1
|
Functional annotation of chemical libraries across diverse biological processes. Nat Chem Biol 2017; 13:982-993. [PMID: 28759014 PMCID: PMC6056180 DOI: 10.1038/nchembio.2436] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 06/13/2017] [Indexed: 11/08/2022]
Abstract
Chemical-genetic approaches offer the potential for unbiased functional annotation of chemical libraries. Mutations can alter the response of cells in the presence of a compound, revealing chemical-genetic interactions that can elucidate a compound's mode of action. We developed a highly parallel, unbiased yeast chemical-genetic screening system involving three key components. First, in a drug-sensitive genetic background, we constructed an optimized diagnostic mutant collection that is predictive for all major yeast biological processes. Second, we implemented a multiplexed (768-plex) barcode-sequencing protocol, enabling the assembly of thousands of chemical-genetic profiles. Finally, based on comparison of the chemical-genetic profiles with a compendium of genome-wide genetic interaction profiles, we predicted compound functionality. Applying this high-throughput approach, we screened seven different compound libraries and annotated their functional diversity. We further validated biological process predictions, prioritized a diverse set of compounds, and identified compounds that appear to have dual modes of action.
Collapse
|
2
|
Belicchi-Ferrari M, Bisceglie F, Buschini A, Franzoni S, Pelosi G, Pinelli S, Tarasconi P, Tavone M. Synthesis, structural characterization and antiproliferative and toxic bio-activities of copper(II) and nickel(II) citronellal N4-ethylmorpholine thiosemicarbazonates. J Inorg Biochem 2010; 104:199-206. [DOI: 10.1016/j.jinorgbio.2009.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 10/22/2009] [Accepted: 10/28/2009] [Indexed: 10/20/2022]
|
3
|
Abstract
We have recently demonstrated that voltage dependent anion selective channel~1 (porin, isoform 1) can function as a transplasma membrane NADH:ferricyanide-reductase. However, both the specific redox characteristics and the mechanism of electron transport in this enzyme presently remain unclear. Here we demonstrate that the redox capability of porin 1 is specific for ferricyanide as this same enzyme cannot reduce DCIP or cytochrome c in vitro. Furthermore, NADH-dependent ferricyanide reduction associated with VDAC1 is not sensitive to the anion channel inhibitors DIDS and dextran sulfate. However, this activity can be inhibited by thiol chelators, suggesting that at least one of the two cysteine groups present in VDAC1 are critical for electron transfer. We propose a model on how electron transport may occur in VDAC1.
Collapse
Affiliation(s)
- Mark A Baker
- ARC Centre of Excellence in Biotechnology and Development, Reproductive Science Group, School of Environmental and Life Science, University of Newcastle, NSW, Australia
| | | | | |
Collapse
|
4
|
Abstract
The notion of transmembrane electron transport is usually associated with mitochondria and chloroplasts. However, since the early 1970s, it has been known that this phenomenon also occurs at the level of the plasma membrane. Ever since, evidence has accumulated for the existence of a plethora of transplasma membrane electron transport enzymes. In this review, we discuss the various enzymes known, their molecular characteristics and their biological functions.
Collapse
Affiliation(s)
- Jennifer D Ly
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
5
|
Zou Y, Fahmi NE, Vialas C, Miller GM, Hecht SM. Total synthesis of deamido bleomycin a(2), the major catabolite of the antitumor agent bleomycin. J Am Chem Soc 2002; 124:9476-88. [PMID: 12167044 DOI: 10.1021/ja012741l] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metabolic inactivation of the antitumor antibiotic bleomycin is believed to be mediated exclusively via the action of bleomycin hydrolase, a cysteine proteinase that is widely distributed in nature. While the spectrum of antitumor activity exhibited by the bleomycins is believed to reflect the anatomical distribution of bleomycin hydrolase within the host, little has been done to characterize the product of the putative inactivation at a chemical or biochemical level. The present report describes the synthesis of deamidobleomycin demethyl A(2) (3) and deamido bleomycin A(2) (4), as well as the respective aglycones. These compounds were all accessible via the key intermediate N(alpha)-Boc-N(beta)-[1-amino-3(S)-(4-amino-6-carboxy-5-methylpyrimidin-2-yl)propion-3-yl]-(S)-beta-aminoalanine tert-butyl ester (16). Synthetic deamido bleomycin A(2) was shown to be identical to the product formed by treatment of bleomycin A(2) with human bleomycin hydrolase, as judged by reversed-phase HPLC analysis and (1)H NMR spectroscopy. Deamido bleomycin A(2) was found to retain significant DNA cleavage activity in DNA plasmid relaxation assays and had the same sequence selectivity of DNA cleavage as bleomycin A(2). The most significant alteration of function noted in this study was a reduction in the ability of deamido bleomycin A(2) to mediate double-strand DNA cleavage, relative to that produced by BLM A(2).
Collapse
Affiliation(s)
- Ying Zou
- Contribution from the Department of Chemistry, University of Virginia, Charlottesville 22901, USA
| | | | | | | | | |
Collapse
|
6
|
Kim C, Crane FL, Faulk WP, Morré DJ. Purification and characterization of a doxorubicin-inhibited NADH-quinone (NADH-ferricyanide) reductase from rat liver plasma membranes. J Biol Chem 2002; 277:16441-7. [PMID: 11875069 DOI: 10.1074/jbc.m112311200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plasma membrane-associated redox systems play important roles in regulation of cell growth, internal pH, signal transduction, apoptosis, and defense against pathogens. Stimulation of cell growth and stimulation of the redox system of plasma membranes are correlated. When cell growth is inhibited by antitumor agents such as doxorubicin, capsaicin, and antitumor sulfonylureas, redox activities of the plasma membrane also are inhibited. A doxorubicin-inhibited NADH-quinone reductase was characterized and purified from plasma membranes of rat liver. First, an NADH-cytochrome b(5) reductase, which was doxorubicin-insensitive, was removed from the plasma membranes by the lysosomal protease, cathepsin D. After removal of the NADH-cytochrome b(5) reductase, the plasma membranes retained a doxorubicin-inhibited NADH-quinone reductase activity. The enzyme, with an apparent molecular mass of 57 kDa, was purified 200-fold over the cathepsin D-treated plasma membranes. The purified enzyme had also an NADH-coenzyme Q(0) reductase (NADH: external acceptor (quinone) reductase; EC 1.6.5.) activity. Partial amino acid sequence of the enzyme showed that it was unique with no sequence homology to any known protein. Antibody against the enzyme (peptide sequence) was produced and affinity-purified. The purified antibody immunoprecipitated both the NADH-ferricyanide reductase activity and NADH-coenzyme Q(0) reductase activity of plasma membranes and cross-reacted with human chronic myelogenous leukemia K562 cells and doxorubicin-resistant human chronic myelogenous leukemia K562R cells. Localization by fluorescence microscopy showed that the reaction was with the external surface of the plasma membranes. The doxorubicin-inhibited NADH-quinone reductase may provide a target for the anthracycline antitumor agents and a candidate ferricyanide reductase for plasma membrane electron transport.
Collapse
Affiliation(s)
- Chinpal Kim
- Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
7
|
Baker MA, Lawen A. Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data. Antioxid Redox Signal 2000; 2:197-212. [PMID: 11229526 DOI: 10.1089/ars.2000.2.2-197] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The observation in the early 1970s that ferricyanide can replace transferrin as a growth factor highlighted the major role plasma membrane proteins can play within a mammalian cell. Ferricyanide, being impermeant to the cell, was assumed to act at the level of the plasma membrane. Since that time, several enzymes isolated from the plasma membrane have been described, which, using NADH as the intracellular electron donor, are capable of reducing ferricyanide. However, their exact modes of action, and their physiological substrates and functions have not been solved to date. Numerous hypotheses have been proposed for the role of such redox enzymes within the plasma membrane. Examples include the regulation of cell signaling, cell growth, apoptosis, proton pumping, and ion channels. All of these roles may be a result of the function of these enzymes as cellular redox sensors. The emergence of many diverse roles for ferricyanide utilizing redox enzymes present in the plasma membrane might also, in part, be due to the numerous redox enzymes present within the membrane; the poor molecular characterization of the enzymes may be the reason for some of the diverging results reported in the literature as various researchers may be working on different enzymes. Here we review the diverse proposals given for structure and function to the plasma membrane NADH-oxidoreductase system(s) with a specific focus on those enzyme activities which can couple ferricyanide and NADH. Although they are still ill-defined enzymes, evidence is rising that they are of utmost significance for cellular regulation.
Collapse
Affiliation(s)
- M A Baker
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
8
|
Morré DJ, Kim C, Paulik M, Morré DM, Faulk WP. Is the drug-responsive NADH oxidase of the cancer cell plasma membrane a molecular target for adriamycin? J Bioenerg Biomembr 1997; 29:269-80. [PMID: 9298712 DOI: 10.1023/a:1022414228013] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Enhanced growth inhibition and antitumor responses to adriamycin have been observed repeatedly from several laboratories using impermeant forms of adriamycin where entry into the cell was greatly reduced or prevented. Our laboratory has described an NADH oxidase activity at the external surface of plasma membrane vesicles from tumor cells where inhibition by an antitumor sulfonylurea, N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea (LY181984), and by the vanilloid, capsaicin (8-methyl-N-vanillyl-6-noneamide) correlated with inhibition of growth. Here we report that the oxidation of NADH by isolated plasma membrane vesicles was inhibited, as well, by adriamycin. An external site of inhibition was indicated from studies where impermeant adriamycin conjugates were used. The EC50 for inhibition of the oxidase of rat hepatoma plasma membranes by adriamycin was several orders of magnitude less than that for rat liver. Adriamycin cross-linked to diferric transferrin and other impermeant supports also was effective in inhibition of NADH oxidation by isolated plasma membrane vesicles and in inhibition of growth of cultured cells. The findings suggest the NADH oxidase of the plasma membrane as a growth-related adriamycin target at the surface of cancer cells responsive to adriamycin. Whereas DNA intercalation remains clearly one of the principal bases for the cytotoxic action of free adriamycin, this second site, possibly related to a more specific antitumor action, may be helpful in understanding the enhanced efficacy reported previously for immobilized adriamycin forms compared to free adriamycin.
Collapse
Affiliation(s)
- D J Morré
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | |
Collapse
|
9
|
Rao GN, Lasségue B, Griendling KK, Alexander RW, Berk BC. Hydrogen peroxide-induced c-fos expression is mediated by arachidonic acid release: role of protein kinase C. Nucleic Acids Res 1993; 21:1259-63. [PMID: 8464709 PMCID: PMC309291 DOI: 10.1093/nar/21.5.1259] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We found previously that stimulation of c-fos and c-myc mRNA expression are early events in hydrogen peroxide-induced growth in rat aortic smooth muscle (RASM) cells. In the present study, we investigated the role of phospholipase A2 (PLA2) and protein kinase C (PKC) in mediating hydrogen peroxide-induced c-fos mRNA expression in RASM cells. Mepacrine and p-bromophenacylbromide, potent inhibitors of PLA2 activity, blocked hydrogen peroxide-induced c-fos mRNA expression. Arachidonic acid, a product of PLA2 activity, stimulated the expression of c-fos mRNA with a time course similar to that of hydrogen peroxide. PKC down-regulation attenuated both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression by 50%. Nordihydroguaiaretic acid (a lipoxygenase-cytochrome P450 monooxygenase inhibitor) significantly inhibited both hydrogen peroxide and arachidonic acid-induced c-fos mRNA expression, whereas indomethacin (a cyclooxygenase inhibitor) had no effect. Together, these findings indicate that 1) hydrogen peroxide-induced c-fos mRNA expression is mediated by PLA2-dependent arachidonic acid release, 2) both PKC-dependent and independent mechanisms are involved in hydrogen peroxide-induced expression of c-fos mRNA and 3) arachidonic acid metabolism via the lipoxygenase-cytochrome P450 monooxygenase pathway appears to be required for hydrogen peroxide-induced expression of c-fos mRNA.
