1
|
Izbicka E, Streeper RT. Mitigation of Insulin Resistance by Natural Products from a New Class of Molecules, Membrane-Active Immunomodulators. Pharmaceuticals (Basel) 2023; 16:913. [PMID: 37513825 PMCID: PMC10386479 DOI: 10.3390/ph16070913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Insulin resistance (IR), accompanied by an impaired cellular glucose uptake, characterizes diverse pathologies that include, but are not limited to, metabolic disease, prediabetes and type 2 diabetes. Chronic inflammation associated with deranged cellular signaling is thought to contribute to IR. The key molecular players in IR are plasma membrane proteins, including the insulin receptor and glucose transporter 4. Certain natural products, such as lipids, phenols, terpenes, antibiotics and alkaloids have beneficial effects on IR, yet their mode of action remains obscured. We hypothesized that these products belong to a novel class of bioactive molecules that we have named membrane-active immunomodulators (MAIMs). A representative MAIM, the naturally occurring medium chain fatty acid ester diethyl azelate (DEA), has been shown to increase the fluidity of cell plasma membranes with subsequent downstream effects on cellular signaling. DEA has also been shown to improve markers of IR, including blood glucose, insulin and lipid levels, in humans. The literature supports the notion that DEA and other natural MAIMs share similar mechanisms of action in improving IR. These findings shed a new light on the mechanism of IR mitigation using natural products, and may facilitate the discovery of other compounds with similar activities.
Collapse
|
2
|
Abstract
Several functioning in vitro systems of varying complexity are currently in use for the study of mechanisms of lung toxicity. The isolated perfused lung is the model closest to the in vivo situation. It is a suitable model for combining metabolic and functional studies. It is, for instance, possible to relate changes in lung mechanics and lung perfusion flow to the release of various mediators during exposure of the lung to various agents. A simpler model may be constructed from lung slices which are less viable but suitable for uptake as well as metabolism studies.Specific lung cells such as Clara cells and type II pneumocytes have been isolated and cultured and are valuable tools for studies of the molecular mechanisms of lung toxicity, particularly in cases of cell-specific toxicity. There is, however, a great need to develop techniques for the isolation and culture of other types of lung cells and also to improve the culturing techniques for those already isolated.
Collapse
Affiliation(s)
- Åke Ryrfeldt
- Department of Toxicology, Karolinska Institutet, Box 60400, 104 01 Stockholm, Sweden
| | - Ian A. Cotgreave
- Department of Toxicology, Karolinska Institutet, Box 60400, 104 01 Stockholm, Sweden
| | - Peter Moldéus
- Department of Toxicology, Karolinska Institutet, Box 60400, 104 01 Stockholm, Sweden
| |
Collapse
|
3
|
Suzuki M, Miura T. Effect of amyloid β-peptide on the fluidity of phosphatidylcholine membranes: Uses and limitations of diphenylhexatriene fluorescence anisotropy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:753-9. [DOI: 10.1016/j.bbamem.2014.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/17/2014] [Accepted: 12/02/2014] [Indexed: 01/25/2023]
|
4
|
Enhanced phosphorylation of caveolar PKC-α limits peptide internalization in lung endothelial cells. Mol Cell Biochem 2011; 360:309-20. [PMID: 21948261 DOI: 10.1007/s11010-011-1070-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 09/08/2011] [Indexed: 01/10/2023]
Abstract
We previously reported that the vasoactive peptide 1 (P1, "SSWRRKRKESS") modulates the tension of pulmonary artery vessels through caveolar endothelial nitric oxide synthase (eNOS) activation in intact lung endothelial cells (ECs). Since PKC-α is a caveolae resident protein and caveolae play a critical role in the peptide internalization process, we determined whether modulation of caveolae and/or caveolar PKC-α phosphorylation regulates internalization of P1 in lung ECs. Cell monolayers were incubated in culture medium containing Rhodamine red-labeled P1 (100 μM) for 0-120 min. Confocal examinations indicate that P1 internalization is time-dependent and reaches a plateau at 60 min. Caveolae disruption by methyl-β-cyclodextrin (CD) and filipin (FIL) inhibited the internalization of P1 in ECs suggesting that P1 internalizes via caveolae. P1-stimulation also enhances phosphorylation of caveolar PKC-α and increases intracellular calcium (Ca(2+)) release in intact cells suggesting that P1 internalization is regulated by PKC-α in ECs. To confirm the roles of increased phosphorylation of PKC-α and Ca(2+) release in internalization of P1, PKC-α modulation by phorbol ester (PMA), PKC-α knockdown, and Ca(2+) scavenger BAPTA-AM model systems were used. PMA-stimulated phosphorylation of caveolar PKC-α is associated with significant reduction in P1 internalization. In contrast, PKC-α deficiency and reduced phosphorylation of PKC-α enhanced P1 internalization. P1-mediated increased phosphorylation of PKC-α appears to be associated with increased intracellular calcium (Ca(2+)) release since the Ca(2+) scavenger BAPTA-AM enhanced P1 internalization. These data indicate that caveolar integrity and P1-mediated increased phosphorylation of caveolar PKC-α play crucial roles in the regulation of P1 internalization in lung ECs.
Collapse
|
5
|
Hutchinson TE, Kuchibhotla S, Block ER, Patel JM. Peptide-stimulation enhances compartmentalization and the catalytic activity of lung endothelial NOS. Cell Physiol Biochem 2009; 24:471-82. [PMID: 19910687 DOI: 10.1159/000257487] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2009] [Indexed: 01/09/2023] Open
Abstract
We reported that an 11 amino acid synthetic peptide (P1) activates lung endothelial cell nitric oxide synthase (eNOS) independent of its change in expression and/or phosphorylation. Since caveolae/eNOS dissociation is known to enhance the catalytic activity of eNOS, we examined whether P1-mediated increase of eNOS activity is associated with caveolae/cholesterol modulation, increased caveolin-1 phosphorylation, and intracellular compartmentalization of eNOS in pulmonary artery endothelial cells (PAEC). PAEC were incubated with or without (control) P1 or cholesterol modulators/caveolae disruptors, cholesterol oxidase (CHOX) and methyl-beta-cyclodextrin (CD), for 1 h at 37 degrees C. After incubation cells were used for: i) immunoprecipitation, ii) isolation of plasma membrane (PM)-, Golgi complex (GC)-, and non-Golgi complex (NGC)-enriched fractions, iii) immunofluorescence confocal imaging, and iv) electron microscopy for localization and/or eNOS activity. P1, CHOX, and CD-stimulation caused dissociation of eNOS from PM with increased localization to GC and/or NGC. P1 and CHOX significantly increased eNOS activity in PM and GC and CD-stimulation increased eNOS activity localized only in GC. P1 increased phosphorylation of caveolin-1 in intact cells and GC fraction. Immunofluorescence and/or immunogold labeled imaging/electron microscopy analysis of P1-, CHOX-, and CD-stimulated intact cells confirmed eNOS/caveolae dissociation and translocation of eNOS to GC. These results suggest that: i) P1-stimulation translocates eNOS to GC and enhances the catalytic activity of eNOS in both the PM and GC fractions of PAEC, ii) CHOX- but not CD-mediated caveolae and/or cholesterol modulation mimics the effect of P1-stimulated compartmentalization and activation of eNOS in PAEC, and iii) P1-stimulated caveolae/cholesterol modulation, phosphorylation of caveolin-1, and activation of eNOS is physiologically relevant since P1 is known to enhance NO/cGMP-dependent vasorelaxation in the pulmonary circulation.
