Meijer AE. The pentose phosphate pathway in skeletal muscle under patho-physiological conditions. A combined histochemical and biochemical study.
PROGRESS IN HISTOCHEMISTRY AND CYTOCHEMISTRY 1991;
22:1-118. [PMID:
2011653 DOI:
10.1016/s0079-6336(11)80052-5]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Over the last 30 years, research into the neuromuscular apparatus, has expanded greatly. Multidisciplinary investigations have rapidly advanced our understanding both of diseases and of the basic neuromuscular mechanisms. The mode of pathological reaction of the neuromuscular apparatus is now quite well understood. The most notable aspect of the reaction of the injured neuromuscular apparatus is the remarkably stereotyped character of the resulting pathological changes as demonstrated by a wide variety of harmful causes, producing surprisingly similar effects. The findings of our combined histochemical and biochemical investigations presented in this monograph, are in complete harmony with the stereotyped character of the pathological changes. For example, it is particularly striking that many affected muscle fibres of patients with muscular dystrophies, congenital myopathies, inflammatory myopathies, metabolic myopathies, endocrine myopathies, or with diseases of the lower motor neuron, display an enhanced activity of both oxidative enzymes of the pentose phosphate pathway. Likewise, we found that experimental animals with disordered skeletal muscles, provoked by different types of agents or treatments, reveal the same marked rise in activity of GPDH and PGDH in the muscle fibres, with a positive correlation between the activity of both enzymes. Other findings of our investigations point to a positive correlation between the activity of GPDH and PGDH on the one hand and that of the non-oxidative enzymes of the pentose phosphate pathway, the enzymes TA, TK, RPI and RPE on the other hand. The rise in activity of PGDH and, in particular, of GPDH is regulated by two different mechanisms. The first represents a rapid control mechanism based on the stimulation of both oxidative enzymes of the pentose phosphate pathway by NADP+ and on their inhibition by NADPH. The other mechanism represents a long-term effect directed at the synthesis of the enzymes. It is this type of mechanism which is responsible for the rise in activity of GPDH and PGDH we observed. The findings obtained with the applied enzyme histochemical techniques clearly demonstrated that the rise in activity of both enzymes is not homogeneously distributed in the disordered skeletal muscles of man and experimental animals. For that reason, in order to obtain reliable quantitative information about enzyme activities in the muscle fibres themselves, the application of biochemical assays on a micro-scale was indispensable. The biochemical assay of enzyme activities was performed on histologically and histochemically selected dissected muscle specimens.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse