotensin II and angiotensin-(1-7) inhibit the inner cortex Na+ -ATPase activity through AT2 receptor. ACTA ACUST UNITED AC 2005; 120:167-75. [PMID: 15177935 DOI: 10.1016/j.regpep.2004.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Revised: 03/02/2004] [Accepted: 03/09/2004] [Indexed: 01/27/2023]
Abstract
In the present paper, the modulation of the basolateral membrane (BLM) Na+ -ATPase activity of inner cortex from pig kidney by angiotensin II (Ang II) and angiotensin-(1-7) (Ang-(1-7)) was evaluated. Ang II and Ang-(1-7) inhibit the Na+ -ATPase activity in a dose-dependent manner (from 10(-11) to 10(-5) M), with maximal effect obtained at 10(-7) M for both peptides. Pharmacological evidences demonstrate that the inhibitory effects of Ang II and Ang-(1-7) are mediated by AT2 receptor: The effect of both polypeptides is completely reversed by 10(-8) M PD 123319, a selective AT2 receptor antagonist, but is not affected by either (10(-12) - 10(-5) M) losartan or (10(-10)-10(-7) M) A779, selective antagonists for AT1 and AT(1-7) receptors, respectively. The following results suggest that a PTX-insensitive, cholera toxin (CTX)-sensitive G protein/adenosine 3',5'-cyclic monophosphate (cAMP)/PKA pathway is involved in this process: (1) the inhibitory effect of both peptides is completely reversed by 10(-9) M guanosine 5'-O-(2-thiodiphosphate) (GDPbetaS; an inhibitor of the G protein activity), and mimicked by 10(-10) M guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS; an activator of the G protein activity); (2) the effects of both peptides are mimicked by CTX but are not affected by PTX; (3) Western blot analysis reveals the presence of the Gs protein in the isolated basolateral membrane fraction; (4) (10(-10)-10(-6) M) cAMP has a similar and non-additive effect to Ang II and Ang-(1-7); (5) PKA inhibitory peptide abolishes the effects of Ang II and Ang-(1-7); and (6) both angiotensins stimulate PKA activity.
Collapse
Affiliation(s)
- A M De Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-Bloco G, 21949-900, RJ, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Coka-Guevara S, Markus RP, Caruso-Neves C, Lopes AG, Vieyra A. Adenosine inhibits the renal plasma-membrane (Ca2+ + Mg2+)-ATPase through a pathway sensitive to cholera toxin and sphingosine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:71-8. [PMID: 10429189 DOI: 10.1046/j.1432-1327.1999.00456.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Adenosine, a potent autacoid produced and released in kidneys, affects nearly all aspects of renal function, and an increase in cytosolic calcium has been implicated in adenosine effects. The aim of this work was to investigate whether adenosine modifies the calcium pump present in basolateral membranes of kidney proximal tubule cells. Adenosine exerts a biphasic influence on (Ca2+ + Mg2+)-ATPase activity. Inhibition occurs up to 0.1 microM and then gradually disappears as the adenosine concentration increases to 100 microM, an effect mimicked by the adenosine analog N6-cyclohexyladenosine, which preferentially binds to A1-type receptors. In contrast, the A2 receptor agonist 5', N-ethylcarboxamideadenosine is ineffective. The A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine blocks the inhibitory effect of 0.1 microM adenosine and stimulates (Ca2+ + Mg2+)-ATPase activity in the presence of 1 mM adenosine, a concentration high enough to occupy the low-affinity A2 receptors. Inhibition by adenosine increases as medium ATP is lowered to micromolar concentrations, is maintained in the presence of pertussis toxin, and is completely abolished with 0.1 microM cholera toxin or 1 microM sphingosine. The inhibitory effect of adenosine can be reproduced by guanosine 5'-[gamma-thio]triphosphate, inositol 1,4, 5-trisphosphate or the diacylglycerol analog 12-O-tetradecanoylphorbol 13-acetate. In conjunction with the selectivity for its analogs and for its receptor agonist, the concentration profile of adenosine effects indicates that both inhibitory (A1) and stimulatory (A2) receptors are involved. The results obtained with the toxins indicate that a pathway that is modulated by G-proteins, involves a phospholipase C and a protein kinase C, and is affected by local variations in adenosine concentrations participates in the regulation of the (Ca2+ + Mg2+)-ATPase resident in basolateral membranes of kidney proximal tubules.
