1
|
Hsing CH, Hung YP, Lin MC, Chen CL, Wang YT, Tseng PC, Satria RD, Lin CF. Overdose with the anesthetic propofol causes hematological cytotoxicity and immune cell alteration in an experimental ex vivo whole blood culture model. Toxicol In Vitro 2024; 94:105729. [PMID: 37935310 DOI: 10.1016/j.tiv.2023.105729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/09/2023]
Abstract
Propofol, an anesthetic characterized by its benefits of rapid induction, maintenance, and recovery times, may cause cytotoxic effects, resulting in propofol infusion syndrome (PRIS). In addition to causing dyslipidemia in PRIS, our previous works showed that propofol overdose induced phagocyte apoptosis. This study, using an experimental ex vivo model of propofol treatment, investigated the possible cytopathology in the blood. A complete blood count examination showed the deregulating effects of propofol overdose 24 h postinoculation, characterized by mononuclear cell increase (lymphocyte and monocyte subsets) and granulocyte decrease. Advanced marker-based flow cytometric analysis confirmed these findings, although there was no change in CD14+ monocytes. Blood smear staining showed the deregulating effects of propofol overdose 24 h postinoculation, characterized by cytosolic vacuolization and cytotoxicity, particularly in neutrophils. Immune cell profiling of caspase-3 activation demonstrated the induction of cell apoptosis following propofol overdose treatment, particularly in granulocytes. Using multiparameter flow cytometry, this study further analyzed the changes in the profile of immune cells, showing a notable increase in CD4 + HLA-DR-CD62L- helper T cells. These studies explored an ex vivo model of cytopathogenic propofol overdose and its special immune-deregulating effects on peripheral blood cells.
Collapse
Affiliation(s)
- Chung-Hsi Hsing
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 710, Taiwan; Department of Medical Research, Chi-Mei Medical Center, Tainan 710, Taiwan; Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Ping Hung
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ming-Chung Lin
- Department of Anesthesiology, Chi-Mei Medical Center, Tainan 710, Taiwan; Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Chia-Ling Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yung-Ting Wang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Po-Chun Tseng
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan
| | - Rahmat Dani Satria
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Clinical Pathology and Laboratory Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; Clinical Laboratory Installation, Dr. Sardjito Central General Hospital, Yogyakarta 55281, Indonesia
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Core Laboratory of Immune Monitoring, Office of Research & Development, Taipei Medical University, Taipei 110, Taiwan.
| |
Collapse
|
2
|
Slingerland-Boot R, Kummerow M, Arbous SM, van Zanten ARH. Association between first-week propofol administration and long-term outcomes of critically ill mechanically ventilated patients: A retrospective cohort study. Clin Nutr 2024; 43:42-51. [PMID: 38000194 DOI: 10.1016/j.clnu.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND & AIM Propofol is commonly used in ICUs, but its long-term effects have not been thoroughly studied. In vitro studies suggest it may harm mitochondrial function, potentially affecting clinical outcomes. This study aimed to investigate the association between substantial propofol sedation and clinical outcomes in critically ill patients. METHODS We conducted a single-centre cohort study of critically ill, mechanically ventilated (≥7 days) adults to compare patients who received a substantial dose of propofol (cumulative >500 mg) during the first week of ICU admission with those who did not. The primary outcome was the association between substantial propofol administration and 6-month mortality, adjusted for relevant covariates. Subanalyses were performed for administration in the early (day 1-3) and late (day 4-7) acute phases of critical illness due to the metabolic changes in this period. Secondary outcomes included tracheostomy need and duration, length of ICU and hospital stay (LOS), discharge destinations, ICU, hospital, and 3-month mortality. RESULTS A total of 839 patients were enrolled, with 73.7 % receiving substantial propofol administration (substantial propofol dose group). Six-month all-cause mortality was 32.4 %. After adjusting for relevant variables, we found no statistically significant difference in 6-month mortality between both groups. There were also no significant differences in secondary outcomes. CONCLUSION Our study suggests that substantial propofol administration during the first week of ICU stay in the least sick critically ill, mechanically ventilated adult patients is safe, with no significant associations found with 6-month mortality, ICU or hospital LOS, differences in discharge destinations or need for tracheostomy.
