1
|
PKC and CaMK-II inhibitions coordinately rescue ischemia-induced GABAergic neuron dysfunction. Oncotarget 2018; 8:39309-39322. [PMID: 28445148 PMCID: PMC5503615 DOI: 10.18632/oncotarget.16947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia leads to neuronal death for stroke, in which the imbalance between glutamatergic neurons and GABAergic neurons toward neural excitotoxicity is presumably involved. GABAergic neurons are vulnerable to pathological factors and impaired in an early stage of ischemia. The rescue of GABAergic neurons is expected to be the strategy to reserve ischemic neuronal impairment. As protein kinase C (PKC) and calmodulin-dependent protein kinase II (CaMK-II) are activated during ischemia, we have investigated whether the inhibitions of these kinases rescue the ischemic impairment of cortical GABAergic neurons. The functions of GABAergic neurons were analyzed by whole-cell recording in the cortical slices during ischemia and in presence of 1-[N,O-bis(5-isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (CaMK-II inhibitor) and chelerythrine chloride (PKC inhibitor). Our results indicate that PKC inhibitor or CaMK-II inhibitor partially prevents ischemia-induced functional deficits of cortical GABAergic neurons. Moreover, the combination of PKC and CaMK-II inhibitors synergistically reverses this ischemia-induced deficit of GABAergic neurons. One of potential therapeutic strategies for ischemic stroke may be to rescue the ischemia-induced deficit of cortical GABAergic neurons by inhibiting PKC and CaMK-II.
Collapse
|
2
|
Liu Z, Huang Y, Liu L, Zhang L. Inhibitions of PKC and CaMK-II synergistically rescue ischemia-induced astrocytic dysfunction. Neurosci Lett 2017; 657:199-203. [DOI: 10.1016/j.neulet.2017.08.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 01/29/2023]
|
3
|
Nagatsu T. The catecholamine system in health and disease -Relation to tyrosine 3-monooxygenase and other catecholamine-synthesizing enzymes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2007; 82:388-415. [PMID: 25792770 PMCID: PMC4338835 DOI: 10.2183/pjab.82.388] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Accepted: 11/13/2006] [Indexed: 05/29/2023]
Abstract
Catecholamines [dopamine, noradrenaline (norepinephrine), and adrenaline (epinephrine); CAs] are neurotransmitters in the central and peripheral nervous systems as well as hormones in the endocrine system. CAs in the brain play a central role in versatile functions as slow-acting neurotransmitters functioning in synaptic neurotransmission, modulating the effects of fast-acting neurotransmitters such as glutamate and γ-aminobutyric acid (GABA). In this review, I focus on recent advances in the biochemistry and molecular biology of the CA system in humans in health and disease, especially in neuropsychiatric diseases such as Parkinson's disease (PD), in relation to the biosynthesis of CAs regulated by a pteridine-dependent monooxygenase, tyrosine 3-monooxygenase (tyrosine hydroxylase, TH) and its pteridine cofactor, tetrahydrobiopterin (BH4).
Collapse
Affiliation(s)
- Toshiharu Nagatsu
- Nagoya University Research Institute of Environmental Medicine, Nagoya,
Japan
- Fujita Health University School of Medicine, Toyoake, Aichi,
Japan
- Visiting Professor and Professor Emeritus
| |
Collapse
|
4
|
Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW. Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 2004; 91:1025-43. [PMID: 15569247 DOI: 10.1111/j.1471-4159.2004.02797.x] [Citation(s) in RCA: 358] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The rate-limiting enzyme in catecholamine synthesis is tyrosine hydroxylase. It is phosphorylated at serine (Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro, in situ and in vivo. A range of protein kinases and protein phosphatases are able to phosphorylate or dephosphorylate these sites in vitro. Some of these enzymes are able to regulate tyrosine hydroxylase phosphorylation in situ and in vivo but the identity of the kinases and phosphatases is incomplete, especially for physiologically relevant stimuli. The stoichiometry of tyrosine hydroxylase phosphorylation in situ and in vivo is low. The phosphorylation of tyrosine hydroxylase at Ser40 increases the enzyme's activity in vitro, in situ and in vivo. Phosphorylation at Ser31 also increases the activity but to a much lesser extent than for Ser40 phosphorylation. The phosphorylation of tyrosine hydroxylase at Ser19 or Ser8 has no direct effect on tyrosine hydroxylase activity. Hierarchical phosphorylation of tyrosine hydroxylase occurs both in vitro and in situ, whereby the phosphorylation at Ser19 increases the rate of Ser40 phosphorylation leading to an increase in enzyme activity. Hierarchical phosphorylation depends on the state of the substrate providing a novel form of control of tyrosine hydroxylase activation.
Collapse
Affiliation(s)
- Peter R Dunkley
- School of Biomedical Sciences, The University of Newcastle, Callaghan, New South Wales, Australia.
| | | | | | | | | |
Collapse
|
5
|
Deb TB, Coticchia CM, Dickson RB. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells. J Biol Chem 2004; 279:38903-11. [PMID: 15247222 DOI: 10.1074/jbc.m405314200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.