Collapse
Affiliation(s)
- S Coka-Guevara
- Departmento de Bioquímica Médica, Instituto de Ciências Biomédicas,Universidade Federal do Rio de Janeiro, Brazil
| | | | | | | | | |
Collapse
|
5
|
Levy J, Rempinski D. Decreased activity of (Ca2+ + Mg2+)-adenosine triphosphatase (ATPase) and a hormone-specific defect in insulin regulation of ATPase in kidney basolateral membranes from obese fa/fa rats. Metabolism 1994; 43:1055-61. [PMID: 8052147 DOI: 10.1016/0026-0495(94)90189-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The plasma membrane enzyme (Ca2+ + Mg2+)-adenosine triphosphatase (ATPase) is hormonally regulated and may participate in Ca2+ signaling by removing excess Ca2+ from the cell. Therefore, observations of a hormone-specific loss of insulin stimulation of ATPase in kidney membranes from non-insulin-dependent diabetic (NIDDM) rats may reflect their insulin-resistant state. Consequently, to evaluate whether additional insulin-resistant conditions are associated with impaired function of ATPase and with loss of regulation of the enzyme by insulin, studies were extended to investigate (Ca2+ + Mg2+)-ATPase activities and hormonal regulation of the enzyme in kidney basolateral membranes from obese and lean Zucker rats. (Ca2+ + Mg2+)-ATPase activity was lower in membranes from obese rats compared with lean rats. Maximal velocity (Vmax) of the enzyme activity was 29.2 +/- 2.6 nmol Pi/mg/min in obese rats versus 57.2 +/- 6.5 in lean rats (P < .05). However, the affinity of the enzyme for Ca2+ was similar in obese and lean rats (Km Ca2+, 0.23 +/- 0.025 v 0.23 +/- 0.032 mumol/L Ca2+). Also, the Km for ATP of the enzyme was similar in membranes from obese and lean rats. Insulin, parathyroid hormone (PTH), and cyclic adenosine monophosphate (cAMP) stimulated the ATPase activity in membranes from lean rats in a dose-dependent manner (15% to 28%). Also, the protein kinase C (PKC) stimulator 12-O-tetradecanoyl phorbol-13-acetate (TPA) increased the ATPase activity in membranes from lean rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J Levy
- Department of Medicine, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|
6
|
Levy J, Rempinski D, Kuo TH. Hormone-specific defect in insulin regulation of (Ca2+ + Mg2+)-adenosine triphosphatase activity in kidney membranes from streptozocin non-insulin-dependent diabetic rats. Metabolism 1994; 43:604-13. [PMID: 8177049 DOI: 10.1016/0026-0495(94)90203-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The plasma membrane enzyme (Ca2+ + Mg2+)-adenosine triphosphatase [(Ca2+ + Mg2+)-ATPase] is hormonally regulated, and may participate in Ca2+ signaling by removing excess Ca2+ from the cell. Insulin increases ATPase activity in kidney cortical basolateral membranes (BLM) from normal rats, but fails to do so in membranes from insulin-resistant non-insulin-dependent diabetic (NIDDM) rats. To investigate mechanisms of insulin regulation of ATPase and to evaluate whether the loss of this regulation in diabetes is hormone-specific and depends on blood glucose levels, (Ca2+ + Mg2+)-ATPase function and its hormonal regulation were studied in kidney BLM from rats with mild and severe NIDDM. Km values for ATP and Ca2+ affinity of the ATPase were similar in diabetic and control rats, but the maximal velocity (Vmax) of the enzyme was higher in diabetic groups. Insulin, the protein kinase C (PKC) stimulator 12-0-tetradecanoylphorbol 13-acetate (TPA), parathyroid hormone (PTH), and cyclic adenosine monophosphate (cAMP) all increased the ATPase activity in BLM from controls by increasing the enzyme's affinity for Ca2+. A protein kinase A (PKA) inhibitor (H8 in low concentrations) abolished cAMP and PTH effects, but not those of insulin, whereas the PKC inhibitors (sphingosine and high concentrations of H8) did abolish the effects of insulin. Stimulations of ATPase activity by insulin and by PTH and cAMP were additive. Insulin and TPA lost their stimulatory effects on ATPase in BLM from rats with either mild or severe NIDDM, but PTH and cAMP maintained their stimulatory effects in these membranes. The data show [1] (Ca2+ + Mg2+)-ATPase activity is increased in NIDDM, and a hormone-specific loss of insulin stimulation of ATPase occurs; (2) these defects are not dependent on the level of glycemia; and (3) the stimulatory effects of insulin on the ATPase may be mediated in part via PKC. We suggest that the hormone-specific defect in insulin regulation of ATPase seen in the NIDDM rats may contribute to their insulin resistance.