Collapse
Affiliation(s)
- Rianne Slingerland-Boot
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, the Netherlands; Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, the Netherlands
| | - Maren Kummerow
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, the Netherlands
| | - Sesmu M Arbous
- Department of Intensive Care Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Arthur R H van Zanten
- Department of Intensive Care Medicine, Gelderse Vallei Hospital, Ede, the Netherlands; Wageningen University & Research, Division of Human Nutrition and Health, Wageningen, the Netherlands.
| |
Collapse
|
3
|
Holzer M, Poole JE, Lascarrou JB, Fujise K, Nichol G. A Commentary on the Effect of Targeted Temperature Management in Patients Resuscitated from Cardiac Arrest. Ther Hypothermia Temp Manag 2023; 13:102-111. [PMID: 36378270 PMCID: PMC10625468 DOI: 10.1089/ther.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The members of the International Liaison Committee on Resuscitation (ILCOR) Advanced Life Support Task Force have written a comprehensive summary of trials of the effectiveness of induced hypothermia (IH) or targeted temperature management (TTM) in comatose patients after cardiac arrest (CA). However, in-depth analysis of these studies is incomplete, especially since there was no significant difference in primary outcome between hypothermia versus normothermia in the recently reported TTM2 trial. We critically appraise trials of IH/TTM versus normothermia to characterize reasons for the lack of treatment effect, based on a previously published framework for what to consider when the primary outcome fails. We found a strong biologic rationale and external clinical evidence that IH treatment is beneficial. Recent TTM trials mainly included unselected patients with a high rate of bystander cardiopulmonary resuscitation. The treatment was not applied as intended, which led to a large delay in achievement of target temperature. While receiving intensive care, sedative drugs were likely used that might have led to increased neurologic damage as were antiplatelet drugs that could be associated with increased acute stent thrombosis in hypothermic patients. It is reasonable to still use or evaluate IH treatment in patients who are comatose after CA as there are multiple plausible reasons why IH compared to normothermia did not significantly improve neurologic outcome in the TTM trials.
Collapse
Affiliation(s)
- Michael Holzer
- Department of Emergency Medicine, Medical University of Vienna, Vienna, Austria
| | - Jeanne E. Poole
- Division of Cardiology, University of Washington, Seattle, Washington, USA
| | | | - Ken Fujise
- Harborview Medical Center, Heart Institute, University of Washington, Seattle, Washington, USA
| | - Graham Nichol
- Departments of Medicine and Emergency Medicine, University of Washington-Harborview Center for Prehospital Emergency Care, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Therapeutic Hypothermia Following Cardiac Arrest After the TTM2 trial - More Questions Raised Than Answered. Curr Probl Cardiol 2023; 48:101046. [PMID: 34780867 DOI: 10.1016/j.cpcardiol.2021.101046] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 02/06/2023]
Abstract
For almost 20 years, therapeutic hypothermia has been a cornerstone of modern post-cardiac arrest care lowering mortality, and improvin neurologic outcome compared to conventional therapy. This was challenged by the first TTM-trial in 2013, which did not show a benefit for hypothermia at 33°C compared to controlled normothermia at 36°C. Now, the TTM2 trial showed no benefit of hypothermia compared to fever prevention alone. While TTM1 and TTM2 suggest that hypothermia might not be helpful, a deep dive into the trials reveals that this conclusion does not hold true. Here, we focus on patient selection, suboptimal application of hypothermia, interaction of standard sedation with hypothermia, high incidence of post-arrest fever, and withdrawal of life support based on per-protocol neurologic prognostication in the TTM2-trial. Of particular interest, contemporary trials and registries using intravascular cooling in TTM-like patients repeatedly reported much lower mortality rates than those described in both TTM1 and TTM2.
Collapse
|
5
|
Krajčová A, Skagen C, Džupa V, Urban T, Rustan AC, Jiroutková K, Bakalář B, Thoresen GH, Duška F. Effect of noradrenaline on propofol-induced mitochondrial dysfunction in human skeletal muscle cells. Intensive Care Med Exp 2022; 10:47. [DOI: 10.1186/s40635-022-00474-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Abstract
Background
Mitochondrial dysfunction is a hallmark of both critical illness and propofol infusion syndrome and its severity seems to be proportional to the doses of noradrenaline, which patients are receiving. We comprehensively studied the effects of noradrenaline on cellular bioenergetics and mitochondrial biology in human skeletal muscle cells with and without propofol-induced mitochondrial dysfunction.
Methods
Human skeletal muscle cells were isolated from vastus lateralis biopsies from patients undergoing elective hip replacement surgery (n = 14) or healthy volunteers (n = 4). After long-term (96 h) exposure to propofol (10 µg/mL), noradrenaline (100 µM), or both, energy metabolism was assessed by extracellular flux analysis and substrate oxidation assays using [14C] palmitic and [14C(U)] lactic acid. Mitochondrial membrane potential, morphology and reactive oxygen species production were analysed by confocal laser scanning microscopy. Mitochondrial mass was assessed both spectrophotometrically and by confocal laser scanning microscopy.
Results
Propofol moderately reduced mitochondrial mass and induced bioenergetic dysfunction, such as a reduction of maximum electron transfer chain capacity, ATP synthesis and profound inhibition of exogenous fatty acid oxidation. Noradrenaline exposure increased mitochondrial network size and turnover in both propofol treated and untreated cells as apparent from increased co-localization with lysosomes. After adjustment to mitochondrial mass, noradrenaline did not affect mitochondrial functional parameters in naïve cells, but it significantly reduced the degree of mitochondrial dysfunction induced by propofol co-exposure. The fatty acid oxidation capacity was restored almost completely by noradrenaline co-exposure, most likely due to restoration of the capacity to transfer long-chain fatty acid to mitochondria. Both propofol and noradrenaline reduced mitochondrial membrane potential and increased reactive oxygen species production, but their effects were not additive.
Conclusions
Noradrenaline prevents rather than aggravates propofol-induced impairment of mitochondrial functions in human skeletal muscle cells. Its effects on bioenergetic dysfunctions of other origins, such as sepsis, remain to be demonstrated.
Collapse
|
6
|
Muacevic A, Adler JR, Kadakia N, Khadka N, Gousy N. Propofol Infusion Syndrome: A Rare Complication From a Common Medication. Cureus 2022; 14:e31940. [PMID: 36582574 PMCID: PMC9794362 DOI: 10.7759/cureus.31940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2022] [Indexed: 11/28/2022] Open
Abstract
Propofol infusion syndrome (PRIS) is a multifactorial condition that, upon propofol administration, can interrupt critical cellular processes. This can lead to cellular damage that translates as multi-organ system failure that has the potential to be life-threatening. Due to the rarity of this condition, we report a case of PRIS in a 46-year-old male to help bring awareness to this severe condition caused by a relatively common medication. This patient was brought in due to unresponsiveness secondary to multi-substance abuse and respiratory disease and initially had elevated creatinine kinase levels that eventually subsided with appropriate management. However, after prolonged infusion of propofol, his creatinine kinase levels began to drastically rise, alluding to the development of propofol infusion syndrome. Once the offending agent was discontinued, the patient's creatinine kinase levels once again began to normalize.
Collapse
|
7
|
Singh A, Anjankar AP. Propofol-Related Infusion Syndrome: A Clinical Review. Cureus 2022; 14:e30383. [PMID: 36407194 PMCID: PMC9671386 DOI: 10.7759/cureus.30383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023] Open
Abstract
Propofol-related infusion syndrome (PRIS) is a lethal condition characterized by multiple organ system failures. It can occur due to prolonged administration of propofol (an anesthetic) in mechanically intubated patients. The main presenting features of this condition include cardiovascular dysfunction with particular emphasis on impairment of cardiovascular contractility, metabolic acidosis, lactic acidosis, rhabdomyolysis, hyperkalaemia, lipidaemia, hepatomegaly, acute renal failure, and eventually mortality in most cases. The significant risk factors that predispose one to PRIS are: critical illnesses, increased serum catecholamines, steroid therapy, obesity, young age (significantly below three years), depleted carbohydrate stores in the body, increased serum lipids, and most importantly, heavy or extended dosage of propofol. The primary pathophysiology behind PRIS is the disruption of the mitochondrial respiratory chain that causes inhibition of adenosine triphosphate (ATP) synthesis and cellular hypoxia. Further, excess lipolysis of adipose tissue occurs, especially in critically ill patients where the energy source is lipid breakdown instead of carbohydrates. This process generates excess free fatty acids (FFAs) that cannot undergo adequate beta-oxidation. These FFAs contribute to the clinical pathology of PRIS. It requires prompt management as it is a fatal condition. The clinicians must observe the patient's electrocardiogram (ECG), serum creatine kinase, lipase, amylase, lactate, liver enzymes, and myoglobin levels in urine, under propofol sedation. Doctors should immediately stop propofol infusion upon noticing any abnormality in these parameters. The other essentials of management of various manifestations of PRIS will be discussed in this article, along with a detailed explanation of the condition, its risk factors, diagnosis, pathophysiology, and presenting features. This article aims to make clinicians more aware of the occurrence of this syndrome so that better ways to manage and treat this condition can be formulated in the future.