Collapse
Affiliation(s)
- Tarun E Hutchinson
- Malcom Randall Department of Veterans Affairs Medical Center, Gainesville, FL 32608-1197, USA
| | | | | | | |
Collapse
|
6
|
Feinberg AW, Schumacher JF, Brennan AB. Engineering high-density endothelial cell monolayers on soft substrates. Acta Biomater 2009; 5:2013-24. [PMID: 19269269 DOI: 10.1016/j.actbio.2009.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 12/19/2008] [Accepted: 01/26/2009] [Indexed: 01/09/2023]
Abstract
This study demonstrates that a confluent monolayer of endothelial cells (ECs) can be tissue engineered on a soft substrate with a cell density and morphology that approximates in vivo conditions. We achieved formation of a confluent EC monolayer on polydimethylsiloxane (PDMS) elastomer by microcontact printing of fibronectin (FN) in a square lattice array of 3microm diameter circular islands at a 6microm pitch. Uniform coatings of FN or serum proteins on PDMS or on tissue-culture-treated polystyrene failed to support the equivalent EC density and/or confluence. The ECs on the FN micropatterned PDMS achieved a density of 1,536+/-247cellsmm(-2), close to the 3,215+/-336cellsmm(-2) observed in vivo from porcine pulmonary artery and significantly higher (2- to 5-fold) than EC density on other materials. The probable mechanism for enhanced EC adhesion, growth and density is increased focal adhesion (FA) formation between the ECs and the substrate. After 14days culture, the micropatterned FN surface increased the average number of FAs per cell to 35+/-10, compared to 7+/-6 for ECs on PDMS uniformly coated with FN. Thus, microscale patterning of FN into FA-sized, circular islands on PDMS elastomer promotes the formation of EC monolayers with in vivo-like cell density and morphology.
Collapse
|
7
|
Aldonyte R, Hutchinson TE, Hutchinson ET, Jin B, Brantly M, Block E, Patel J, Zhang J. Endothelial alpha-1-antitrypsin attenuates cigarette smoke induced apoptosis in vitro. COPD 2008; 5:153-62. [PMID: 18568839 DOI: 10.1080/15412550802092936] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Deficiency of the antiprotease alpha-1-antitrypsin (AAT) and exposure to cigarette smoke (CS) contribute to the development of early onset emphysema. CS-induced apoptosis of alveolar cells including endothelial cells plays critical role in the lung destruction. AAT deficiency is associated with increased lung tissue destruction as well. We hypothesize that AAT protects lung alveoli from noxious environmental stimuli such as CS-induced apoptosis. METHODS Porcine pulmonary artery endothelial cells (PAEC) were exposed to CS in the presence or absence of AAT (20 microM). AAT internalization and markers for apoptosis were assessed by confocal microscopy. Flow cytometry was performed in parallel to quantify the number of AAT-loaded and apoptotic cells. RESULTS We demonstrated that exogenous AAT accumulated in PAEC and protected cells from CS-induced apoptosis. AAT-loaded CS-exposed cells exhibited increased amounts of chaperone HSP-70 in their cytosol and less apoptosis inducing factor in their nuclei compared to AAT-untreated, CS-exposed cells. CONCLUSIONS Our results suggest that AAT is taken up by endothelial cells via two mechanisms and that intracellular AAT may have a protective role in CS-induced endothelial apoptosis. This may open new insights into the field of endothelial serpins as agents capable of protecting the vasculature from environment-derived noxious substances.
Collapse
Affiliation(s)
- Ruta Aldonyte
- Pulmonary Division, Department of Medicine, P.O. Box 100225, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Fujimaki H, Shiraishi F, Kawagoe A, Kaya K. Pharmacological and Morphological Changes in Rat Mast Cells Exposed to Nitrogen Dioxide in Vitro. Inhal Toxicol 2008. [DOI: 10.3109/08958379009145253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
9
|
Schlesinger RB, El-fawal HAN, Zelikoff JT, Gorczynski JE, Mcgovern T, Nadziejko CE, Chen LC. Pulmonary Effects of Repeated Episodic Exposures to Nitric Acid Vapor Alone and in Combination with Ozone. Inhal Toxicol 2008. [DOI: 10.3109/08958379409029693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Feinberg AW, Wilkerson WR, Seegert CA, Gibson AL, Hoipkemeier-Wilson L, Brennan AB. Systematic variation of microtopography, surface chemistry and elastic modulus and the state dependent effect on endothelial cell alignment. J Biomed Mater Res A 2008; 86:522-34. [PMID: 17994556 DOI: 10.1002/jbm.a.31626] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We examined how variations in elastic modulus, surface chemistry and the height and spacing of micro-ridges interact and effect endothelial cell (EC) alignment. Specifically, we employed independent control of the surface properties in order to elucidate the relative importance of each factor. Polydimethylsiloxane elastomer (PDMSe) was fabricated with 1.5 or 5 microm tall, 5 microm spaced and 5, 10, or 20 microm wide ridge microtopographies. Elastic modulus was varied from 0.3, 1.0, 1.4, and 2.3 MPa by controlling oligomeric additives and crosslink density. Surface chemistry was left untreated, argon plasma treated, coated with fibronectin (Fn) or patterned with Fn tracks on flat PDMSe or the tops of micro-ridges. Primary porcine vascular ECs were cultured on the PDMSe substrates and nuclear form factor (NFF) was used to determine cell orientation relative to surface microtopography. Experimental results showed that microtopographical variation strongly altered EC alignment on Fn coated surfaces, but not on plasma treated surfaces. Interestingly, similar alignment was achieved with different orientation cues, either micropatterned chemistry (2D) or microtopography (3D). In total, the effect of varying one of the experimental parameters depended strongly on the state of the others, highlighting the need for multi-factor analysis of surface properties for applications where cells and tissue will contact synthetic materials.
Collapse
Affiliation(s)
- Adam W Feinberg
- Department of Biomedical Engineering, University of Florida, Gainesville, PO Box 116400, Florida 32611-6400, USA
| | | | | | | | | | | |
Collapse
|
11
|
Carman ML, Estes TG, Feinberg AW, Schumacher JF, Wilkerson W, Wilson LH, Callow ME, Callow JA, Brennan AB. Engineered antifouling microtopographies--correlating wettability with cell attachment. BIOFOULING 2006; 22:11-21. [PMID: 16551557 DOI: 10.1080/08927010500484854] [Citation(s) in RCA: 165] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bioadhesion and surface wettability are influenced by microscale topography. In the present study, engineered pillars, ridges and biomimetic topography inspired by the skin of fast moving sharks (Sharklet AF) were replicated in polydimethylsiloxane elastomer. Sessile drop contact angle changes on the surfaces correlated well (R2 = 0.89) with Wenzel and Cassie and Baxter's relationships for wettability. Two separate biological responses, i.e. settlement of Ulva linza zoospores and alignment of porcine cardiovascular endothelial cells, were inversely proportional to the width (between 5 and 20 microm) of the engineered channels. Zoospore settlement was reduced by approximately 85% on the finer (ca 2 microm) and more complex Sharklet AF topographies. The response of both cell types suggests their responses are governed by the same underlying thermodynamic principles as wettability.