Collapse
Affiliation(s)
- J Levy
- Department of Medicine, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | |
Collapse
|
7
|
de Miguel F, Esbrit P. Characterization of calcium transport in the luminal and the basolateral membrane from kidney cortex of hypercalcemic rats bearing the Walker 256 carcinosarcoma. BONE AND MINERAL 1993; 23:65-76. [PMID: 8274881 DOI: 10.1016/s0169-6009(08)80092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The Walker 256 (W256) carcinosarcoma did not significantly modify calcium uptake by brush border membrane (BBM) vesicles in the kidney of the host rat, compared with that in membranes isolated from control animals. However, it showed a tendency to increase at near equilibrium in W256 tumor-host rats, associated with a decreased BBM protein content. ATP-dependent calcium influx by basolateral membrane (BLM) vesicles from W256 tumor-bearing rats was also increased compared with that in control BLM. This stimulation was due to a decreased Km for calcium. Passive calcium permeability or the Na+/Ca2+ exchanger were unchanged in BLM from W256 tumor-host rats compared with control BLM. Pre-stimulation of control rat cortical tubules with either 10(-7) M parathyroid hormone-related protein (PTHrP) (1-34) or 10(-4) M N6,2'-O-dibutiryl cyclic AMP before BLM isolation, did not modify the ATP-dependent calcium uptake by BLM vesicles compared with control membranes. However, our results do not rule out that the stimulated ATP-dependent calcium influx in BLM from W256 tumor-host rats could be mediated by the interaction among PTHrP and other humoral factors. Our findings suggest a possible mechanism for the increased renal calcium reabsorption in this animal model for humoral hypercalcemia of malignancy.
Collapse
Affiliation(s)
- F de Miguel
- Laboratorio de la Unidad Metabólica, Fundación Jiménez Díaz, Madrid, Spain
| | | |
Collapse
|
8
|
Woon PY, Jeyaseelan K, Thiyagarajah P. Adrenergic regulation of RNA synthesis in the rat parotid gland. Biochem Pharmacol 1993; 45:1395-401. [PMID: 7682414 DOI: 10.1016/0006-2952(93)90037-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Adrenergic regulation of RNA synthesis by in vivo stimulated parotid glands and dispersed parotid lobules was studied by a combination of in vivo and in vitro methods. Following a single intraperitoneal injection of isoproterenol, [3H]uridine incorporation into RNA was increased by 50% after the first hour. Amylase mRNA content was also elevated within 1 hr and was 2-3-fold higher than control values at 4 hr. An increase in the rate of total protein synthesis was detectable after 2 hr, and maximal rates were achieved 6 hr after isoproterenol administration. In dispersed parotid lobules, both isoproterenol and epinephrine stimulated [3H]uridine incorporation and at optimal concentrations increased incorporation by almost 200%. Phenylephrine (10 microM) caused a slight increase of about 20% whereas methoxamine (10 microM) had no effect. Stimulation by epinephrine was reversed by propranolol, but not by either phentolamine or prazosin. The increase in RNA synthesis induced by isoproterenol or epinephrine was dose dependent and half-maximal stimulation required 5.0 x 10(-8) M isoproterenol and 7.9 x 10(-7) M epinephrine. Dibutyryl cyclic AMP also stimulated [3H]uridine incorporation, whereas 8-bromo cyclic GMP, A23187 and phorbol myristate acetate had no effect. The importance of protein phosphorylation in mediating the observed stimulation was evaluated using protein kinase and phosphatase inhibitors. N-[2-(Methylamino)ethyl]-5-isoquinolinesulphonamide, an inhibitor of cyclic nucleotide-dependent protein kinases, substantially diminished the isoproterenol-induced stimulation. Okadaic acid treatment of lobules increased [3H]uridine incorporation. Furthermore, okadaic acid synergistically potentiated the stimulatory effect of a suboptimal concentration of isoproterenol. The results demonstrate that activation of the beta-adrenergic receptor induces the synthesis of certain RNA species in the parotid gland and that protein phosphorylation by a cyclic AMP-dependent protein kinase is a key event in the signal transduction pathway.