Collapse
Affiliation(s)
- Aayushi Singh
- Anesthesiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| | - Ashish P Anjankar
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Medical Sciences, Wardha, IND
| |
Collapse
|
8
|
Karasawa S, Nakada TA, Mori N, Daimon M, Miyauchi H, Kanai T, Takano H, Kobayashi Y, Oda S. Case Report: Sustained mitochondrial damage in cardiomyocytes in patients with severe propofol infusion syndrome. F1000Res 2022; 9:712. [PMID: 35280454 PMCID: PMC8905003 DOI: 10.12688/f1000research.24567.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
Introduction: Propofol infusion syndrome (PRIS) is rare but a potentially lethal adverse event. The pathophysiologic mechanism is still unknown. Patient concerns: A 22-year-old man was admitted for the treatment of Guillain-Barré syndrome. On day six, he required mechanical ventilation due to progressive muscle weakness; propofol (3.5 mg/kg/hour) was administered for five days for sedation. On day 13, he had hypotension with abnormal electrocardiogram findings, acute kidney injury, hyperkalemia and severe rhabdomyolysis. Diagnosis and interventions: The patient was transferred to our intensive care unit (ICU) on suspicion of PRIS. Administration of noradrenaline and renal replacement therapy and fasciotomy for compartment syndrome of lower legs due to PRIS-rhabdomyolysis were performed. Outcomes: The patient gradually recovered and was discharged from the ICU on day 30. On day 37, he had repeated sinus bradycardia with pericardial effusion in echocardiography. Cardiac
18F-FDG PET on day 67 demonstrated heterogeneous
18F-FDG uptake in the left ventricle. Electron microscopic investigation of endomyocardial biopsy on day 75 revealed mitochondrial myelinization of the cristae, which indicated mitochondrial damage of cardiomyocytes. He was discharged without cardiac abnormality on day 192. Conclusions: Mitochondrial damage in both morphological and functional aspects was observed in the present case. Sustained mitochondrial damage may be a therapeutic target beyond the initial therapy of discontinuing propofol administration.
Collapse
Affiliation(s)
- Satoshi Karasawa
- Department of Emergency and Critical Care Medicine,, Graduate School of Medicine,Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Taka-aki Nakada
- Department of Emergency and Critical Care Medicine,, Graduate School of Medicine,Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Naoto Mori
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Michiko Daimon
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Hideyuki Miyauchi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Tetsuya Kanai
- Department of Neurology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Hiroyuki Takano
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Yoshio Kobayashi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| | - Shigeto Oda
- Department of Emergency and Critical Care Medicine,, Graduate School of Medicine,Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan
| |
Collapse
|
9
|
McCann MR, George De la Rosa MV, Rosania GR, Stringer KA. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites 2021; 11:51. [PMID: 33466750 PMCID: PMC7829830 DOI: 10.3390/metabo11010051] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and implementation are at the forefront of the precision medicine movement. Modern advances in the field of metabolomics afford the opportunity to readily identify new metabolite biomarkers across a wide array of disciplines. Many of the metabolites are derived from or directly reflective of mitochondrial metabolism. L-carnitine and acylcarnitines are established mitochondrial biomarkers used to screen neonates for a series of genetic disorders affecting fatty acid oxidation, known as the inborn errors of metabolism. However, L-carnitine and acylcarnitines are not routinely measured beyond this screening, despite the growing evidence that shows their clinical utility outside of these disorders. Measurements of the carnitine pool have been used to identify the disease and prognosticate mortality among disorders such as diabetes, sepsis, cancer, and heart failure, as well as identify subjects experiencing adverse drug reactions from various medications like valproic acid, clofazimine, zidovudine, cisplatin, propofol, and cyclosporine. The aim of this review is to collect and interpret the literature evidence supporting the clinical biomarker application of L-carnitine and acylcarnitines. Further study of these metabolites could ultimately provide mechanistic insights that guide therapeutic decisions and elucidate new pharmacologic targets.