Collapse
Affiliation(s)
- G N Rao
- Cardiology Division, Emory University School of Medicine, Atlanta, GA 30322
| | | | | | | | | |
Collapse
|
10
|
Abstract
Because the effects of vitamin A vary with tissue type and often with the form of vitamin A itself, a complete understanding of the mechanism(s) of action still has not been attained. The action of vitamin A may be at the level of genomic expression, at the membrane level, or both. Intercellular and intracellular transport of vitamin A are facilitated by specific binding proteins but probably not in the cellular uptake of vitamin A. Subcellularly, vitamin A may exert a direct effect on transit through the Golgi apparatus, as observed from both biochemical and morphological studies. In my laboratory, recent work using cell-free systems has shown that retinol stimulates transition vesicle formation from endoplasmic reticulum in a GTP-requiring step.
Collapse
Affiliation(s)
- D M Morré
- Department of Foods and Nutrition, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
11
|
Poddevin B, Orlowski S, Belehradek J, Mir LM. Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture. Biochem Pharmacol 1991; 42 Suppl:S67-75. [PMID: 1722669 DOI: 10.1016/0006-2952(91)90394-k] [Citation(s) in RCA: 158] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We observed previously in vitro that the cytotoxicity of bleomycin (BLM), an anticancer drug in current use, was greatly potentiated by exposing cultured cells to appropriately chosen electric pulses. We then showed in vivo, on tumor-bearing mice, that the same electric pulses also potentiated the antitumoral activity of BLM. In the present work, we demonstrate on DC-3F cells in vitro, that this potentiation is closely related to cell electropermeabilization and the consequent direct internalization of BLM molecules in the cytosol. The survival response curve (SRC) of the electropermeabilized (EP) cells exposed to BLM (plotted as logarithm of survival versus external drug concentration) shows a linear pattern usual for the SRCs of intact cells exposed to current cytotoxic drugs, though in the nanomolar range of concentrations. We have succeeded in determining the relation between BLM cytotoxicity on EP cells and the number of electroloaded BLM molecules per cell (that is the average number, per cell, of BLM molecules internalized into the cytosol). We conclude that (1) BLM molecules possess very intense cytotoxic activity which in non-EP cells is drastically limited by the intact plasma membrane; and (2) in these intact cells, the plasma membrane is responsible for the unusual upward concave curvature of the SRC resulting from exposure to BLM.
Collapse
Affiliation(s)
- B Poddevin
- Laboratoire de Biochimie-Enzymologie, U.R.A. 147 CNRS, Institut Gustave-Roussy, Villejuif, France
| | | | | | | |
Collapse
|
12
|
Crane FL, Sun IL, Barr R, Löw H. Electron and proton transport across the plasma membrane. J Bioenerg Biomembr 1991; 23:773-803. [PMID: 1721049 DOI: 10.1007/bf00786001] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transplasm membrane electron transport in both plant and animal cells activates proton release. The nature and components of the electron transport system and the mechanism by which proton release is activated remains to be discovered. Reduced pyridine nucleotides are substrates for the plasma membrane dehydrogenases. Both plant and animal membranes have unusual cyanide-insensitive oxidases so oxygen can be the natural electron acceptor. Natural ferric chelates or ferric transferrin can also act as electron acceptors. Artificial, impermeable oxidants such as ferricyanide are used to probe the activity. Since plasma membranes contain b cytochromes, flavin, iron, and quinones, components for electron transport are present but their participation, except for quinone, has not been demonstrated. Stimulation of electron transport with impermeable oxidants and hormones activates proton release from cells. In plants the electron transport and proton release is stimulated by red or blue light. Inhibitors of electron transport, such as certain antitumor drugs, inhibit proton release. With animal cells the high ratio of protons released to electrons transferred, stimulation of proton release by sodium ions, and inhibition by amilorides indicates that electron transport activates the Na+/H+ antiport. In plants part of the proton release can be achieved by activation of the H+ ATPase. A contribution to proton transfer by protonated electron carriers in the membrane has not been eliminated. In some cells transmembrane electron transport has been shown to cause cytoplasmic pH changes or to stimulate protein kinases which may be the basis for activation of proton channels in the membrane. The redox-induced proton release causes internal and external pH changes which can be related to stimulation of animal and plant cell growth by external, impermeable oxidants or by oxygen.