Collapse
Affiliation(s)
- P Y Woon
- Department of Biochemistry, National University of Singapore
| | | | | |
Collapse
|
9
|
Tram KK, Murray SS, Lee DB, Murray EJ. PTH-induced osteoblast contraction is mediated by cysteine proteases. Kidney Int 1993; 43:693-9. [PMID: 8384280 DOI: 10.1038/ki.1993.99] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
E-64d, a membrane-permeable cysteine protease inhibitor, was tested for its ability to inhibit PTH-induced contraction in intact mouse MC-3T3-E1 osteoblastic cells. Incubation of MC-3T3-E1 cells with vehicle (DMSO) or E-64c, a nonpermeant cysteine protease inhibitor, in the presence or in the absence of PTH had no effects on cAMP production or on morphology from 0 to 90 minutes after addition. In contrast, treatment with E-64d markedly attenuated PTH-induced contraction in these cells. These findings suggest that cysteine proteases, such as the calcium-activated neutral proteases (calpains), are involved in PTH-induced osteoblastic contraction. The observation that cysteine protease activity mediates PTH-induced osteoblastic contraction also suggests that endogenous inhibitors, such as calpastatin, may also be present in the osteoblast and play a role in the regulation of stimulus-response coupling in bone. This mechanism may provide another regulatory point at which bone cells may be pharmacologically manipulated in clinical situations characterized by excessive bone resorption.
Collapse
Affiliation(s)
- K K Tram
- Nephrology Section and Geriatric Research, Veterans Health Administration Medical Center, Sepulveda, California
| | | | | | | |
Collapse
|
10
|
Moskowitz DW, Hruska KA. Ca2+ uptake by endoplasmic reticulum of renal cortex. I. Ionic requirements and regulation in vitro. Calcif Tissue Int 1992; 51:35-41. [PMID: 1327465 DOI: 10.1007/bf00296215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A subcellular fraction enriched in cytochrome c reductase (7.9-fold) and relatively de-enriched (0.64-fold) in Na+/K(+)-ATPase was prepared from canine kidney cortex by sucrose density gradient ultracentrifugation. It was shown by electron microscopy to consist primarily of a light fraction of endoplasmic reticulum (LER). LER vesicles displayed ATP-dependent 45Ca2+ uptake that was insensitive to 10 mM KCN or NaN3, and was promptly released by 20 microM A23187 or ionomycin. Inositol-1,4,5-trisphosphate (IP3) appeared to produce a time-dependent release of 45Ca2+. Vanadate inhibited 45Ca2+ uptake with a Ki approximately 0.3 mM, further suggesting that the activity resided in the ER rather than the plasma membrane. 45Ca2+ uptake by LER, at 5 microM total [Ca2+], displayed a strong dependence on divalent cations (Mg2+ greater than Co2+ greater than Mn2+ much greater than Ba2+ greater than or equal to Cd2+ greater than or equal to Sr2+, present at 2 mM) as well as on monovalent cations (Na+ greater than or equal to K+ + Na+ greater than K+ greater than Li+ greater than choline +), and anions (Cl- greater than acetate- greater than or equal to NO3- greater than or equal to F- greater than H2PO4- much greater than gluconate- greater than or equal to oxalate= much greater than SO4=). It had a fairly narrow pH optimum (7.25-7.50). Preincubation (10 min) of LER vesicles with 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulated LER Ca2+ uptake; this effect was enhanced in the presence of renal cytosol [5% (vol/vol)].(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- D W Moskowitz
- Department of Medicine, St. Louis University School of Medicine, John Cochran VA Medical Center, MO 63106
| | | |
Collapse
|
11
|