Collapse
Affiliation(s)
- Marc R. McCann
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Mery Vet George De la Rosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Gus R. Rosania
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, 428 Church Street, Ann Arbor, MI 48109, USA; (M.V.G.); (G.R.R.)
| | - Kathleen A. Stringer
- The NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA;
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Center for Integrative Research in Critical Care, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
De Vries MC, Brown DA, Allen ME, Bindoff L, Gorman GS, Karaa A, Keshavan N, Lamperti C, McFarland R, Ng YS, O'Callaghan M, Pitceathly RDS, Rahman S, Russel FGM, Varhaug KN, Schirris TJJ, Mancuso M. Safety of drug use in patients with a primary mitochondrial disease: An international Delphi-based consensus. J Inherit Metab Dis 2020; 43:800-818. [PMID: 32030781 PMCID: PMC7383489 DOI: 10.1002/jimd.12196] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/29/2022]
Abstract
Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.
Collapse
Affiliation(s)
- Maaike C. De Vries
- Radboudumc Amalia Children's HospitalRadboud Center for Mitochondrial MedicineNijmegenThe Netherlands
| | - David A. Brown
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Mitchell E. Allen
- Department of Human Nutrition, Foods, and Exercise and the Virginia Tech Center for Drug DiscoveryVirginia TechBlacksburgVirginia
| | - Laurence Bindoff
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Gráinne S. Gorman
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Amel Karaa
- Genetics Unit, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusetts
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Costanza Lamperti
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- The Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Mar O'Callaghan
- Department of Neurology, Metabolic UnitHospital Sant Joan de DéuBarcelonaSpain
- CIBERERInstituto de Salud Carlos IIIBarcelonaSpain
| | - Robert D. S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital NHS Foundation TrustLondonUK
| | - Frans G. M. Russel
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Kristin N. Varhaug
- Department of Clinical MedicineUniversity of BergenBergenNorway
- Department of NeurologyHaukeland University HospitalBergenNorway
| | - Tom J. J. Schirris
- Department of Pharmacology and ToxicologyRadboud Institute for Molecular Life Sciences, Radboud Center for Mitochondrial Medicine, RadboudumcNijmegenThe Netherlands
| | - Michelangelo Mancuso
- Department of Clinical and Experimental Medicine, Neurological InstituteUniversity of PisaPisaItaly
| |
Collapse
|
11
|
Djuric M, Nikolic Turnic T, Kostic S, Stankovic S, Radonjic K, Djuric D, Zivkovic V, Jakovljevic V, Stevanovic P. The effects of gasotransmitters inhibition on biochemical and haematological parameters and oxidative stress in propofol-anaesthetized Wistar male rats. Can J Physiol Pharmacol 2019; 97:1073-1079. [DOI: 10.1139/cjpp-2019-0029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the effects of propofol through evaluating its interaction with nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). Wistar male rats were divided in 4 groups: (1) bolus injection of propofol (1% 10 mg/mL, 100 mg/kg bw, i.p.); (2) Nω-nitro-l-arginine methyl ester (L-NAME; NO synthase inhibitor, 60 mg/kg bw, i.p.) + bolus injection of propofol (1% 10 mg/mL, 100 mg/kg bw, i.p.); (3) DL-propargylglycine (DL-PAG; H2S synthase inhibitor, 50 mg/kg bw, i.p.) + bolus injection of propofol (1% 10 mg/mL, 100 mg/kg bw, i.p.); (4) zinc protoporphyrin IX (ZnPPIX; CO synthase inhibitor, 50 μmol/kg bw, i.p.) + bolus injection of propofol (1% 10 mg/mL, 100 mg/kg bw, i.p.). Increased levels of albumins, low-density lipoproteins, alkaline phosphatase, amylase, high-sensitivity Troponin T, and fibrinogen were found in L-NAME + propofol group. Platelet crit, platelet count, total cholesterol, and high-density lipoproteins were elevated in ZnPPIX + propofol group. Hydrogen peroxide was increased in all groups treated with gasotransmitters inhibitors. Reduced glutathione was reduced in all groups, superoxide dismutase activity only in L-NAME + propofol. The effect of propofol on various biochemical, haematological, and oxidative stress markers may be at least in part mediated through interaction with 3 estimated gasotransmitters.