Collapse
Affiliation(s)
- F L Crane
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | |
Collapse
|
13
|
Abstract
NADH oxidase is a cyanide-resistant and hormone-responsive oxidase intrinsic to the plasma membrane of both plant and animal cells. The activity has many unique characteristics that distinguish it from other oxidases and oxidoreductases of both organelles and internal membranes and from other oxidoreductases of the plasma membrane. Among these are resistance to inhibition by cyanide, catalase, superoxide dismutase, and phenylchloromercuribenzoate. Activity is stimulated by hormones and growth factors and inhibited by quinone analogs such as piercidin, the flavin antagonist atebrin, and growth inhibiting gangliosides such as GM3. In marked contact to the NADH-ferricyanide oxidoreductase of the plasma membrane, the NADH oxidase is activated by lysophospholipids and fatty acids, products of phospholipase A2 action, in a time-dependent manner suggestive of stabilization of an activated form of the enzyme. The hormone-responsive NADH oxidase of the plasma membrane is not a peroxidase and may function as a terminal oxidase to link transfer of electrons from NADH to oxygen at the plasma membrane. The functional significance of the NADH oxidase of the plasma membrane is unknown but some relationship to growth or growth control is indicated. In both animal and plant plasma membranes, the oxidase is activated by growth factors and hormones to which the cells or tissues of origin have functional hormone or growth factor receptors. In addition, substances that inhibit the oxidase, the associated transmembrane reductase or both, inhibit growth. In transformed cells and tissues, the hormone and growth factor responsiveness of the NADH oxidase is reduced or absent. With human keratinocytes which exhibit an increased sensitivity to the antiproliferative action of both retinoic acid and calcitriol, the NADH oxidase of the plasma membrane is strongly inhibited by these agents and shows the same increased sensitivity. If transfer of electrons from NADH to oxygen across or within the eukaryotic plasma membrane is an important aspect of growth or growth control, then the hormone- and growth factor-responsive NADH oxidase associated with the plasma membrane could be of fundamental importance. Because of its low basal activity, stimulation by growth factors and hormones, and the inhibition of growth in direct proportion to inhibition of the oxidase, the activity is a candidate as a rate-limiting step in the growth process. Completely unknown is the mechanism whereby NADH oxidation and growth or growth control may be coupled. This, together with further characterization of the activity and the mechanism of loss of control with neoplastic transformation, represent important challenges for future investigations.
Collapse
Affiliation(s)
- D J Morré
- Department of Medicinal Chemistry and Pharmacognosy, Purdue University, West Lafayette, Indiana 47907
| | | |
Collapse
|
14
|
Bérczi A, Sizensky JA, Crane FL, Faulk WP. Diferric transferrin reduction by K562 cells. A critical study. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:562-70. [PMID: 2015280 DOI: 10.1016/0304-4165(91)90231-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper critically examines the redox activity of K562 cells (chronic myelogenous leukemia cells) and normal peripheral blood lymphocytes (PBL). Ferricyanide reduction, diferric transferrin reduction, and ferric ion reduction were measured spectrophotometrically by following the time-dependent changes of absorbance difference characteristic for ferricyanide disappearance and for the formation of ferrous ion:chelator complexes. Bathophenanthroline disulfonate (BPS) and ferrozine (FZ) were used to detect the appearance of ferrous ions in the reaction mixtures when diferric transferrin or ferric reduction was studied. Special attention was devoted to the analysis of time-dependent absorbance changes in the presence and absence of cells under different assay conditions. It was observed and concluded that: (i) FZ was far less sensitive and more sluggish than BPS for detecting ferrous ions at concentrations commonly used for BPS; (ii) FZ, at concentrations of at least 10-times the commonly used BPS concentrations, seemed to verify the results obtained with BPS; (iii) ferricyanide reduction, diferric transferrin reduction and ferric ion reduction by both K562 cells and peripheral blood lymphocytes did not differ significantly; and (iv) earlier values published for the redox activities of different cells might be overestimated, partly because of the observation published in 1988 that diferric transferrin might have loosely bound extra iron which is easily reduced. It is suggested that the specific diferric transferrin reduction by cells might be considered as a consequence of (i) changing the steady-state equilibrium in the diferric transferrin-containing solution by addition of ferrous ion chelators which effectively raised the redox potential of the iron bound in holotransferrin, and (ii) changing the steady-state equilibrium by addition of cells which would introduce, via their large and mostly negatively charged plasma membrane surface, a new phase which would favor release and reduction of the iron in diferric transferrin by a ferric ion oxidoreductase. The reduction of ferricyanide is also much slower than activities reported for other cells which may indicate reduced plasma membrane redox activity in these cells.
Collapse
Affiliation(s)
- A Bérczi
- Center for Reproduction and Transplantation Immunology, Methodist Hospital of Indiana, Indianapolis 46202
| | | | | | | |
Collapse
|
15
|
Lazo JS, Schisselbauer JC, Meandzija B, Kennedy KA. Initial single-strand DNA damage and cellular pharmacokinetics of bleomycin A2. Biochem Pharmacol 1989; 38:2207-13. [PMID: 2472141 DOI: 10.1016/0006-2952(89)90078-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cellular association and fate of high specific activity [3H]bleomycin A2 (BLM A2) were examined in three previously untreated cultured cell lines. Human head and neck A-253 carcinoma cells were 10-fold more sensitive to a 1-hr exposure to BLM A2 than either murine leukemic L1210 or human ovarian SK-OV cells. Both murine and human cells displayed rapid drug association with steady-state drug levels being reached within 15-30 min. At steady state, the T1/2 of drug dissociation was slow (between 65 and 155 min), unaltered by 100-fold excess of unlabeled BLM A2, and unrelated to cellular sensitivity to BLM. Approximately 15% of the total cellular drug was found in the nuclei at steady state. In intact cells, BLM hydrolase activity appeared latent; significant BLM hydrolase activity was detected using broken cell homogenates with all cell types, but no extensive drug metabolism was evident in intact cells. Murine L1210 cells differed from both human cell lines in that they had only 50% of the steady-state drug levels, had lower nuclear drug content, and had markedly less initial single-strand DNA damage. Human SK-OV cells had 2.4-fold greater initial single-strand DNA damage despite similar nuclear content and a much lower rate of DNA repair. Thus, cellular or nuclear factors, in addition to BLM A2 content, affect initial single-strand DNA damage. Collectively, our data support the proposition that lesions other than single-strand DNA breaks contribute to the cytotoxicity of BLM.
Collapse
Affiliation(s)
- J S Lazo
- Department of Pharmacology, Yale University, School of Medicine, New Haven, CT 06510
| | | | | | | |
Collapse
|
16
|
Oliveira MB, Campello AP, Klüppel WL. Methotrexate: studies on cellular metabolism. III.--Effect on the transplasma-membrane redox activity and on ferricyanide-induced proton extrusion by HeLa cells. Cell Biochem Funct 1989; 7:135-7. [PMID: 2548755 DOI: 10.1002/cbf.290070209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The effect of methotrexate (MTX) on transplasma-membrane electron transport and ferricyanide-induced proton extrusion by HeLa cells was studied. Both systems were inhibited by MTX. It is suggested that inhibition of electron transport and proton extrusion caused by MTX could be associated with other metabolic alterations such as response to the increase in NADH levels and decrease in intracellular pH.
Collapse
Affiliation(s)
- M B Oliveira
- Departamento de Bioquimica da Universidade Federal do Paraná, Brasil
| | | | | |
Collapse
|
17
|
Sun IL, Toole-Simms W, Crane FL, Morré DJ, Löw H, Chou JY. Transformation with SV40 virus prevents retinoic acid inhibition of plasma membrane NADH diferric transferrin reductase in rat liver cells. J Bioenerg Biomembr 1988; 20:383-91. [PMID: 2841310 DOI: 10.1007/bf00769639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Retinoic acid inhibits the reduction of diferric transferrin through the transplasma membrane electron transport system on fetal rat liver cells infected with a temperature-sensitive SV40 virus when the cells are in the nontransformed state cultured at 40 degrees C. When the cells are in the transformed state (grown at the permissive 33 degrees C temperature), retinoic acid does not inhibit the diferric transferrin reduction. Inhibition of activity of nontransformed cells is specific for retinoic acid with only slight inhibition by retinol and retinyl acetate at higher concentrations. Isolated rat liver plasma membrane NADH diferric transferrin reductase is also inhibited by retinoic acid. The effect of transformation with SV40 virus to decrease susceptibility to retinoic acid inhibition stands in contrast to much greater adriamycin inhibition of diferric transferrin reduction in the transformed cells than in nontransformed cells.