Collapse
Affiliation(s)
- Tushar B Deb
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
6
|
Chang JP, Wong CJH, Davis PJ, Soetaert B, Fedorow C, Sawisky G. Role of Ca2+ stores in dopamine- and PACAP-evoked growth hormone release in goldfish. Mol Cell Endocrinol 2003; 206:63-74. [PMID: 12943990 DOI: 10.1016/s0303-7207(03)00234-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growth hormone (GH) secretion, evoked by either pituitary adenylate cyclase-activating polypeptide (PACAP) or dopamine (DA), is dependent on both voltage-sensitive calcium channels (VSCC) and cAMP signaling in goldfish. We further characterized the involvement of Ca2+ in evoked release by PACAP and DA, by examining the sensitivity of evoked GH release to perturbations of Ca2+ signaling. Both VSCC and calmodulin/calmodulin-dependent kinase are involved in PACAP signaling as had been shown for DA. In spite of this apparent dependence on VSCC, blockade of TMB-8 but not ryanodine-sensitive intracellular Ca2+ stores inhibited both PACAP- and DA-evoked GH release. Using sarcoplasmic/endoplasmic reticulum Ca-ATPases (SERCA) inhibitors, we found BHQ blocked, whereas thapsigargin (Tg) enhanced stimulated GH release, suggesting that Tg-sensitive SERCA may counteract these cAMP-mobilizing neuroendocrine regulators by sequestering [Ca2+]i. As GH secretion stimulated by two endogenous gonadotropin-releasing hormones is not affected by Tg, it appears that distinct multiple Ca2+ stores mediate the hormone releasing response to different neuroendocrine regulators.
Collapse
Affiliation(s)
- J P Chang
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Building, Edmonton, Alta, Canada T6G 2E9.
| | | | | | | | | | | |
Collapse
|
7
|
Takahashi K. The linkage between beta1 integrin and the actin cytoskeleton is differentially regulated by tyrosine and serine/threonine phosphorylation of beta1 integrin in normal and cancerous human breast cells. BMC Cell Biol 2001; 2:23. [PMID: 11716783 PMCID: PMC59887 DOI: 10.1186/1471-2121-2-23] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2001] [Accepted: 11/08/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Structural requirements for the beta1 integrin functions in cell adhesion, spreading and signaling have been well documented mainly for fibroblasts. In this study, we examined the reason for the reduced surface expression of beta1 integrin in human breast cancer MCF-7 cells compared to normal human breast epithelial (HBE) cells, both of which adhered to collagen type IV. RESULTS The beta1 integrin immunoprecipitates from either HBE or MCF-7 cells involved alpha-actinin while actin coprecipitated with beta1 integrin from HBE cells but not from MCF-7 cells. Immunoblotting using the anti-phosphotyrosine (PY) antibody indicated the phosphorylation of beta1 integrin at least at tyrosine in both cells. Dephosphorylation of beta1 integrin from HBE cells by protein tyrosine phosphatase (PTP), but not by protein serine/threonine phosphatase (PP), caused dissociation of actin from beta1 integrin, although dephosphorylation of it from MCF-7 cells by either PTP or PP caused association of the two proteins. In MCF-7 cells beta1 integrin coprecipitated doublet of proteins having the Ca2+/calmodulin-dependent protein kinase (CaMK) II activity that was susceptible to KN-62, a specific inhibitor of CaMKII. CONCLUSION The results suggest that beta1 integrin is tyrosine phosphorylated and links with actin via alpha-actinin in HBE cells but prevented from linking with actin in MCF-7 cells by phosphorylation at both tyrosine and serine/threonine of beta1 integrin which forms a complex with alpha-actinin and CaMKII. Thus the linkage formation of beta1 integrin with actin may be differentially regulated by its tyrosine and serine/threonine phosphorylation in normal HBE cells and breast cancer MCF-7 cells.
Collapse
Affiliation(s)
- K Takahashi
- Laboratory of Biochemistry, Kanagawa Cancer Center Research Institute 1-1-2 Nakao, Asahi-ku, Yokohama 241-0815, Japan.
| |
Collapse
|
8
|
Di Sario A, Bendia E, Svegliati Baroni G, Ridolfi F, Bolognini L, Feliciangeli G, Jezequel AM, Orlandi F, Benedetti A. Intracellular pathways mediating Na+/H+ exchange activation by platelet-derived growth factor in rat hepatic stellate cells. Gastroenterology 1999; 116:1155-66. [PMID: 10220508 DOI: 10.1016/s0016-5085(99)70019-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS The Na+/H+ exchanger is the main intracellular pH regulator in hepatic stellate cells (HSCs), and its activity is increased by platelet-derived growth factor (PDGF). Amiloride, an Na+/H+ exchange inhibitor, reduces PDGF-induced HSC proliferation, suggesting that the Na+/H+ exchanger plays a role in regulating HSC proliferative response. The aim of this study was to characterize the intracellular pathways mediating activation of the Na+/H+ exchanger by PDGF in HSCs. METHODS The activity of the Na+/H+ exchanger and HSC proliferation rate were evaluated under control condition and after incubation with PDGF in the absence or presence of specific inhibitors of the main intracellular pathways of signal transduction. Na+/H+ exchange protein expression was evaluated by means of Western blot. RESULTS PDGF induced a significant increase in the activity of the Na+/H+ exchanger without modifying protein expression. Inhibition of the calcium/calmodulin- and protein kinase C-dependent pathways resulted in a significant inhibition of both Na+/H+ exchange activity and of PDGF-induced HSC proliferation. The involvement of the two pathways was confirmed by showing that incubation of HSCs with both phorbol-12-myristate-13-acetate, a potent protein kinase C activator, and thapsigargin, which increases intracellular calcium levels, significantly increased both the Na+/H+ exchanger activity and HSC proliferation rate. Inhibition of the protein kinase A pathway did not modify either PDGF-induced Na+/H+ exchange activation or PDGF-induced HSC proliferation. On the contrary, inhibition of the mitogen-activated protein kinase- and of phosphatidylinositol 3-kinase-dependent pathways significantly reduced PDGF-induced HSC proliferation without affecting the activity of the Na+/H+ exchanger. CONCLUSIONS Activation of the Na+/H+ exchanger by PDGF in HSCs is mediated by calcium/calmodulin- and protein kinase C-dependent pathways. PDGF-induced HSC proliferation is mediated by Na+/H+ exchange-dependent and -independent pathways.