Collapse
Affiliation(s)
- Michelle L Carman
- Department of Biomedical Engineering, University of Florida, Gainesville 32611-6400, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhang G, Spickett J, Rumchev K, Lee AH, Stick S. Snoring in primary school children and domestic environment: a Perth school based study. Respir Res 2004; 5:19. [PMID: 15527500 PMCID: PMC535337 DOI: 10.1186/1465-9921-5-19] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 11/04/2004] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The home is the predominant environment for exposure to many environmental irritants such as air pollutants and allergens. Exposure to common indoor irritants including volatile organic compounds, formaldehyde and nitrogen dioxide, may increase the risk of snoring for children. The aim of this study was to investigate domestic environmental factors associated with snoring in children. METHODS A school-based respiratory survey was administered during March and April of 2002. Nine hundred and ninety six children from four primary schools within the Perth metropolitan area were recruited for the study. A sub-group of 88 children aged 4-6 years were further selected from this sample for domestic air pollutant assessment. RESULTS The prevalences of infrequent snoring and habitual snoring in primary school children were 24.9% and 15.2% respectively. Passive smoking was found to be a significant risk factor for habitual snoring (odds ratio (OR) = 1.77; 95% confidence interval (CI): 1.20-2.61), while having pets at home appeared to be protective against habitual snoring (OR = 0.58; 95% CI: 0.37-0.92). Domestic pollutant assessments showed that the prevalence of snoring was significantly associated with exposure to nitrogen dioxide during winter. Relative to the low exposure category (<30 microg/m3), the adjusted ORs of snoring by children with medium (30 - 60 microg/m3) and high exposures (> 60 microg/m3) to NO2 were 2.5 (95% CI: 0.7-8.7) and 4.5 (95% CI: 1.4-14.3) respectively. The corresponding linear dose-response trend was also significant (P = 0.011). CONCLUSION Snoring is common in primary school children. Domestic environments may play a significant role in the increased prevalence of snoring. Exposure to nitrogen dioxide in domestic environment is associated with snoring in children.
Collapse
Affiliation(s)
- Guicheng Zhang
- School of Public Health, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
| | - Jeffery Spickett
- School of Public Health, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
| | - Krassi Rumchev
- School of Public Health, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
| | - Andy H Lee
- School of Public Health, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia
| | - Stephen Stick
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Roberts Road, Subiaco, WA 6008, Australia
| |
Collapse
|
13
|
Janic B, Umstead TM, Phelps DS, Floros J. Modulatory effects of ozone on THP-1 cells in response to SP-A stimulation. Am J Physiol Lung Cell Mol Physiol 2004; 288:L317-25. [PMID: 15466251 DOI: 10.1152/ajplung.00125.2004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ozone (O(3)), a major component of air pollution and a strong oxidizing agent, can lead to lung injury associated with edema, inflammation, and epithelial cell damage. The effects of O(3) on pulmonary immune cells have been studied in various in vivo and in vitro systems. We have shown previously that O(3) exposure of surfactant protein (SP)-A decreases its ability to modulate proinflammatory cytokine production by cells of monocyte/macrophage lineage (THP-1 cells). In this report, we exposed THP-1 cells and/or native SP-A obtained from bronchoalveolar lavage of patients with alveolar proteinosis to O(3) and studied cytokine production and NF-kappaB signaling. The results showed 1) exposure of THP-1 cells to O(3) significantly decreased their ability to express TNF-alpha in response to SP-A; TNF-alpha production, under these conditions, was still significantly higher than basal (unstimulated) levels in filtered air-exposed THP-1 cells; 2) exposure of both THP-1 cells and SP-A to O(3) did not result in any significant differences in TNF-alpha expression compared with basal levels; 3) O(3) exposure of SP-A resulted in a decreased ability of SP-A to activate the NF-kappaB pathway, as assessed by the lack of significant increase and decrease of the nuclear p65 subunit of NF-kappaB and cytoplasmic IkappaBalpha, respectively; and 4) O(3) exposure of THP-1 cells resulted in a decrease in SP-A-mediated THP-1 cell responsiveness, which did not seem to be mediated via the classic NF-kappaB pathway. These findings indicate that O(3) exposure may mediate its effect on macrophage function both directly and indirectly (via SP-A oxidation) and by involving different mechanisms.
Collapse
Affiliation(s)
- Branislava Janic
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
14
|
Kahlos K, Zhang J, Block ER, Patel JM. Thioredoxin restores nitric oxide-induced inhibition of protein kinase C activity in lung endothelial cells. Mol Cell Biochem 2004; 254:47-54. [PMID: 14674681 DOI: 10.1023/a:1027380828645] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We previously reported that exposure to exogenous nitric oxide (NO) causes diminished expression of thioredoxin/thioredoxin reductase, a critical component of the redox system that regulates the functions of redox-sensitive enzymes, receptors, and transcription factors. Here we examined the role of thioredoxin in NO-induced inhibition of protein kinase C (PKC) isoform(s) and potential interaction of PKC and thioredoxin in pulmonary artery endothelial cells (PAEC) in culture. Exposure to NO gas (8 ppm) significantly diminished the catalytic activity of the representative isoforms of the conventional, novel, and atypical PKCs alpha, epsilon, and zeta, respectively, in PAEC. Further examination of NO's effect on PKC-zeta revealed that NO-induced inhibition of the catalytic activity of PKC-zeta was time-dependent and regulated by a posttranscriptional mechanism. NO-induced loss of the catalytic activity of PKC-zeta was restored by incubation with the disulfide reducing agent dithiothreitol (DTT) as well as by purified thioredoxin or thioredoxin reductase. Confocal imaging studies revealed co-localization of PKC and thioredoxin in PAEC. These results indicate that: (1) NO-induced inhibition of PKC isoforms is associated with S-nitrosylation-mediated disulfide formation of active site thiols in PKC-zeta as the disulfide reducing agent DTT and/or the thioredoxin enzyme system restore PKC-zeta catalytic activity and (2) NO causes oxidation of endogenous thioredoxin as exogenous reduced thioredoxin or thioredoxin reductase are required to reduce thioredoxin and to restore the catalytic activity of PKC-zeta in PAEC.
Collapse
Affiliation(s)
- Katriina Kahlos
- Department of Medicine, University of Florida College of Medicine, USA
| | | | | | | |
Collapse
|
15
|
Hu H, Xin M, Belayev LL, Zhang J, Block ER, Patel JM. Autoinhibitory domain fragment of endothelial NOS enhances pulmonary artery vasorelaxation by the NO-cGMP pathway. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1066-74. [PMID: 14729513 DOI: 10.1152/ajplung.00378.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Catalytic activity of eNOS is regulated by multiple posttranscriptional mechanisms, including a 40-amino acid (604-643) autoinhibitory domain (AID) located in the reductase domain of the eNOS protein. We examined whether an exogenous synthetic AID, an 11-amino acid (626-636) fragment of AID (AAF), or scrambled AAF (AAF-SR), enhanced eNOS activity and NO-cGMP-mediated vasorelaxation using pulmonary artery (PA) endothelial/smooth muscle cell (PAEC/PASM) coculture, isolated PA segment, and isolated lung perfusion models. Incubation of isolated total membrane fraction of PAEC with AID or AAF resulted in concentration-dependent loss of eNOS activity. In contrast, incubation of intact PAEC with AID or AAF but not AAF-SR caused concentration- and time-dependent activation of eNOS. Because AID and AAF had similar effects on activation of eNOS, AAF and AAF-SR were used for further evaluation. Although AAF stimulation increased catalytic activity of PKC-alpha in PAEC, AAF-mediated activation of eNOS was independent of phosphorylation of Ser1177 or Thr495 and/or expression of eNOS protein. AAF stimulation of PAEC increased NO and cGMP production, which were attenuated by pretreatment with the eNOS inhibitor l-NAME. AAF caused time-dependent vasodilation of U-46619-precontracted endothelium-intact but not endothelium-denuded PA segments, and this response was attenuated by l-NAME. AAF, but not AAF-SR, also caused vasorelaxation in an ex vivo isolated mouse lung perfusion model precontracted with U-46619. Incubation with fluorescence-labeled AAF demonstrated translocation of AAF in PAEC in culture, isolated PA, and isolated intact lungs. These results demonstrate that AAF-stimulated vasodilation is mediated via activation of eNOS and enhanced NO-cGMP production in PA and intact lung.