Collapse
Affiliation(s)
- I L Sun
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | | | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- C P Burns
- Department of Medicine, University of Iowa, Iowa City 52242
| |
Collapse
|
19
|
Affiliation(s)
- S M Sebti
- University of Pittsburgh School of Medicine, Department of Pharmacology, PA 15261
| | | |
Collapse
|
20
|
Sun IL, Toole-Simms W, Crane FL, Golub ES, Díaz de Pagán T, Morré DJ, Löw H. Retinoic acid inhibition of transplasmalemma diferric transferrin reductase. Biochem Biophys Res Commun 1987; 146:976-82. [PMID: 3619945 DOI: 10.1016/0006-291x(87)90743-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
All trans retinoic acid inhibited diferric transferrin reduction by HeLa cells. The NADH diferric transferrin reductase activity of isolated liver plasma membranes was also inhibited by retinoic acid. Retinol and retinyl acetate had very little effect. Transplasma membrane ferricyanide reduction by HeLa cells and NADH ferricyanide reductase of liver plasma membrane was also inhibited by retinoic acid, therefore the inhibition was in the electron transport system and not at the transferrin receptor. Since the transmembrane electron transport has been shown to stimulate cell growth, the growth inhibition by retinoic acid thus may be based on inhibition of the NADH diferric transferrin reductase.
Collapse
|
21
|
Sun IL, Navas P, Crane FL, Chou JY, Löw H. Transplasmalemma electron transport is changed in simian virus 40 transformed liver cells. J Bioenerg Biomembr 1986; 18:471-85. [PMID: 3025192 DOI: 10.1007/bf00743145] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transplasma membrane electron transport activity by fetal rat liver cells (RLA209-15) infected with a temperature-sensitive strain of SV40 has been measured with cells grown at the restrictive temperature (40 degrees C) and permissive temperature (33 degrees C). The transformed cells grown at 33 degrees C had only one-half the rate of external ferricyanide reduction as the nontransformed cells held at 40 degrees C. Both the Km and Vmax for ferricyanide reduction were changed in the transformed state. The change in Vmax can be based on a decrease of NADH in the transformed cells. The change in rate with ferricyanide does not depend on change in surface charge. Reduction of external ferricyanide was accompanied by release of protons from the cells. The ratio of protons released to ferricyanide reduced was higher in the transformed cells than in the non-transformed cells. Since the transplasma membrane electron transport has been shown to stimulate cell growth under limiting serum, the changes in the plasma membrane electron transport and proton release in transformed cells may relate to modification of growth control.
Collapse
|
22
|
Abstract
The vascular lining of the blood vessels to normal organs and malignant tissues would be expected to reflect the functional demands placed upon it. These functional requirements may be accomplished by specific biochemical macromolecules, some of which are localized on the plasma membrane of the endothelium. Considerable evidence exists that toxicity to at least some normal organs caused by antineoplastic agents is heralded by endothelial damage. This endothelial damage may reflect a specific drug-endothelium interaction, the mechanism and basis of which are not yet understood. The possibility also exists that destruction of solid tumors by currently employed antitumor agents is mediated in part by local loss of essential vasculature. Selective destruction of the tumor endothelium could be a rational and novel target to which drugs could be designed.
Collapse
|
23
|
Crane FL, Sun IL, Clark MG, Grebing C, Löw H. Transplasma-membrane redox systems in growth and development. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 811:233-64. [PMID: 3893544 DOI: 10.1016/0304-4173(85)90013-8] [Citation(s) in RCA: 388] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|