Collapse
Affiliation(s)
- A Di Sario
- Department of Gastroenterology, University of Ancona, Ancona, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Leclerc C, Duprat AM, Moreau M. Noggin upregulates Fos expression by a calcium-mediated pathway in amphibian embryos. Dev Growth Differ 1999; 41:227-38. [PMID: 10223719 DOI: 10.1046/j.1440-169x.1999.00421.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In amphibia, noggin, one of the neural inducers expressed in the Spemann organizer, acts by neutralizing the effects of bone morphogenetic protein-4 (BMP-4). It is shown that noggin is able to activate L-type calcium channels. The fos proto-oncogene is known to be induced within minutes by calcium signaling. Here it is reported that in animal cap explants of the amphibian Pleurodeles waltl, noggin can induce upregulation of a FOS-related protein in a calcium-dependent manner. Specific inhibition of the dihydropyridine sensitive L-type calcium channels blocked both calcium influx and the induction of FOS-related protein. When animal cap explants were treated with caffeine in order to release calcium from an internal store or with a specific agonist of the L-type calcium channels, FOS-related protein could be detected in cell nuclei by 5 or 15 min, respectively. Additionally, the calcium calmodulin kinase inhibitor. KN62, could block the upregulation of FOS-related protein induced by agents that increased intracellular calcium ([Ca2+]i). The present results suggest that transcription factors from the FOS family are downstream targets of neural inducer noggin.
Collapse
Affiliation(s)
- C Leclerc
- Centre de Biologie du Développement, UMR 5547, Université Paul Sabatier, Toulouse, France
| | | | | |
Collapse
|
10
|
Cheah TB, Bobrovskaya L, Gonçalves CA, Hall A, Elliot R, Lengyel I, Bunn SJ, Marley PD, Dunkley PR. Simultaneous measurement of tyrosine hydroxylase activity and phosphorylation in bovine adrenal chromaffin cells. J Neurosci Methods 1999; 87:167-74. [PMID: 11230813 DOI: 10.1016/s0165-0270(99)00002-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A method for simultaneous measurement of tyrosine hydroxylase (TH) activation and phosphorylation in permeabilised and intact bovine adrenal chromaffin cells (BACCs) was established. Permeabilised cells were stimulated with cyclic AMP (1--10 microM) in the presence of [32P]ATP and L-[carboxyl-(14)C]tyrosine. Intact BACCs were preincubated with 32P(i) for 3 h and stimulated with forskolin (1--5 microM) in the presence of L-[carboxyl-(14)C]tyrosine. On stimulation each well was covered with a sealed 'chimney' fitted with a small plastic cup containing 300 microl of 1.0 M NaOH that trapped the 14CO(2) released. TH activity was determined by measuring 14C radioactivity. TH phosphorylation was measured in the same cells by separating the solubilized proteins on SDS PAGE followed by autoradiography and/or HPLC analysis. It was found that H89, a protein kinase A inhibitor, significantly blocked both TH phosphorylation and activation in response to cyclic AMP in permeabilised cells. However, in intact cells, H89 was effective only in respect to forskolin-stimulated TH activity and did not block the forskolin-stimulated TH phosphorylation of Ser-40. The reason(s) for this lack of correlation between TH activation and phosphorylation is presently not understood.