Moskowitz DW, Hruska KA. Ca2+ uptake by endoplasmic reticulum of renal cortex. II. Effects of uninephrectomy and parathyroidectomy. Calcif Tissue Int 1992; 51:42-7. [PMID: 1393776 DOI: 10.1007/bf00296216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Calcium uptake by the endoplasmic reticulum (ER) is important for cellular calcium homeostasis, yet its regulation in nonmuscle cells is poorly understood. We reported that Ca2+ uptake by a light fraction of canine renal cortical ER (LER) is stimulated by protein kinase C in vitro. Here we describe conditions in vivo that stimulate renal cortical LER Ca2+ uptake. Thirty minutes after contralateral nephrectomy in the dog, 45Ca2+ uptake into renal cortical LER was increased 42% above control LER. There was no difference in LER Ca2+ uptake 24 hours after uninephrectomy. Acute denervation did not reproduce the increase in LER 45Ca2+ uptake seen at 30 minutes after uninephrectomy, nor did prior thyroparathyroidectomy abolish it. Forty-eight hours after thyroparathyroidectomy, 45Ca2+ uptake activity into renal cortical LER was decreased approximately sevenfold. In a proximal tubular cell line (LLC-PK1), 30-minute incubation with 12-O-tetradecanoylphorbol-13-acetate doubled 45Ca2+ uptake into a nonmitochondrial pool. Pretreatment with epidermal growth factor halved ER Ca2+ uptake, whereas insulin-like growth factor and growth hormone, alone or in combination, had no effect. Our data suggest that Ca2+ uptake into renal cortical ER is stimulated acutely during compensatory renal growth, perhaps through protein kinase C, and is stimulated chronically by parathyroid hormone.
Collapse
Affiliation(s)
- D W Moskowitz
- Department of Medicine, St. Louis University School of Medicine, John Cochran VA Medical Center, Missouri 63106
| | | |
Collapse
|
12
|
Itoh K, Hara T, Shibata N. Diphosphorylation of platelet myosin by myosin light chain kinase. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1133:286-92. [PMID: 1531301 DOI: 10.1016/0167-4889(92)90049-h] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recently, one of the authors (K.I.) and other investigators reported that myosin light chain (MLC) of smooth muscle (gizzard, arterial and tracheal) was diphosphorylated by myosin light chain kinase (MLCK) and that diphosphorylated myosin showed a marked increase in the actin-activated myosin ATPase activity in vitro and ex vivo. In this study, we prepared myosin, actin, tropomyosin (human platelet), MLCK (chicken gizzard) and calmodulin (bovine brain) and demonstrated diphosphorylation of MLC of platelet by MLCK in vitro. Our results are as follows. (1) Platelet MLC was diphosphorylated by a relatively high concentration (greater than 20 micrograms/ml) of MLCK in vitro. As a result of diphosphorylation, the actin-activated myosin ATPase activity was increased 3 to 4-fold as compared to the monophosphorylation. (2) Both di- and monophosphorylation reactions showed similar Ca2+, KCl, MgCl2-dependence. Maximal reaction was seen at [Ca2+] greater than 10(-6) M, 60 mM KCl and 2 mM MgCl2. This condition was physiological in activated platelets. (3) Di- and monophosphorylated myosin showed similar Ca2+, KCl-dependence of ATPase activity but distinct MgCl2-dependence. Diphosphorylated myosin showed maximal ATPase activity at 2 mM MgCl2 and monophosphorylated myosin showed a maximum at 10 mM MgCl2. (4) The addition of tropomyosin stimulated actin-activated ATPase activity in both di- and monophosphorylated myosin to the same degree. (5) ML-9, a relatively specific inhibitor of MLCK, inhibited the aggregation of human platelets induced by thrombin ex vivo in a dose-dependent manner. Moreover, this drug also partially inhibited both di- and monophosphorylation reactions and actin-activated ATPase activity. On the other hand, H-7, a synthetic inhibitor of protein kinase C, had little effect on the aggregation of human platelets induced by thrombin ex vivo. From these results, we conclude that diphosphorylation of platelet myosin by MLCK may play an important role in activated platelets in vivo.