Collapse
Affiliation(s)
- M. Djuric
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Clinical Hospital Center “Dr. Dragisa Misovic - Dedinje”, Belgrade, Serbia
| | - T. Nikolic Turnic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - S. Kostic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - S. Stankovic
- Centre of Medical Biochemistry, Clinical Centre of Serbia, Belgrade, Serbia
| | - K. Radonjic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - D. Djuric
- Institute of Medical Physiology “Richard Burian”, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - V. Zivkovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - V. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
- Department of Human Pathology, 1st Moscow State Medical, University IM Sechenov, Moscow, Russian Federation
| | - P. Stevanovic
- Department of Anesthesiology, Reanimatology and Intensive Care Medicine, University Clinical Hospital Center “Dr. Dragisa Misovic - Dedinje”, Belgrade, Serbia
| |
Collapse
|
12
|
Urban T, Waldauf P, Krajčová A, Jiroutková K, Halačová M, Džupa V, Janoušek L, Pokorná E, Duška F. Kinetic characteristics of propofol-induced inhibition of electron-transfer chain and fatty acid oxidation in human and rodent skeletal and cardiac muscles. PLoS One 2019; 14:e0217254. [PMID: 31584947 PMCID: PMC6777831 DOI: 10.1371/journal.pone.0217254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 09/20/2019] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Propofol causes a profound inhibition of fatty acid oxidation and reduces spare electron transfer chain capacity in a range of human and rodent cells and tissues-a feature that might be related to the pathogenesis of Propofol Infusion Syndrome. We aimed to explore the mechanism of propofol-induced alteration of bioenergetic pathways by describing its kinetic characteristics. METHODS We obtained samples of skeletal and cardiac muscle from Wistar rat (n = 3) and human subjects: vastus lateralis from hip surgery patients (n = 11) and myocardium from brain-dead organ donors (n = 10). We assessed mitochondrial functional indices using standard SUIT protocol and high resolution respirometry in fresh tissue homogenates with or without short-term exposure to a range of propofol concentration (2.5-100 μg/ml). After finding concentrations of propofol causing partial inhibition of a particular pathways, we used that concentration to construct kinetic curves by plotting oxygen flux against substrate concentration during its stepwise titration in the presence or absence of propofol. By spectrophotometry we also measured the influence of the same propofol concentrations on the activity of isolated respiratory complexes. RESULTS We found that human muscle and cardiac tissues are more sensitive to propofol-mediated inhibition of bioenergetic pathways than rat's tissue. In human homogenates, palmitoyl carnitine-driven respiration was inhibited at much lower concentrations of propofol than that required for a reduction of electron transfer chain capacity, suggesting FAO inhibition mechanism different from downstream limitation or carnitine-palmitoyl transferase-1 inhibition. Inhibition of Complex I was characterised by more marked reduction of Vmax, in keeping with non-competitive nature of the inhibition and the pattern was similar to the inhibition of Complex II or electron transfer chain capacity. There was neither inhibition of Complex IV nor increased leak through inner mitochondrial membrane with up to 100 μg/ml of propofol. If measured in isolation by spectrophotometry, propofol 10 μg/ml did not affect the activity of any respiratory complexes. CONCLUSION In human skeletal and heart muscle homogenates, propofol in concentrations that are achieved in propofol-anaesthetized patients, causes a direct inhibition of fatty acid oxidation, in addition to inhibiting flux of electrons through inner mitochondrial membrane. The inhibition is more marked in human as compared to rodent tissues.