Collapse
Affiliation(s)
- T B Cheah
- The Neuroscience Group, Discipline of Medical Biochemistry, Faculty of Medicine and Health Sciences, The University of Newcastle, Callaghan, New South Wales, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Uchida J, Kiuchi Y, Ohno M, Yura A, Oguchi K. Ca(2+)-dependent enhancement of [3H]noradrenaline uptake in PC12 cells through calmodulin-dependent kinases. Brain Res 1998; 809:155-64. [PMID: 9853106 DOI: 10.1016/s0006-8993(98)00850-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ca(2+)-dependent regulation of [3H]noradrenaline ([3H]NA) uptake through the NA transporter was studied using PC12 cells. Preincubation for 10 min in the presence of 0.3-10 mM ca2+ in Krebs-Ringer (KR) buffer induced marked enhancement of the uptake (at 1 mM Ca2+, 6.6 times greater than that observed in the absence of Ca2+), which reflected both an increase in Vmax and a decrease in K(m) of the uptake process. Preincubation with 1 mM Ca2+ also induced a significant increase in the Bmax and Kd of [3H]desipramine binding. The uptake was still enhanced after washing cells with Ca(2+)-free buffer following preincubation with 1 mM Ca2+. 1-[N, O-bis(5-Isoquinolinesulfonyl)-N-methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), 2-[N-(2-hydroxyethyl)-N-(4-methoxybenzenesulfonyl)]amino-N-(4-c hlo rocinnamyl) -N-methylbenzylamine (KN-93) (inhibitors of Ca2+/calmodulin-dependent kinase II), N-(6-aminohexyl)-5-chloro-1-naphthalenesulonamide (W-7) (a calmodulin antagonist), wortmannin (a myosin light chain kinase inhibitor) significantly reduced Ca(2+)-dependent enhancement of the uptake. Mycalolide B (an inhibitor of actin-myosin interaction) also inhibited the enhancement. Although calphostin C (a protein kinase C (PKC) inhibitor) did not affect the enhancement, 12-o-tetradecanoylphorbol 13-acetate (TPA) inhibited the uptake. A synthetic peptide with a sequence (KKVIYKFFS579 IRGSLW) contained in the intracellular COOH-terminal domain of a rat NA transporter was phosphorylated by purified brain Ca2+/calmodulin-dependent protein kinase II. These results suggest that Ca(2+)-dependent enhancement of the [3H]NA uptake in PC12 cells are mediated by activation of calmodulin-dependent protein kinases, probably through stimulation of translocation of the NA transporter to the plasma membrane and/or direct phosphorylation of the transporter itself.
Collapse
Affiliation(s)
- J Uchida
- Department of Pharmacology, School of Medicine, Showa University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
12
|
Alterio J, Ravassard P, Haavik J, Le Caer JP, Biguet NF, Waksman G, Mallet J. Human tyrosine hydroxylase isoforms. Inhibition by excess tetrahydropterin and unusual behavior of isoform 3 after camp-dependent protein kinase phosphorylation. J Biol Chem 1998; 273:10196-201. [PMID: 9553069 DOI: 10.1074/jbc.273.17.10196] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human tyrosine hydroxylase exists as four isoforms (hTH1-4), generated by alternative splicing of pre-mRNA, with tissue-specific distribution. Unphosphorylated hTH3 and hTH1 were produced in large amounts in Escherichia coli and purified to homogeneity. The phosphorylation sites were determined after labeling with [32P]phosphate in the presence of cAMP-dependent protein kinase (PKA) and calmodulin-dependent protein kinase II (CaM-PKII). Ser40 was phosphorylated by PKA, and both Ser19 and Ser40 were phosphorylated by CaM-PKII. The enzyme kinetics of hTH3 were determined in the presence of various concentrations of the natural co-substrate (6R)-tetrahydrobiopterin and compared with those of recombinant hTH1 (similar to rat TH). We show that, under initial velocity conditions, excess (6R)-tetrahydrobiopterin inhibits hTH3 and hTH1. The TH catalytic constants (kcat) were determined for each of the two isoenzymes: hTH3 is about five times more active than hTH1. Phosphorylation by CaM-PKII did not affect the kinetic parameters of hTH3. The classical activation of TH by PKA phosphorylation, demonstrated for hTH1, was not observed with hTH3. Furthermore, hTH3 escapes activity regulation by phosphorylation and is always more active than phosphorylated hTH1. The properties of the hTH3 enzyme may be relevant to diseases affecting dopaminergic cells.
Collapse
Affiliation(s)
- J Alterio
- Laboratoire de Génétique Moleculaire de la Neurotransmission et des Processus Neurodégénératifs, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Chen SJ, Bradley ME, Lee TC. Chemical hypoxia triggers apoptosis of cultured neonatal rat cardiac myocytes: modulation by calcium-regulated proteases and protein kinases. Mol Cell Biochem 1998; 178:141-9. [PMID: 9546593 DOI: 10.1023/a:1006893528428] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial infarctions and stroke arise primarily as a result of hypoxia/ischemia-induced cell injury. However, the molecular mechanism of cardiac cell death due to hypoxia has not been elucidated. We showed here that chemical hypoxia induced by 1 mM azide triggered apoptosis of isolated neonatal rat ventricular cardiac myocytes but had no effect on cardiac fibroblasts. The azide-induced cardiomyocyte apoptosis could be characterized by a reversible initiation phase (0-46 h after azide exposure) during which cytosolic ATP levels remained little affected. This was followed by an irreversible execution phase (12-18 h) exhibiting prominent internucleosomal DNA fragmentation, cell membrane leakage, mitochondrial dysfunction, and increased calpain messenger RNA. Blocking extracellular calcium influx or intracellular calcium release was each effective in suppressing myocyte apoptosis. Cell death was also found to be mediated by calcium sensitive signal transduction events based on the use of specific antagonists. Consistent with the induction of calpain expression during apoptosis, blocking de novo protein synthesis and calpain activity inhibited cell death. These regulatory features coupled with the ease of the cell system suggest that the myocyte apoptosis model described here should be useful in the study of events leading to the demise of the myocardium.