Collapse
Affiliation(s)
- Hanbo Hu
- Research Service (151 VA Medical Center, 1601 SW Archer Road, Gainesville, FL 32608-1197, USA
| | | | | | | | | | | |
Collapse
|
16
|
Li YD, Block ER, Patel JM. Activation of multiple signaling modules is critical in angiotensin IV-induced lung endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 2002; 283:L707-16. [PMID: 12225947 DOI: 10.1152/ajplung.00024.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Signaling events involving angiotensin IV (ANG IV)-mediated pulmonary artery endothelial cell (PAEC) proliferation were examined. ANG IV significantly increased upstream phosphatidylinositide (PI) 3-kinase (PI3K), PI-dependent kinase-1 (PDK-1), extracellular signal-related kinases (ERK1/2), and protein kinase B-alpha/Akt (PKB-alpha) activities, as well as downstream p70 ribosomal S6 kinase (p70S6K) activities and/or phosphorylation of these proteins. ANG IV also significantly increased 5-bromo-2'-deoxy-uridine incorporation into newly synthesized DNA in a concentration- and time-dependent manner. Pretreatment of cells with wortmannin and LY-294002, inhibitors of PI3K, or rapamycin, an inhibitor of the mammalian target of rapamycin kinase and p70S6K, diminished the ANG IV-mediated activation of PDK-1 and PKB-alpha as well as phosphorylation of p70S6K. Although an inhibitor of mitogen-activated protein kinase kinase, PD-98059, but not rapamycin, blocked ANG IV-induced phosphorylation of ERK1/2, both PD-98059 and rapamycin independently caused partial reduction in ANG IV-mediated cell proliferation. However, simultaneous treatment with PD-98059 and rapamycin resulted in total inhibition of ANG IV-induced cell proliferation. These results demonstrate that ANG IV-induced DNA synthesis is regulated in a coordinated fashion involving multiple signaling modules in PAEC.
Collapse
Affiliation(s)
- Yong D Li
- Department of Medicine, University of Florida College of Medicine, Gainesville 32608-1197, USA
| | | | | |
Collapse
|
17
|
Tachikawa E, Kudo K, Nunokawa M, Kashimoto T, Takahashi E, Kitagawa S. Characterization of ginseng saponin ginsenoside-Rg(3) inhibition of catecholamine secretion in bovine adrenal chromaffin cells. Biochem Pharmacol 2001; 62:943-51. [PMID: 11543730 DOI: 10.1016/s0006-2952(01)00743-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Since ginsenoside-Rg(3), one of the panaxadiol saponins isolated from the ginseng root, significantly inhibited the secretion of catecholamines from bovine adrenal chromaffin cells stimulated by acetylcholine (ACh), the properties of ginsenoside-Rg(3) inhibition were investigated. Although ginsenoside-Rg(3) inhibited the secretion evoked by ACh in a concentration-dependent manner, it affected the secretion stimulated by high K(+) or veratridine, an activator of the voltage-sensitive Ca(2+) or Na(+) channels, only slightly. The ACh-induced Na(+) and Ca(2+) influxes into the cells were also reduced by ginsenoside-Rg(3). The inhibitory effect of this saponin on the secretion of catecholamines was not altered by increasing the external concentration of ACh or Ca(2+). The ACh-evoked secretion of catecholamines was completely restored in cells that were preincubated with 10 microM ginsenoside-Rg(3) and then incubated without the saponin, whereas secretion was not completely restored in cells that were preincubated with 30 microM of this compound. Above 30 microM ginsenoside-Rg(3) increased the fluorescence anisotropy of diphenylhexatriene in the cells. Furthermore, the inhibitory effect of ginsenoside-Rg(3) at 30 microM on the ACh-evoked secretion of catecholamines was dependent upon the preincubation time, but this was not the case at 10 microM. These results strongly suggest that ginsenoside-Rg(3) blocks the nicotinic ACh receptor-operated cation channels, inhibits Na(+) influx through the channels, and consequently reduces both Ca(2+) influx and catecholamine secretion in bovine adrenal chromaffin cells. In addition to this action, the ginsenoside at higher concentrations modulates the fluidity of the plasma membrane, which probably contributes to the observed reduction in the secretion of catecholamines.
Collapse
Affiliation(s)
- E Tachikawa
- Department of Pharmacology, School of Medicine, Iwate Medical University, Uchimaru 19-1, 020-8505, Morioka, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Chen S, Patel JM, Block ER. Angiotensin IV-mediated pulmonary artery vasorelaxation is due to endothelial intracellular calcium release. Am J Physiol Lung Cell Mol Physiol 2000; 279:L849-56. [PMID: 11053019 DOI: 10.1152/ajplung.2000.279.5.l849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Angiotensin (ANG) IV stimulation of pulmonary artery (PA) endothelial cells (PAECs) but not of PA smooth muscle cells (PASMCs) resulted in significant increased production of cGMP in PASMCs. ANG IV receptors are not present in PASMCs, and PASMC nitric oxide synthase activity was not altered by ANG IV. ANG IV caused a dose-dependent vasodilation of U-46619-precontracted endothelium-intact but not endothelium-denuded PAs, and this response was blocked by the ANG IV receptor antagonist divalinal ANG IV but not by ANG II type 1 and 2 receptor blockers. ANG IV receptor-mediated increased intracellular Ca(2+) concentration ([Ca(2+)](i)) release from intracellular stores in PAECs was blocked by divalinal ANG IV as well as by the G protein, phospholipase C, and phosphoinositide (PI) 3-kinase inhibitors guanosine 5'-O-(2-thiodiphosphate), U-73122, and LY-294002, respectively, and was regulated by both PI 3-kinase- and ryanodine-sensitive Ca(2+) stores. Basal and ANG IV-mediated vasorelaxation of endothelium-denuded PAs was restored by exogenous PAECs but not by exogenous PAECs pretreated with the intracellular Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM. These results demonstrate that ANG IV-mediated vasodilation of PAs is endothelium dependent and regulated by [Ca(2+)](i) release through receptor-coupled G protein-phospholipase C-PI 3-kinase signaling mechanisms.
Collapse
Affiliation(s)
- S Chen
- Department of Medicine, University of Florida College of Medicine, Gainesville, Florida 32608, USA
| | | | | |
Collapse
|
19
|
Hashimoto M, Hossain S, Yamasaki H, Yazawa K, Masumura S. Effects of eicosapentaenoic acid and docosahexaenoic acid on plasma membrane fluidity of aortic endothelial cells. Lipids 1999; 34:1297-304. [PMID: 10652989 DOI: 10.1007/s11745-999-0481-6] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We investigated the relative effects of n-3 eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) on the plasma membrane fluidity of endothelial cells (EC) cultured from the thoracic aorta by determining fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its cationic derivative trimethylamino-DPH (TMA-DPH). Fluidity assessed by TMA-DPH demonstrated no significant differences in plasma membranes of vehicle (dimethyl sulfoxide; DMSO)-, EPA-, and DHA-treated EC. Plasma membrane fluidity assessed by DPH polarization, however, was significantly higher in the order of DHA > EPA > DMSO. Total cholesterol content decreased significantly by 28.4 and 15.9% in the plasma membranes of DHA- and EPA-treated cells, respectively. Total phospholipid content remained unaltered in the plasma membranes of the three groups of cells; however, the molar ratio of total cholesterol to phospholipid decreased significantly only in the membranes of DHA-treated EC. The unsaturation index in the plasma membranes of EPA- and DHA-treated cells increased by 35.7 and 64.3%, respectively, compared with that in the plasma membranes of control cells. The activities of catalase and glutathione peroxidase in the whole-cell homogenates, and levels of lipid peroxides in either the whole-cell homogenates or in plasma membrane fractions were not altered in EPA- or DHA-treated EC. These results indicate that the influence of DHA is greater than that of EPA in increasing plasma membrane fluidity of vascular EC. We speculate that the greater effect of DHA compared to EPA is due to its greater ability to decrease membrane cholesterol content or the cholesterol/phospholipid molar ratio, or both, and also to its greater ability in elevating the unsaturation index in the plasma membranes of EC.