Collapse
Affiliation(s)
- K Itoh
- Division of Molecular Cardiology, Center for Adult Diseases, Osaka, Japan
| | | | | |
Collapse
|
13
|
Tsukamoto Y, Saka S, Saitoh M. Parathyroid hormone stimulates ATP-dependent calcium pump activity by a different mode in proximal and distal tubules of the rat. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1103:163-71. [PMID: 1309659 DOI: 10.1016/0005-2736(92)90070-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new technique was developed to isolate basolateral membrane vesicles individually from proximal and distal tubules of the rat cortex. This new technique enabled us to study differences in their kinetics and mechanisms of hormonal regulation of Ca pump between proximal and distal tubules. The Ca pump in distal tubule has very high affinity (42.6 nM Ca2+) and the one in proximal tubule has relatively low affinity (75.6 nM Ca2+). Parathyroidectomy (PTX) decreased the Vmax of Ca pump activity in proximal tubule (4.68 +/- 0.99 vs. 9.08 +/- 2.21 nmol 45Ca2+/min per mg protein BLMV, P less than 0.05), while it increased Km in distal tubule (93.1 +/- 11.0 vs. 35.1 +/- 16.1 nM Ca2+, P less than 0.05). Restoration of serum Ca2+ concentration by 1,25(OH)2D3 supplement could not reverse these changes by PTX in Ca pump activity in either the proximal or the distal tubule. In conclusion, this study strongly suggested that parathyroid hormone stimulated Ca pump activity by increasing the Vmax in proximal tubule and by increasing the affinity in distal tubule. 1,25(OH)2D3 does not have a direct effect on the basolateral membrane Ca pump activity.
Collapse
Affiliation(s)
- Y Tsukamoto
- Department of Medicine, Kitasato University School of Medicine, Kanagawa, Japan
| | | | | |
Collapse
|
14
|
Kelley LK, Borke JL, Verma AK, Kumar R, Penniston JT, Smith CH. The calcium-transporting ATPase and the calcium- or magnesium-dependent nucleotide phosphatase activities of human placental trophoblast basal plasma membrane are separate enzyme activities. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39382-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
15
|
Reid IR, Lowe C, Cornish J, Gray DH, Skinner SJ. Adenylate cyclase blockers dissociate PTH-stimulated bone resorption from cAMP production. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 258:E708-14. [PMID: 1692185 DOI: 10.1152/ajpendo.1990.258.4.e708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is uncertain whether adenosine 3',5'-cyclic monophosphate (cAMP) or the inositol-calcium pathway mediates the stimulation of bone resorption by parathyroid hormone (PTH). Incubation of bone organ cultures with cAMP analogues and forskolin has not resolved this question because of the cellular inhomogeneity of bone and the consequent presence of adenylate cyclase-linked receptors for both PTH and calcitonin, hormones with opposite effects on bone resorption. We have used two new inhibitors of adenylate cyclase, 9-(tetrahydro-2-furyl)adenine (SQ 22536) and 2',5'-dideoxyadenosine (DDA), to directly reassess the role of cAMP in PTH-stimulated osteolysis. SQ 22536 (0.01-1.0 mM) and DDA (0.01-1.0 mM) completely blocked PTH stimulation of cAMP production measured in the absence of a phosphodiesterase blocker. In the presence of 1 mM 3-isobutyl-1-methylxanthine, half-maximal inhibition of PTH-induced cAMP production occurred with 0.2 mM SQ and 0.1 mM DDA, respectively. These concentrations of SQ and DDA had no effect on PTH-stimulated 45Ca release from calvaria, although both agents inhibited bone resorption when present at concentrations of 1-2 mM. At these levels, SQ and DDA caused equivalent inhibition of 45Ca release stimulated by 1,25-dihydroxyvitamin D3 but did not affect basal 45Ca release or [3H]-phenylalanine incorporation. It is concluded that substantial blockade of PTH-induced cAMP production does not affect this hormone's stimulation of bone resorption, which is therefore likely to be mediated by another intracellular messenger system, possibly calcium. In millimolar concentrations, SQ and DDA appear to be nonspecific blockers of osteoclastic bone resorption.