Collapse
Affiliation(s)
- S J Chen
- Department of Biochemistry, State University of New York at Buffalo, 14214, USA
| | | | | |
Collapse
|
14
|
Yamamoto H, Tachibana A, Saikawa W, Nagano M, Matsumura K, Fusetani N. Effects of calmodulin inhibitors on cyprid larvae of the barnacle,Balanus amphitrite. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-010x(19980101)280:1<8::aid-jez2>3.0.co;2-s] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Rubinstein M, Phillips TJ, Bunzow JR, Falzone TL, Dziewczapolski G, Zhang G, Fang Y, Larson JL, McDougall JA, Chester JA, Saez C, Pugsley TA, Gershanik O, Low MJ, Grandy DK. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 1997; 90:991-1001. [PMID: 9323127 DOI: 10.1016/s0092-8674(00)80365-7] [Citation(s) in RCA: 337] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human dopamine D4 receptor (D4R) has received considerable attention because of its high affinity for the atypical antipsychotic clozapine and the unusually polymorphic nature of its gene. To clarify the in vivo role of the D4R, we produced and analyzed mutant mice (D4R-/-) lacking this protein. Although less active in open field tests, D4R-/- mice outperformed wild-type mice on the rotarod and displayed locomotor supersensitivity to ethanol, cocaine, and methamphetamine. Biochemical analyses revealed that dopamine synthesis and its conversion to DOPAC were elevated in the dorsal striatum from D4R-/- mice. Based on these findings, we propose that the D4R modulates normal, coordinated and drug-stimulated motor behaviors as well as the activity of nigrostriatal dopamine neurons.
Collapse
Affiliation(s)
- M Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET, and Depto. Química Biologica, FCEyN, Universidad de Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Potchinsky MB, Weston WM, Lloyd MR, Greene RM. TGF-beta signaling in murine embryonic palate cells involves phosphorylation of the CREB transcription factor. Exp Cell Res 1997; 231:96-103. [PMID: 9056415 DOI: 10.1006/excr.1996.3422] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A number of studies over the last several years have demonstrated a crucial role for TGF-beta in epithelial and mesenchymal differentiation during development of the embryonic palate. Molecular mechanism(s) of signal transduction responsible for eliciting these responses remain unresolved. Since cAMP signaling also modulates the same tissue differentiation in the developing palate and palate-derived cells, we hypothesized that TGF-beta activity may be mediated through cAMP-inducible pathways. We thus examined the effects of TGF-beta on activation of the cAMP regulatory element binding protein CREB, a nuclear transcription factor which mediates transcription of genes containing CRE recognition sequences in their promoters. We examined the ability of TGF-beta-treated murine embryonic palate mesenchymal (MEPM) cells to phosphorylate CREB on the amino acid residue serine 133, phosphorylation of which is indispensable for transcriptional activation. TGF-beta treatment led to increased phosphorylation of CREB ser-133 in a time- and dose-dependent manner. Inhibition of serine-threonine phosphatases by okadaic acid enhanced but did not prolong this response. TGF-beta failed to induce the activity of protein kinase A (PKA), a known CREB kinase. Inhibition of either PKA or calcium/calmodulin kinase II (CaMK II) did not abrogate phosphorylation of CREB by TGF-beta. TGF-beta treatment also did not induce phosphorylation of mitogen-activated protein kinases, erk-1 and erk-2, on tyrosine 185, suggesting that these kinases do not mediate CREB phosphorylation by TGF-beta. Additionally, TGF-beta had no effect on CREB binding to known CREB DNA consensus recognition sequences, CRE and TRE. Together, these data suggest an alternative or novel CREB kinase in MEPM cells through which TGF-beta acts to induce CREB ser-133 phosphorylation and subsequent activation of CRE-containing genes.
Collapse
Affiliation(s)
- M B Potchinsky
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College, Thomas Jefferson University, 1020 Locust Street, Philadelphia, Pennsylvania, 19107, USA
| | | | | | | |
Collapse
|
17
|
Kotsonis P, Binko J, Majewski H. Noradrenaline synthesis after sympathetic nerve activation in rat atria and its dependence on calcium but not CAM kinase II and protein kinases A or C. Br J Pharmacol 1996; 119:1605-13. [PMID: 8982508 PMCID: PMC1915779 DOI: 10.1111/j.1476-5381.1996.tb16079.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
1. The biosynthesis of noradrenaline following sympathetic nerve activation was investigated in rat atria. In particular the time course of noradrenaline synthesis changes, the relationship of changes in synthesis to transmitter release and the possible roles of second messengers and protein kinases were examined. 2. Rat atria incubated with the precursor [3H]-tyrosine synthesized [3H]-noradrenaline. Synthesis was enhanced following pulsatile electrical field stimulation (3 Hz for 5 min) with the bulk of the increase occurring in the first 45 min after the commencement of electrical stimulation. In separate experiments rat atria were pre-incubated with [3H]-noradrenaline and the radioactive outflow in response to electrical field stimulation (3 Hz for 5 min) was taken as an index of noradrenaline release. 3. Stimulation-induced (S-I) noradrenaline synthesis was significantly correlated to S-I noradrenaline release for a variety of procedures which modulate noradrenaline release by mechanisms altering Ca2+ entry into the neurone (r2 = 0.99): those which decreased release: tetrodotoxin (0.3 microM), Ca(2+)-free medium, lowering the frequency of nerve activation to 1 Hz, and those which increased release, tetraethylammonium (0.3 mM), phentolamine (1 microM) and the combination of phentolamine (1 microM) and adenosine (10 microM). On the strength of this relationship we suggest that Ca2+ entry is a determining factor in S-I synthesis changes rather than the amount of noradrenaline released. Indeed the reduction in noradrenaline release with the calmodulin-dependent protein (CAM) kinase II inhibitor KN-62 (10 microM) which acts subsequent to Ca2+ entry, did not affect S-I synthesis. 4. The cell permeable cyclic AMP analogue, 8-bromoadenosine 3',5'-monophosphate (BrcAMP, 90 and 270 microM), dose-dependently increased basal [3H]-noradrenaline synthesis in unstimulated rat atria. This effect was antagonized by the selective protein kinase A (PKA) antagonist, Rp-8-chloroadenosine 3',5'-cyclic monophosphorothioate (RClcAMPS, 300 microM), suggesting that PKA activation enhances basal noradrenaline biosynthesis in sympathetic nerve terminals. 5. The protein kinase inhibitors, KN-62 (CAM kinase II, 10 microM), RClcAMPS (PKA, 300 microM), polymyxin B (protein kinase C (PKC), 21 microM) and staurosporine (PKC, PKA and CAM kinase II, (0.1 microM) did not affect S-I synthesis, although KN-62, polymyxin B and staurosporine decreased S-I release. We conclude that S-I synthesis is triggered by Ca2+ entering the neurone but that the signalling pathway does not involve classical protein kinases and appears distinct from the steps involved in transmitter release.