Collapse
Affiliation(s)
- M Hashimoto
- Department of Physiology, Shimane Medical University, Izumo, Japan.
| | | | | | | | | |
Collapse
|
20
|
Patel JM, Li YD, Zhang J, Gelband CH, Raizada MK, Block ER. Increased expression of calreticulin is linked to ANG IV-mediated activation of lung endothelial NOS. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L794-801. [PMID: 10516221 DOI: 10.1152/ajplung.1999.277.4.l794] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study demonstrates that ANG IV-induced activation of lung endothelial cell nitric oxide synthase (ecNOS) is mediated through mobilization of Ca(2+) concentration and by increased expression and release of the Ca(2+) binding protein calreticulin in pulmonary artery endothelial cells (PAEC). In Ca(2+)-free medium and in the presence of the ANG II AT(1) and AT(2) receptor antagonists losartan and PD-123319 (1 microM each), respectively, ANG IV (5, 50, and 500 nM) significantly increased intracellular Ca(2+) release in PAEC (P < 0.05 for all concentrations). In contrast, ANG IV-mediated activation of ecNOS was abolished by the intracellular Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM. ANG IV stimulation resulted in significantly increased expression of calreticulin in cells as well as release of calreticulin into the medium of cells as early as 2 h after ANG IV stimulation (P < 0.05). Catalytic activity of purified ecNOS in the absence of calmodulin was increased in a concentration-dependent fashion by calreticulin. Immunocoprecipitation studies revealed that ecNOS and calreticulin were coprecipitated in ANG IV-stimulated PAEC. These results demonstrate that ANG IV-mediated activation of ecNOS is regulated by intracellular Ca(2+) mobilization and by increased expression of calreticulin, which appears to involve interaction of ecNOS and calreticulin proteins in PAEC.
Collapse
Affiliation(s)
- J M Patel
- Research Service, Malcom Randall Department of Veterans Affairs Medical Center, University of Florida College of Medicine, Gainesville, Florida 32608, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Dahlin KL, Bohlin K, Strindlund J, Ryrfeldt A, Cotgreave IA. Amitriptyline-induced loss of tight junction integrity in a human endothelial--smooth muscle cell bi-layer model. Toxicology 1999; 136:1-13. [PMID: 10499846 DOI: 10.1016/s0300-483x(99)00035-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tricyclic antidepressants can, when taken in overdose, cause serious pulmonary failure such as the adult respiratory distress syndrome (ARDS). In this study we have examined the effects of some tricyclic antidepressants (amitriptyline, imipramine, nortriptyline and desipramine) on the viability and morphology of human endothelial and smooth muscle cells derived from umbilical cord. Effects of amitriptyline on endothelial cell fluidity, as well as permeability changes to an endothelial-smooth muscle cell bi-layer, were also studied. The tricyclic antidepressants induced acute, sub-lethal toxicity in both cell types above 100 microM as assessed by the MTT reduction assay. Morphological changes were also observed at these concentrations. Such changes were, however, absent at 33 microM and below. Amitriptyline did, however, cause a concentration-dependent fall in the electrical resistance of an endothelial-smooth muscle cell bi-layer, with significant effects already evident at 33 microM. All of these observed effects were fairly rapid and appeared within 5-15 min of exposure. The rapidity of these permeabilisation effects suggests potential membrane perturbations, since tricyclic antidepressants are lipophilic molecules with affinity for cell membranes. However, fluorescence anisotropy measurements showed no significant difference in membrane fluidity between amitriptyline-treated and control endothelial cells. Collectively, these data point to specific mechanisms of action of amitriptyline, and probably also the other tricyclic antidepressants studied, on endothelial permeability, which is a hallmark of ARDS. The data suggest that increased endothelial permeability could be due to impaired tight junction function.
Collapse
MESH Headings
- Amitriptyline/toxicity
- Antidepressive Agents, Tricyclic/toxicity
- Cell Membrane Permeability/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Coculture Techniques
- Desipramine/toxicity
- Electric Impedance
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/pathology
- Fluorescent Antibody Technique, Indirect
- Formazans/metabolism
- Humans
- Imipramine/toxicity
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Nortriptyline/toxicity
- Spectrometry, Fluorescence
- Tetrazolium Salts/metabolism
- Tight Junctions/drug effects
- Tight Junctions/physiology
- Umbilical Cord/cytology
Collapse
Affiliation(s)
- K L Dahlin
- Division of Inhalation Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
22
|
Patel JM, Martens JR, Li YD, Gelband CH, Raizada MK, Block ER. Angiotensin IV receptor-mediated activation of lung endothelial NOS is associated with vasorelaxation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L1061-8. [PMID: 9843842 DOI: 10.1152/ajplung.1998.275.6.l1061] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The hexapeptide angiotensin (ANG) IV, a metabolic product of ANG II, has been reported to play a functional role in the regulation of blood flow in extrapulmonary tissues. Here, we demonstrate that ANG IV-specific (AT4) receptors are present in porcine pulmonary arterial endothelial cells (PAECs) and that the binding of ANG IV to AT4 receptors can be blocked by its antagonist divalinal ANG IV but not by the ANG II-, AT1-, and AT2-receptor blockers [Sar1,Ile8]ANG II, losartan, and PD-123177, respectively. ANG IV significantly increased endothelial cell constitutive nitric oxide synthase (ecNOS) activity (P < 0.05) as well as cellular cGMP content (P < 0. 001). Western blot analysis revealed that ecNOS protein expression was comparable in control and ANG IV-stimulated cells. Divalinal ANG IV but not [Sar1,Ile8]ANG II, losartan, or PD-123177 inhibited the ANG II- and ANG IV-stimulated increases in ecNOS activity and cGMP content in PAECs. Incubation in the presence of N-nitro-L-arginine methyl ester (L-NAME) or methylene blue but not of indomethacin significantly diminished ANG IV-stimulated as well as basal levels of cGMP (P < 0.001). Similarly, in situ studies with precontracted porcine pulmonary arterial rings showed that ANG IV caused an endothelium-dependent relaxation that was blocked by L-NAME or methylene blue. Collectively, these results demonstrate that ANG IV binds to AT4 receptors, activates ecNOS by posttranscriptional modulation, stimulates cGMP accumulation in PAECs, and causes pulmonary arterial vasodilation, suggesting that ANG IV plays a role in the regulation of blood flow in the pulmonary circulation.
Collapse
Affiliation(s)
- J M Patel
- Research Service, Department of Veterans Affairs Medical Center, University of Florida College of Medicine, Gainesville, Florida 32608-1611, USA
| | | | | | | | | | | |
Collapse
|
23
|
Li YD, Patel JM, Block ER. Nitrogen dioxide-induced expression of a 78 kDa protein in pulmonary artery endothelial cells. Free Radic Biol Med 1996; 21:163-71. [PMID: 8818631 DOI: 10.1016/0891-5849(96)00024-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Exposure to nitrogen dioxide (NO2) activates signal transduction in cultured pulmonary artery endothelial cells (PAEC). We examined whether NO2-induced activation of signal transduction results in increased expression of proteins in PAEC. Exposure to 5 ppm NO2 for 4, 12, and 24 h had no significant effect on total protein synthesis. However, two-dimensional gel electrophoresis of [35S]-methionine-labeled PAEC exposed to NO2 for 24 h, but not 4 and 12 h, demonstrated increased synthesis of several proteins including a two- to five-fold increase of some proteins with molecular masses of 47, 64, 78, and 105 kDa compared to controls. N-terminal amino acid sequencing and immunodetection analysis identified the 78 kDa protein as 78 kDa glucose-regulated protein (GRP-78). Induction of GRP-78 by NO2 exposure was regulated at the transcriptional level, and the induction required de novo protein synthesis. Exposure to NO2 for 24 h also significantly (p < .05) decreased glycosylation of proteins in PAEC. Exposure of cell monolayers to tunicamycin, an inhibitor of protein glycosylation, mimicked the effect of NO2 exposure on expression of GRP-78. Increased expression of GRP-78 was also detected when cell monolayers were exposed to the calcium ionophore A 23187, to 2-deoxyglucose, or to glucose-free medium, which are also known to cause perturbations in protein glycosylation. These results demonstrate that exposure to NO2 increases expression of a number of proteins including GRP-78 in PAEC. Increased expression of GRP-78 in NO2-exposed cells appears to be associated with inhibition of glycosylation or through coordinated alterations in metabolic events that lead to inhibition of protein glycosylation.