Collapse
Affiliation(s)
- I R Reid
- Department of Medicine, University of Auckland, New Zealand
| | | | | | | | | |
Collapse
|
16
|
Hadzić A, Sabolić I, Banfić H. Stimulation of ATP-driven Ca2+ pump in the basal-lateral plasma membranes of kidney cortex during compensatory renal growth. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1022:265-72. [PMID: 2156554 DOI: 10.1016/0005-2736(90)90273-q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
During compensatory renal growth 45Ca2+ transport in basal-lateral plasma membrane vesicles isolated from the rat renal cortex have been investigated. Stimulation of Ca2(+)-ATPase activity was observed, without an effect of compensatory renal growth on Na+/Ca2+ exchanger activity and on passive Ca2+ permeability of the vesicles. Twelve hours following unilateral nephrectomy about 40% increase of Ca2(+)-ATPase activity above control value was observed and this effect was present until the end of the experimental period (7 days). When kinetic parameters for Ca2(+)-ATPase were studied in native membranes, an increase of Vmax was observed, whereas the Km for Ca2+ was similar in control vesicles and vesicles isolated from the remnant kidney. Depletion of endogenous calmodulin resulted in a decrease of Vmax and an increase of Km (Ca2+), while its addition reversed these parameters and increased the Hill coefficient from about 1 to about 2. Once again, only a significant increase of Vmax in vesicles isolated from the remnant kidney above the control value was observed. Finally, increase of Ca2(+)-ATPase activity during compensatory renal growth could be abolished by actinomycin D, indicating that its stimulation is due to protein synthesis.
Collapse
Affiliation(s)
- A Hadzić
- Department of Physiology, Faculty of Medicine, University of Zagreb, Yugoslavia
| | | | | |
Collapse
|
17
|
Itoh K, Morimoto S, Shiraishi T, Taniguchi K, Onishi T, Kumahara Y. Increase of (Ca2+ +Mg2+)-ATPase activity of renal basolateral membranes by platelet-derived growth factor through a specific receptor. Biochem Biophys Res Commun 1988; 153:1315-23. [PMID: 2839172 DOI: 10.1016/s0006-291x(88)81372-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Studies were made on the direct effect of platelet-derived growth factor (PDGF) on the high-affinity (Ca2+ +Mg2+)-ATPase, a membrane bound Ca2+-extrusion pump enzyme of the basolateral membranes (BLM) of canine kidney (Km for free Ca2+ = 1.0 x 10(-7) M, Vmax = 180 nmol Pi/mg/min). At 1 x 10(-7) M free Ca2+, PDGF (10(-10)-10(-8) M) stimulated the enzyme activity significantly. Addition of 5 - 200 microM suramin, a compound that blocks binding of PDGF to its receptors on cell membranes, inhibited the stimulatory effect of PDGF dose-dependently (IC50 = 40 microM). A high affinity specific receptor for PDGF (Kd = 4.4 x 10(-10) M, Bmax = 460 fmol/mg protein) was detected on BLM preparations by radioreceptor assay with 125I-PDGF and unlabelled PDGF. Suramin (10-1000 microM) also inhibited the binding of PDGF to BLM preparations dose-dependently. From these results, it is proposed that PDGF stimulates (Ca2+ +Mg2+)-ATPase activity of kidney BLM preparations by enhancing its affinity for free Ca2+ through a specific receptor.
Collapse
Affiliation(s)
- K Itoh
- Department of Medicine and Geriatrics, Osaka University Medical School, Japan
| | | | | | | | | | | |
Collapse
|