Collapse
Affiliation(s)
- Tomáš Urban
- OXYLAB – Mitochondrial Physiology Lab: Charles University, 3 Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Petr Waldauf
- OXYLAB – Mitochondrial Physiology Lab: Charles University, 3 Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Adéla Krajčová
- OXYLAB – Mitochondrial Physiology Lab: Charles University, 3 Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Kateřina Jiroutková
- OXYLAB – Mitochondrial Physiology Lab: Charles University, 3 Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Milada Halačová
- OXYLAB – Mitochondrial Physiology Lab: Charles University, 3 Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Valér Džupa
- Department of Orthopaedics and Traumatology, Charles University, 3 Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| | - Libor Janoušek
- Transplantation Surgery Department, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Eva Pokorná
- Department of Organ Recovery and Transplantation Databases, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - František Duška
- OXYLAB – Mitochondrial Physiology Lab: Charles University, 3 Faculty of Medicine and FNKV University Hospital, Prague, Czech Republic
| |
Collapse
|
13
|
Abstract
OBJECTIVES Propofol may adversely affect the function of mitochondria and the clinical features of propofol infusion syndrome suggest that this may be linked to propofol-related bioenergetic failure. We aimed to assess the effect of therapeutic propofol concentrations on energy metabolism in human skeletal muscle cells. DESIGN In vitro study on human skeletal muscle cells. SETTINGS University research laboratories. SUBJECTS Patients undergoing hip surgery and healthy volunteers. INTERVENTIONS Vastus lateralis biopsies were processed to obtain cultured myotubes, which were exposed to a range of 1-10 μg/mL propofol for 96 hours. MEASUREMENTS AND MAIN RESULTS Extracellular flux analysis was used to measure global mitochondrial functional indices, glycolysis, fatty acid oxidation, and the functional capacities of individual complexes of electron transfer chain. In addition, we used [1-C]palmitate to measure fatty acid oxidation and spectrophotometry to assess activities of individual electron transfer chain complexes II-IV. Although cell survival and basal oxygen consumption rate were only affected by 10 μg/mL of propofol, concentrations as low as 1 μg/mL reduced spare electron transfer chain capacity. Uncoupling effects of propofol were mild, and not dependent on concentration. There was no inhibition of any respiratory complexes with low dose propofol, but we found a profound inhibition of fatty acid oxidation. Addition of extra fatty acids into the media counteracted the propofol effects on electron transfer chain, suggesting inhibition of fatty acid oxidation as the causative mechanism of reduced spare electron transfer chain capacity. Whether these metabolic in vitro changes are observable in other organs and at the whole-body level remains to be investigated. CONCLUSIONS Concentrations of propofol seen in plasma of sedated patients in ICU cause a significant inhibition of fatty acid oxidation in human skeletal muscle cells and reduce spare capacity of electron transfer chain in mitochondria.
Collapse
|
14
|
Herminghaus A, Buitenhuis AJ, Schulz J, Vollmer C, Scheeren TWL, Bauer I, Picker O, Truse R. Propofol improves colonic but impairs hepatic mitochondrial function in tissue homogenates from healthy rats. Eur J Pharmacol 2019; 853:364-370. [PMID: 31009637 DOI: 10.1016/j.ejphar.2019.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/24/2022]
Abstract
Evidence suggests that propofol infusion syndrome (PRIS) is caused by an altered mitochondrial function. The aim of this study was to examine the effects of propofol and the vehicle MCT on mitochondrial function in hepatic and colonic tissue. Mitochondrial oxygen consumption was determined in colon and liver homogenates after incubation with buffer (control), propofol (50, 75, 100, 500 μM) or the carrier substances DMSO and MCT. State 2 (substrate-dependent) and state 3 (ADP-dependent respiration) were assessed. RCI (respiratory control index) - an indicator for coupling between electron transport chain system (ETS) and oxidative phosphorylation (OXPHOS) and ADP/O ratio - a parameter for efficacy of OXPHOS were calculated. Data were presented as % of control. In hepatic mitochondria, 500 μM propofol reduced RCI formulation-independently (propofol/MCT 500 μM: complex I: 66.3 ± 8.7%*, complex II: 75.5 ± 9.2%*; propofol/DMSO 500 μM: complex I: 29.1 ± 8.8%*, complex II: 49.3 ± 15.5%*). 75 μM Propofol/MCT reduced ADP/O for complex I (73.5 ± 27.3%*). DMSO did not affect hepatic mitochondria whereas MCT reduced RCI for complex II (87.2 ± 9.8%*) and ADP/O for complex I (93.7 ± 31.7%*). In colon 50 μM Propofol/MCT increased RCI for complex I and II (complex I: 127.2 ± 10.7%*, complex II: 136.8 ± 33.9%*) and 100 μM Propofol/MCT for complex I (131.4 ± 18.7%*). 500 μM Propofol/DMSO increased ADP/O for complex I (139.4 ± 41.4%*). DMSO did not affect RCI but increased ADP/O for both complexes (complex I: 119.9 ± 25.8%*, complex II: 110.2 ± 14.2%*). MCT increased RCI for complex I (123.0 ± 31.6%*). In hepatic mitochondria propofol uncoupled ETS from OXPHOS formulation-independently and propofol/MCT reduced efficacy of OXPHOS. In colonic mitochondria, propofol/MCT strengthened the coupling and propofol/DMSO enhanced the efficacy of OXPHOS.