Collapse
Affiliation(s)
- Y D Li
- Division of Pulmonary Medicine, University of Florida College of Medicine, Gainesville, USA
| | | | | |
Collapse
|
24
|
Tu B, Wallin A, Moldéus P, Cotgreave IA. Cytotoxicity of NO2 gas to cultured human and murine cells in an inverted monolayer exposure system. Toxicology 1995; 96:7-18. [PMID: 7863513 DOI: 10.1016/0300-483x(94)02909-e] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report the development of an optimised exposure system for the exposure of inverted cell cultures to NO2, which presents several advantages over conventional, right-side-up exposure systems. Firstly, the cells may be directly exposed to NO2 in the gas phase for up to 1 h, without the interposition of an aqueous layer. Secondly, the chamber system allows simple and precise control of the gas concentration during the exposure. Finally, the system allows the simultaneous exposure of large numbers of cells under sterile conditions, facilitating further culture of the cells after the exposure period. We report the application of this system to a comparative study of the toxicity of NO2 in three different cell types involved in the circuit of the inflammatory response, the IC-21 murine macrophage line, the A-549 human pulmonary type II-like epithelial cell line and human umbilical vein endothelial cells. As little as 2 ppm NO2 for 20 min reduced colony-forming efficiency of HUVE cells and A-549 cells and A-549 cells to 35% and 78% of their air controls, respectively. Exposure to 5 ppm NO2 for 1 h increased lactate dehydrogenase release of HUVE cells, IC-21 macrophages and A-549 cells from 7.9% to 21.6%, 5.7% to 10.9% and 2.0% to 3.4%, respectively, whilst 10 ppm NO2 for 1 h lowered cellular glutathione in HUVE cells, IC-21 cells and A-549 cells from 35.2 nmol/mg to 23.3 nmol/mg, from 45.0 nmol/mg to 31.0 nmol/mg and from 86.4 nmol/mg to 69.2 nmol/mg, respectively. Of the cell types tested it was shown that HUVE cells and IC-21 cells were equally sensitive to the toxicity of NO2, whilst A-549 cells displayed considerable resistance, perhaps due to the considerably higher levels of glutathione in this cell line. Further, a comparison of the sensitivity of HUVE cells to NO2, using several modes of exposure (inverted and right-side-up (either rocked or static)) and the assay of lactate dehydrogenase and [3H]deoxyglucose release, revealed that the present inverted exposure technique potentiated the acute cytotoxicity of the gas.
Collapse
Affiliation(s)
- B Tu
- Division of Toxicology, Institute of Environmental Medicine, Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Patel JM, Abeles AJ, Block ER. Effect of phospholipid acyl chain modulation on vitamin E incorporation into pulmonary artery endothelial cell membranes. J Cell Physiol 1993; 155:394-8. [PMID: 8482731 DOI: 10.1002/jcp.1041550221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Incorporation of vitamin E (alpha-tocopherol) was measured in total membranes of pulmonary artery endothelial cells (PAEC) following treatment with eight synthetic phosphatidylethanolamines (PE) (Palmitoyloleoyl, 16:0-18:1 PE1; distearoyl, 18:0-18:0 PE2; dioleoyl, 18:1-18:1 PE3; stearoyl- linoleoyl, 18:0-18:2 PE4; dilinoleoyl, 18:2-18:2 PE5; stearoyl-arachidonyl, 18:0-20:4 PE6; diarachidonyl, 20:4-20:4 PE7; and stearoyl-docosahexenoyl, 18:0-22:6 PE8). Endogenous PE content of native membranes was 0.88 +/- 0.01 nmol/mg protein. Incorporation of PE irrespective of fatty acid content significantly (P < 0.02) increased the PE content of total membranes. Vitamin E incorporation in control membranes was 63 +/- 9 nmol/mg protein. Incorporation of vitamin E in PE1- to PE7-treated cells were significantly (P < 0.05) increased compared to controls and were comparable to each other. Vitamin E incorporation into PE8-treated cells was threefold greater (P < 0.001) than controls and twofold greater (P < 0.001) than PE1- to PE7-treated cells. Increased PE content results in increased vitamin E incorporation into PAEC membranes irrespective of the fatty acids present on the acyl chain, and maximal incorporation of vitamin E in PE8-treated cells may relate to the increased carbon chain length rather than to the degree of unsaturation at the sn2 position.
Collapse
Affiliation(s)
- J M Patel
- Medical Research Service, Department of Veterans Affairs Medical Center, Gainesville, Florida 32608-1197
| | | | | |
Collapse
|
26
|
Patel JM, Sekharam KM, Block ER. Oxidant and angiotensin II-induced subcellular translocation of protein kinase C in pulmonary artery endothelial cells. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1992; 7:117-23. [PMID: 1404242 DOI: 10.1002/jbt.2570070209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We recently reported that nitrogen dioxide (NO2), an environmental oxidant, alters the dynamics of the plasma membrane lipid bilayer structure, resulting in increased phosphatidylserine content and angiotensin II (Ang II) receptor binding. Angiotensin II is known to elicit receptor-mediated stimulation of diacylglycerol (DAG) production in pulmonary artery endothelial cells. Because protein kinase C (PKC) is a phosphatidylserine-dependent enzyme and is activated by DAG, we examined whether NO2 resulted in activation and/or translocation of PKC from predominantly cytosolic to membrane fractions of these cells. We also evaluated whether NO2 exposure resulted in increased production of DAG in pulmonary artery endothelial cells. Exposure to 5 ppm NO2 for 1-24 hr resulted in significant increases in PKC activity in the cytosolic and membrane fractions (p less than 0.05 for both fractions) compared to activities in control fractions. Exposure to Ang II resulted in translocation of PKC activity from cytosol to membrane fractions of both control and NO2-exposed cells. This translocation of PKC from cytosolic to membrane fraction was prevented by the specific receptor antagonist [Sar1 Ile8] Ang II. Exposure of 5 ppm NO2 for 1-24 hr provoked rapid increases in [3H]glycerol labeling of DAG in pulmonary artery endothelial cells. These results demonstrate that exposure to NO2 increases the production of second messenger DAG and activates PKC in both the cytosolic and membrane fractions, whereas Ang II stimulates the redistribution of PKC from cytosolic to membrane fractions of pulmonary artery endothelial cells.