Collapse
Affiliation(s)
- P Kotsonis
- Prince Henry's Institute of Medical Research, Clayton, Victoria, Australia
| | | | | |
Collapse
|
18
|
Loneragan K, Cheah TB, Bunn SJ, Marley PD. The role of protein kinase C in nicotinic responses of bovine chromaffin cells. Eur J Pharmacol 1996; 311:87-94. [PMID: 8884241 DOI: 10.1016/0014-2999(96)00397-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of the protein kinase C inhibitor CGP 41251 (31-benzoyl-staurosporine) on nicotinic responses of cultured bovine adrenal chromaffin cells have been investigated. CGP 41251 inhibited tyrosine hydroxylase activation by phorbol 12,13-dibutyrate, with an IC50 of < 0.3 microM and complete inhibition at 1 microM. In contrast, it had little effect on nicotine-stimulated tyrosine hydroxylase activity up to 1 microM, and did not fully inhibit it even at 10 microM. From 1 to 10 microM, CGP 41251 caused a similar concentration-dependent inhibition of tyrosine hydroxylase activity stimulated by nicotine, K+, forskolin and 8-Br-cyclic AMP. CGP 42700 (19,31-dibenzoyl-staurosporine), a structural analogue of CGP 41251 that lacks activity as a protein kinase C inhibitor, had no effect on tyrosine hydroxylase activity stimulated by any of the agonists. CGP 41251 had no effect on catecholamine secretion induced by nicotine. The results suggest phorbol ester-sensitive protein kinase C isozymes do not play a major role in nicotinic stimulation of tyrosine hydroxylase activity or catecholamine secretion in chromaffin cells.
Collapse
Affiliation(s)
- K Loneragan
- Department of Pharmacology, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
19
|
Hidaka H, Okazaki K. KN-62: A Specific Ca2+/calmodulin-dependent Protein Kinase Inhibitor as a Putative Function-searching Probe for Intracellular Signal Transduction. ACTA ACUST UNITED AC 1996. [DOI: 10.1111/j.1527-3466.1996.tb00315.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Cui ZJ, Hidaka H, Dannies PS. KN-62, a calcium/calmodulin-dependent protein kinase II inhibitor, inhibits high potassium-stimulated prolactin secretion and intracellular calcium increases in anterior pituitary cells. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1310:343-7. [PMID: 8599613 DOI: 10.1016/0167-4889(95)00170-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In isolated rat anterior pituitary cells, KN-62 (10 microM), an isoquinoline sulfonamide inhibitor of calcium/calmodulin-dependent protein kinase II, inhibited high KCl(50 milliM)-stimulated prolactin secretion almost completely, with an IC50 of 95 nM KN-62 inhibited TRH-induced prolactin secretion less effectively. KN-04, a compound that is over 100-fold less active in inhibiting purified calcium/calmodulin-dependent protein kinase II, also inhibited high KCl-stimulated prolactin secretion with an IC50 of 500 nM. KN-62 and KN-04 (10 microM) both inhibited high KCl-stimulated increases in intracellular Ca2+ concentrations. We conclude that KN-62 and KN-04 inhibit activation of voltage-dependent calcium channels in anterior pituitary cells either directly or indirectly.
Collapse
Affiliation(s)
- Z J Cui
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
21
|
Abstract
Several growth factors may stimulate proliferation of thyroid cells. This effect has, in part, been dependent on calcium entry. In the present study using FRTL-5 cells, we show that in addition to its effect on calcium fluxes, ATP acts as a comitogen in these cells. In medium containing 5% serum, but no TSH, ATP stimulated the incorporation of 3H-thymidine in a dose- and time-dependent manner in the cells. At least a 24-h incubation with ATP was necessary to observe the enhanced (30-50%) incorporation of 3H-thymidine and an increased (30%) cell number. The effect of ATP was dependent on insulin in the incubation medium. Furthermore, ATP enhanced the TSH-mediated incorporation of 3H-thymidine. The effect of ATP was apparently mediated via a G-protein dependent mechanism, as no stimulation of thymidine incorporation was observed in cells treated with pertussis toxin. The effect of ATP was not dependent on the activation of protein kinase C (PKC), as ATP was effective in cells with downregulated PKC. ATP rapidly phosphorylated mitogen activated protein (MAP) kinase in FRTL-5 cells. In addition, ATP stimulated the expression of a 62 kDa c-fos dependent protein in a dose- and time-dependent manner. Our results thus suggest that extracellular ATP, in the presence of insulin, may be a cofactor in the regulation of thyroid cell proliferation, probably by phosphorylating MAP kinase and stimulating the expression of c-fos.
Collapse
Affiliation(s)
- K Törnquist
- Department of Biosciences, University of Helsinki, Finland
| | | | | |
Collapse
|
22
|
Hidaka H, Yokokura H. Molecular and cellular pharmacology of a calcium/calmodulin-dependent protein kinase II (CaM kinase II) inhibitor, KN-62, and proposal of CaM kinase phosphorylation cascades. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1996; 36:193-219. [PMID: 8783561 DOI: 10.1016/s1054-3589(08)60583-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- H Hidaka
- Department of Pharmacology, Nagoya University School of Medicine, Japan
| | | |
Collapse
|
23
|
Schweitzer ES, Sanderson MJ, Wasterlain CG. Inhibition of regulated catecholamine secretion from PC12 cells by the Ca2+/calmodulin kinase II inhibitor KN-62. J Cell Sci 1995; 108 ( Pt 7):2619-28. [PMID: 7593303 DOI: 10.1242/jcs.108.7.2619] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When stimulated by the cholinergic agonist carbachol, PC12 cells rapidly secrete a large fraction of the intracellular catecholamines by exocytotic release from the large dense-core secretory vesicles in a Ca(2+)-dependent manner. To investigate whether Ca2+/calmodulin kinase II plays a role in the regulated secretion of catecholamines, we examined the effect of the specific Ca2+/calmodulin kinase II inhibitor KN-62 on the carbachol-induced release of norepinephrine from PC12 cells. Approximately 50% of the regulated release of norepinephrine, stimulated either by carbachol or direct depolarization, was inhibited by pretreatment with KN-62, while the remaining 50% was resistant to KN-62 and therefore independent of Ca2+/calmodulin kinase II. In contrast, H7, an inhibitor of protein kinase C, had no effect on any of the stimulated release. FURA 2 imaging experiments demonstrated that KN-62 does not act by blocking the stimulation-induced increase in intracellular [Ca2+]. The most likely model consistent with these data is that all the dense-core vesicles fuse with the plasma membrane in a Ca(2+)-dependent process, but that approximately 50% of the vesicles require an additional step that is dependent on the action of Ca2+/calmodulin kinase II. This step occurs between the influx of Ca2+ and the fusion of vesicle membranes with the plasma membrane, and may be analogous to the Ca2+/calmodulin kinase II phosphorylation of synapsin which mobilizes small, clear synaptic vesicles for exocytosis at the synapse.
Collapse
Affiliation(s)
- E S Schweitzer
- Department of Anatomy, UCLA School of Medicine 90024, USA
| | | | | |
Collapse
|
24
|
Müller T, Kuhn W, Przuntek H. Therapy with central active catechol-O-methyltransferase (COMT)-inhibitors: is addition of monoamine oxidase (MAO)-inhibitors necessary to slow progress of neurodegenerative disorders? J Neural Transm (Vienna) 1993; 92:187-95. [PMID: 8369108 DOI: 10.1007/bf01244877] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Neurotrophic factors, like e.g. nerve growth factor (NGF), neurotrophin 3 (NT-3) or brain-derived neurotrophic factor (BDNF) promote the survival and function of neurones in the peripheral and central nervous system. Dopamine or other biogenic amines induce the biosynthesis of neurotrophic factors in glial and neuronal cells. Therefore inhibition of enzymes, like the extraneuronal and neuronal located MAO or the predominantly glial situated COMT, which both metabolize catecholamines, may induce an increased biosynthesis of neurotrophic factors. Due to clinical studies especially MAO-B-inhibitors appear to slow the progression of neurological deficits in Parkinson's disease and the cognitive decline in Alzheimer's disease. On the one hand inhibition of COMT alone may also slow the metabolisation of biogenic amines in glial cells and may consequently induce synthesis of neurotrophic factors in glial cells. But on the other hand in vivo and in vitro studies show, that COMT-inhibitors may intensify the metabolisation of catecholamines in neurones by MAO, what may cause an enhanced generation of free radicals. This increase of free radicals may induce lipid peroxidation of membranes and therefore cause accelerated neuronal and glial cell death. For that reason we conclude, that centrally active COMT-inhibitors may only be used together with MAO-inhibitors in the neuroprotective treatment of neurodegenerative disorders. Medical treatment with both inhibitors will have to be performed very carefully due to cytotoxic effects of high catecholamine levels on neuronal and glial cells and due to possible prolongation or potentiation of the activity of several noradrenergic drugs in the periphery.
Collapse
Affiliation(s)
- T Müller
- Department of Neurology, St. Josef-Hospital, University of Bochum, Federal Republic of Germany
| | | | | |
Collapse
|
25
|
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) exhibits a broad substrate specificity and regulates diverse responses to physiological changes of intracellular Ca2+ concentrations. Five isozymic subunits of the highly abundant brain kinase are encoded by four distinct genes. Expression of each gene is tightly regulated in a cell-specific and developmental manner. CaMKII immunoreactivity is broadly distributed within neurons but is discretely associated with a number of subcellular structures. The unique regulatory properties of CaMKII have attracted a lot of attention. Ca2+/calmodulin-dependent autophosphorylation of a specific threonine residue (alpha-Thr286) within the autoinhibitory domain generates partially Ca(2+)-independent CaMKII activity. Phosphorylation of this threonine in CaMKII is modulated by changes in intracellular Ca2+ concentrations in a variety of cells, and may prolong physiological responses to transient increases in Ca2+. Additional residues within the calmodulin-binding domain are autophosphorylated in the presence of Ca2+ chelators and block activation by Ca2+/calmodulin. This Ca(2+)-independent autophosphorylation is very rapid following prior Ca2+/calmodulin-dependent autophosphorylation at alpha-Thr286 and generates constitutively active, Ca2+/calmodulin-insensitive CaMKII activity. Ca(2+)-independent autophosphorylation of CaMKII also occurs at a slower rate when alpha-Thr286 is not autophosphorylated and results in inactivation of CaMKII. Thus, Ca(2+)-independent autophosphorylation of CaMKII generates a form of the kinase that is refractory to activation by Ca2+/calmodulin. CaMKII phosphorylates a wide range of neuronal proteins in vitro, presumably reflecting its involvement in the regulation of diverse functions such as postsynaptic responses (e.g. long-term potentiation), neurotransmitter synthesis and exocytosis, cytoskeletal interactions and gene transcription. Recent evidence indicates that the levels of CaMKII are altered in pathological states such as Alzheimer's disease and also following ischemia.
Collapse
Affiliation(s)
- R J Colbran
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615
| |
Collapse
|
26
|
Tansey M, Word R, Hidaka H, Singer H, Schworer C, Kamm K, Stull J. Phosphorylation of myosin light chain kinase by the multifunctional calmodulin-dependent protein kinase II in smooth muscle cells. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42307-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
27
|
Abstract
In this paper we summarize much of the pharmacological evidence that has led to our current understanding of calmodulin-regulated cell function, with emphasis on aspects that may be relevant to drug design. These newly developed compounds are one of the most powerful tools as molecular probes for pharmacological approach, and will shed light on the physiological significance and molecular mechanisms of calmodulin-dependent pathways in various cell functions.
Collapse
Affiliation(s)
- H Hidaka
- Department of Pharmacology, Nagoya University School of Medicine, Japan
| | | |
Collapse
|
28
|
Abstract
Signal transduction in the nervous system is heavily dependent on the three multifunctional serine/threonine protein kinases, PKA, PKC, and CaM-KII. Recent studies have furthered our understanding of how the multiple isoforms of these kinases and their subcellular localizations, regulatory properties, and substrate determinants are important for the specificity of kinase functions.
Collapse
Affiliation(s)
- J D Scott
- Vollum Institute for Advanced Biomedical Research, Oregon Health Sciences University, Portland 97201
| | | |
Collapse
|
29
|
Sumi M, Kiuchi K, Ishikawa T, Ishii A, Hagiwara M, Nagatsu T, Hidaka H. The newly synthesized selective Ca2+/calmodulin dependent protein kinase II inhibitor KN-93 reduces dopamine contents in PC12h cells. Biochem Biophys Res Commun 1991; 181:968-75. [PMID: 1662507 DOI: 10.1016/0006-291x(91)92031-e] [Citation(s) in RCA: 414] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We reported that one of the isoquinolinesulfonamide derivatives, KN-62, is a potent and specific inhibitor of Ca2+/calmodulin-dependent protein kinase II (CaMKII) (Tokumitsu, H., Chijiwa, T., Hagiwara, M., Mizutani, A., Terasawa, M. and Hidaka, H. (1990) J. Biol. Chem. 265, 4315-4320). We have now investigated the inhibitory property of a newly synthesized methoxybenzenesulfonamide, KN-93, on CaMKII activity in situ and in vitro. KN-93 elicited potent inhibitory effects on CaMKII phosphorylating activity with an inhibition constant of 0.37 microM but this compound had no significant effects on the catalytic activity of cAMP-dependent protein kinase, Ca2+/phospholipid dependent protein kinase, myosin light chain kinase and Ca(2+)-phosphodiesterase. KN-93 also inhibited the autophosphorylation of both the alpha- and beta-subunits of CaMKII. Kinetic analysis indicated that KN-93 inhibits CaMKII, in a competitive fashion against calmodulin. To evaluate the regulatory role of CaMKII on catecholamine metabolism, we examined the effect of KN-93 on dopamine (DA) levels in PC12h cells. The DA levels decreased in the presence of KN-93. Further, the tyrosine hydroxylase (TH) phosphorylation induced by KCl or acetylcholine was significantly suppressed by KN-93 in PC12h cells while events induced by forskolin or 8-Br-cAMP were not affected. These results suggest that KN-93 inhibits DA formation by modulating the reaction rate of TH to reduce the Ca(2+)-mediated phosphorylation levels of the TH molecule.
Collapse
Affiliation(s)
- M Sumi
- Department of Pharmacology, Nagoya University School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|