Collapse
Affiliation(s)
- J M Patel
- Division of Pulmonary Medicine, University of Florida College of Medicine, Gainesville 32610-0225
| | | | | |
Collapse
|
27
|
Patel JM, Sekharam M, Block ER. Vitamin E distribution and modulation of the physical state and function of pulmonary endothelial cell membranes. Exp Lung Res 1991; 17:707-23. [PMID: 1935832 DOI: 10.3109/01902149109062874] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vitamin E, a dietary antioxidant, is thought to incorporate into the lipid bilayer of biological membranes. We evaluated the lipid composition and distribution of [3H]-vitamin E in various membranes of pulmonary endothelial cells and determined whether vitamin E incorporation caused alterations in membrane structure and function in these cells. Following 6-, 12-, 18-, 24-, and 48-h incubation periods, vitamin E incorporation values were 3.0, 5.7, 6.9, 7.2, and 6.8 nmol/mg protein or 3.8, 7.3, 8.8, 9.2, and 8.7 nmol/mg phospholipid in mitochondrial membranes and 2.0, 4.4, 5.2, 5.3, and 5.0 nmol/mg protein or 3.5, 7.7, 9.1, 9.3, and 8.8 nmol/mg phospholipid in microsomal membranes, respectively. Vitamin E incorporation into the plasma membranes was greater than in mitochondrial and microsomal membranes after 12-, 24-, and 48-h incubations (18.9, 20.8, and 19.6 nmol/mg protein, respectively [P less than .001] versus mitochondria and microsomes or 12.2, 13.4, and 12.6 nmol/mg phospholipid, respectively [P less than .05] versus mitochondria and microsomes). The total phospholipid content, as well as the unsaturation index of the fatty acid content of these membranes, were in the same order, (i.e., plasma membrane greater than mitochondrial membranes and microsomal membranes). The physical state of the intact plasma membrane and the mitochondrial and microsomal membranes were measured by monitoring fluorescence anisotropies (rs) of the molecular probes, diphenylhexatriene (DPH) and trimethylamino-DPH (TMA-DPH). Vitamin E incorporation caused significant increases in rs for DPH (P less than .01) and TMA-DPH (P less than .01) in all three membranes compared to controls. Similar increases in rs values for DPH and TMA-DPH were observed in lipid vesicles prepared from these membranes. Following vitamin E incorporation, 5-hydroxytryptamine (5-HT) transport was measured as an index of plasma membrane function. Vitamin E incorporation resulted in an 18% reduction (P less than .05) in 5-HT uptake. These results indicate that vitamin E was distributed nonuniformly in endothelial cell membranes but resulted in comparable decreases in fluidity in all three membranes. In addition to its role as an antioxidant, vitamin E may alter the membrane physical state and modulate a variety of endothelial cell functions, including 5-HT transport.
Collapse
Affiliation(s)
- J M Patel
- Division of Pulmonary Medicine, University of Florida College of Medicine, Gainesville
| | | | | |
Collapse
|
28
|
Herskowitz K, Bode BP, Block ER, Souba WW. The effects of endotoxin on glutamine transport by pulmonary artery endothelial cells. J Surg Res 1991; 50:356-61. [PMID: 2020187 DOI: 10.1016/0022-4804(91)90203-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The effects of endotoxin on glutamine transport by cultured pulmonary artery endothelial cells (PAECs) were studied in order to gain further insight into the regulation of the altered lung glutamine metabolism that characterizes severe infection. Incubation of PAECs with endotoxin (1 micrograms/ml) resulted in a significant increase in System ASC-mediated glutamine transport which did not occur for 8 hr and was maximal after 12 hr of exposure. Kinetic studies indicated that the increase in carrier-mediated activity was not due to a change in Km (101 +/- 6 microM in controls vs 97 +/- 4 microM in endotoxin-treated cells, P = NS), but rather to a 73% increase in Vmax (840 +/- 60 pmole/mg protein/30 sec in controls vs 1450 +/- 80 in endotoxin-treated cells, P less than 0.001). The increase in glutamine uptake by PAECs was completely blocked by actinomycin D and cycloheximide, indicating that the accelerated glutamine transport was most probably due to an increase in transporter synthesis. Endotoxin stimulates glutamine uptake by PAECs, either directly or indirectly, an adaptive response which may be necessary to support cellular metabolism, structure, and function.
Collapse
Affiliation(s)
- K Herskowitz
- Department of Surgery, University of Florida College of Medicine, Gainesville 32610
| | | | | | | |
Collapse
|
29
|
Sekharam KM, Patel JM, Block ER. Plasma membrane-specific phospholipase A1 activation by nitrogen dioxide in pulmonary artery endothelial cells. Toxicol Appl Pharmacol 1991; 107:545-54. [PMID: 2000640 DOI: 10.1016/0041-008x(91)90317-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nitrogen dioxide (NO2), an environmental oxidant, alters the plasma membrane structure and function of pulmonary artery endothelial cells through peroxidative injury. Because perioxidative injury can activate membrane phospholipases and alter phospholipid composition of membranes, we evaluated the effects of NO2 exposure on phospholipase A1 (PLA1), phospholipase A2 (PLA2), and diacylglycerol lipase (DG lipase) activities in pulmonary artery endothelial cell plasma, mitochondrial, and microsomal membranes. We also evaluated the effect of NO2 exposure on the phospholipid composition of plasma membranes of these cells. Exposure to 5 ppm NO2 for 48 hr resulted in a significant (p less than 0.01) increase in PLA1 activity in plasma membranes but not in mitochondrial or microsomal membranes of pulmonary artery endothelial cells, whereas PLA2 and DG lipase activities were comparable to controls in all membranes. As a result of PLA1 activation, the total phospholipid content of the plasma membranes of NO2-exposed cells was significantly (p less than 0.01) reduced compared to controls. Phosphatidylethanolamine (PE) content was reduced (p less than 0.05), whereas lyso-PE (LPE), a product of PLA1 hydrolysis of PE, as well as phosphatidylserine (PS) contents were increased (p less than 0.01 for both LPE and PS) in the plasma membranes of NO2-exposed cells. Incorporation of exogenous PS into pulmonary artery endothelial cells mimicked the stimulatory effect of NO2 on PLA1 activity. These results demonstrate that NO2 specifically reacts with the plasma membrane component of pulmonary artery endothelial cells, causing specific activation of PLA1. The NO2-induced increase of PS in the plasma membranes appears to be responsible for the specific activation of PLA1 in pulmonary artery endothelial cells.
Collapse
Affiliation(s)
- K M Sekharam
- Division of Pulmonary Medicine, University of Florida College of Medicine, Gainesville
| | | | | |
Collapse
|
30
|
Sekharam KM, Patel JM, Block ER. Effect of polyunsaturated fatty acids and phospholipids on [3H]-vitamin E incorporation into pulmonary artery endothelial cell membranes. J Cell Physiol 1990; 145:555-63. [PMID: 2273060 DOI: 10.1002/jcp.1041450324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Vitamin E, a dietary antioxidant, is presumed to be incorporated into the lipid bilayer of biological membranes to an extent proportional to the amount of polyunsaturated fatty acids or phospholipids in the membrane. In the present study we evaluated the distribution of incorporated polyunsaturated fatty acids (PUFA) and phosphatidylethanolamine (PE) in various membranes of pulmonary artery endothelial cells. We also studied whether incorporation of PUFA or PE is responsible for increased incorporation of [3H]-vitamin E into the membranes of these cells. Following a 24-hr incubation with linoleic acid (18:2), 18:2 was increased by 6.9-, 9.2-, and 13.2-fold in plasma, mitochondrial, and microsomal membranes, respectively. Incorporation of 18:2 caused significant increases in the unsaturation indexes of mitochondrial and microsomal polyunsaturated fatty acyl chains (P less than .01 versus control in both membranes). Incubation with arachidonic acid (20:4) for 24 hr resulted in 1.5-, 2.3-, and 2.4-fold increases in 20:4 in plasma, mitochondrial, and microsomal membranes, respectively. The unsaturation indexes of polyunsaturated fatty acyl chains of mitochondrial and microsomal membranes also increased (P less than .01 versus control in both membranes). Although incubations with 18:2 or 20:4 resulted in several-fold increases in membrane 18:2 or 20:4 fatty acids, incorporation of [3H]-vitamin E into these membranes was similar to that in controls. Following a 24-hr incubation with PE, membrane PE content was significantly increased, and [3H]-vitamin E incorporation was also increased to a comparable degree, i.e., plasma membrane greater than mitochondria greater than microsomes. Endogenous vitamin E content of the cells was not altered because of increased incorporation of PE and [3H]-vitamin E. When [3H]-vitamin E was incorporated into lipid vesicles prepared from the total lipid extracts of endothelial cells and varying amounts of exogenous PE, vitamin E content was directly related to PE content. These results demonstrate that PUFA and PE distribute in all pulmonary artery endothelial cell membranes. However, only increases in PE were associated with increased incorporation of [3H]-vitamin E in membranes of these cells.
Collapse
Affiliation(s)
- K M Sekharam
- Division of Pulmonary Medicine, University of Florida College of Medicine, Gainesville
| | | | | |
Collapse
|
31
|
Bhat GB, Patel JM, Block ER. Exposure of pulmonary artery endothelial cells to nitrogen dioxide activates phospholipase A1. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1990; 5:67-9. [PMID: 2402004 DOI: 10.1002/jbt.2570050111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phospholipase A1, A2, and C and diacylglycerol lipase activities were measured in cell sonicates after exposing confluent monolayers of porcine pulmonary artery endothelial cells to 5 ppm NO2, a toxic constituent of environmental pollution, for 24 and 48 hr. There was a significant increase (2.25-fold) in phospholipase A1 activity in 24 and 48 hr NO2-exposed cells, whereas activities of phospholipases A2 and C and diacylglycerol lipase were comparable to control cells at both time points. When endothelial cells were prelabeled with [3H]-arachidonic acid and then exposed to NO2 for 48 hr, increased counts were recovered from cell lysophospholipids with concomitant decreased recovery of counts from cell phosphatidylcholine and phosphatidylethanolamine. These results demonstrate that NO2 exposure results in specific activation of phospholipase A1.
Collapse
Affiliation(s)
- G B Bhat
- Division of Pulmonary Medicine, University of Florida College of Medicine, Gainesville 32602
| | | | | |
Collapse
|
32
|
Patel JM, Sekharam KM, Block ER. Oxidant injury increases cell surface receptor binding of angiotensin II to pulmonary artery endothelial cells. JOURNAL OF BIOCHEMICAL TOXICOLOGY 1990; 5:253-8. [PMID: 2096220 DOI: 10.1002/jbt.2570050408] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Nitrogen dioxide (NO2), an environmental oxidant, is known to activate phospholipase A1 and modulate the plasma membrane structure of porcine pulmonary artery endothelial cells. We evaluated the effects of exposure to NO2, purified phospholipase B (which acts as phospholipase A1 and A2), or phospholipase A2 on 125I-angiotensin II (Ang II) receptor binding, internalization, or both in pulmonary endothelial cells. Exposure to 5 ppm NO2 for 48 hr at 37 degrees C or 0.075 U each of phospholipase B or A2 in phosphate-buffered saline (PBS) for 30 min at 24 degrees C resulted in an increase in total Ang II binding (i.e., cell surface bound and internalized) by 45% (p less than 0.05), 50% (p less than 0.05), and 85% (p less than 0.001), respectively, compared to controls. An Ang II receptor antagonist, [Sar1 Ile8] Ang II, competitively displaced Ang II binding to control, NO2-, phospholipase B-, and phospholipase A2-exposed cells. Dissociation of bound Ang II in the presence of PBS was less than 1% of total bound Ang II in control, NO2-, and phospholipase B-exposed cells and was 50% of total bound Ang II in phospholipase A2-exposed cells. In the presence of isotonic acetic acid/NaCl, in excess of 90% of cell surface-bound Ang II was dissociated from control, NO2-, and phospholipase B-exposed cells, and there was less than 2% of Ang II detectable when acid-treated cells were subjected to NaOH solubilization. In cells exposed to phospholipase A2, acetic acid treatment did not release cell-bound Ang II, and the remaining Ang II was recovered in the NaOH solubilized fraction.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- J M Patel
- Division of Pulmonary Medicine, University of Florida College of Medicine, Gainesville 32608-1197
| | | | | |
Collapse
|
33
|
Abstract
Pulmonary toxicity caused by an antineoplastic drug, cyclophosphamide is becoming a more frequently recognized entity. Metabolism of cyclophosphamide in lung to alkylating metabolites and acrolein, a reactive aldehyde are in part responsible for pulmonary toxicity. Alterations in pulmonary mixed-function oxidase activity, glutathione content, and microsomal lipid peroxidation may be caused by the reactive metabolite acrolein. Potentiation of cyclophosphamide-induced pulmonary injury under hyperoxic conditions is caused by depression of pulmonary antioxidant defense mechanisms by cyclophosphamide and its other metabolites but not acrolein. Cyclophosphamide- and acrolein-induced alterations in the physical state of membrane lipid bilayer may be the major cause of inactivation of membrane-bound enzymes. These data suggest that cyclophosphamide and its reactive metabolites initiate peroxidative injury resulting in alterations in the physical state of membrane lipids which may be functionally linked to manifestations of cyclophosphamide-induced pulmonary toxicity.
Collapse
Affiliation(s)
- J M Patel
- Department of Medicine, University of Florida, Gainesville 32610
| |
Collapse
|
34
|
Patel JM, Edwards DA. Vitamin E, membrane order, and antioxidant behavior in lung microsomes and reconstituted lipid vesicles. Toxicol Appl Pharmacol 1988; 96:101-14. [PMID: 3188015 DOI: 10.1016/0041-008x(88)90252-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Vitamin E, a dietary antioxidant, is known to inhibit peroxidation of membrane lipids and to protect the lungs of vitamin E-deficient animals and to a lesser extent vitamin E-sufficient animals from oxidant injury. Since the protective interaction between vitamin E and biological membranes may be related to alterations in composition and physical state of membrane lipids, we evaluated the effect of vitamin E deficiency on lung microsomal lipids and membrane fluidity. Both intact microsomes and lipid vesicles prepared from the total lipid extracts of these microsomes were used. The percentage incorporation of vitamin E and cholesterol, membrane fluidity, and lipid peroxidation were measured in microsomes as well as their lipid vesicles. Fluidity was measured by monitoring changes in fluorescence anisotropy for 1,6-diphenyl-1,3,5-hexatriene (DPH). Lipid peroxidation was measured by thiobarbituric acid reaction. There were significant increases in the phospholipid (p less than 0.01), the total cholesterol (p less than 0.05), and the total saturated fatty acids (p less than 0.05) and decreases in total polyunsaturated fatty acid (p less than 0.01) content of vitamin E-deficient microsomes. There were no detectable peroxidative products in freshly isolated microsomes from either vitamin E-sufficient or -deficient lungs. However, lipids from vitamin E-deficient microsomal membranes were more susceptible to free radical initiated peroxidation than lipids from vitamin E-sufficient microsomes. Fluidity in vitamin E-deficient microsomes or in their lipid vesicles was significantly (p less than 0.05) decreased compared to the respective controls. In vitamin E-deficient microsomes or their lipid vesicles, the incorporation rate of vitamin E was two- to three-fold greater than in vesicles of vitamin E-sufficient microsomes or their lipid vesicles. However, the percentage incorporation of cholesterol was identical in both vitamin E-deficient and vitamin E-sufficient microsomes or in their respective lipid vesicles. As a result of vitamin E incorporation, fluidity was significantly decreased (p less than 0.05) in vitamin E-sufficient vesicles and was further decreased (p less than 0.001) in vitamin E-deficient vesicles. Incorporation of cholesterol also decreased fluidity in both vitamin E-deficient and vitamin E-sufficient vesicles but to the same extent (p less than 0.001). Lipid peroxide formation was two-fold greater in the vitamin E-deficient than in the vitamin E-sufficient vesicles.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- J M Patel
- Department of Medicine, University of Florida College of Medicine, Gainesville 32610
| | | |
Collapse
|