Collapse
Affiliation(s)
- Anna Herminghaus
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - A Johannes Buitenhuis
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Jan Schulz
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Christian Vollmer
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Thomas W L Scheeren
- Department of Anaesthesiology, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, the Netherlands.
| | - Inge Bauer
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Olaf Picker
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| | - Richard Truse
- Department of Anaesthesiology, University of Duesseldorf, Moorenstrasse 5, 40225, Duesseldorf, Germany.
| |
Collapse
|
15
|
Sumi C, Okamoto A, Tanaka H, Nishi K, Kusunoki M, Shoji T, Uba T, Matsuo Y, Adachi T, Hayashi JI, Takenaga K, Hirota K. Propofol induces a metabolic switch to glycolysis and cell death in a mitochondrial electron transport chain-dependent manner. PLoS One 2018; 13:e0192796. [PMID: 29447230 PMCID: PMC5813975 DOI: 10.1371/journal.pone.0192796] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/30/2018] [Indexed: 12/14/2022] Open
Abstract
The intravenous anesthetic propofol (2,6-diisopropylphenol) has been used for the induction and maintenance of anesthesia and sedation in critical patient care. However, the rare but severe complication propofol infusion syndrome (PRIS) can occur, especially in patients receiving high doses of propofol for prolonged periods. In vivo and in vitro evidence suggests that the propofol toxicity is related to the impaired mitochondrial function. However, underlying molecular mechanisms remain unknown. Therefore, we investigated effects of propofol on cell metabolism and death using a series of established cell lines of various origins, including neurons, myocytes, and trans-mitochondrial cybrids, with defined mitochondrial DNA deficits. We demonstrated that supraclinical concentrations of propofol in not less than 50 μM disturbed the mitochondrial function and induced a metabolic switch, from oxidative phosphorylation to glycolysis, by targeting mitochondrial complexes I, II and III. This disturbance in mitochondrial electron transport caused the generation of reactive oxygen species, resulting in apoptosis. We also found that a predisposition to mitochondrial dysfunction, caused by a genetic mutation or pharmacological suppression of the electron transport chain by biguanides such as metformin and phenformin, promoted propofol-induced caspase activation and cell death induced by clinical relevant concentrations of propofol in not more than 25 μM. With further experiments with appropriate in vivo model, it is possible that the processes to constitute the molecular basis of PRIS are identified.
Collapse
Affiliation(s)
- Chisato Sumi
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Akihisa Okamoto
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Hiromasa Tanaka
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Kenichiro Nishi
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Munenori Kusunoki
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Tomohiro Shoji
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Takeo Uba
- Department of Anesthesiology, Kansai Medical University, Hirakata, Japan
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Yoshiyuki Matsuo
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
| | - Takehiko Adachi
- Department of Anesthesiology, Tazuke Kofukai Medical Institute Kitano Hospital, Osaka, Japan
| | | | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, Izumo, Japan
| | - Kiichi Hirota
- Department of Human Stress Response Science, Institute of Biomedical Science, Kansai Medical University, Hirakata, Japan
- * E-mail:
| |
Collapse
|
16
|
Abstract
INTRODUCTION Propofol infusion syndrome (PRIS) is a rare but potentially fatal complication of propofol infusion. It is clinically characterized by metabolic acidosis, refractory bradycardia, rhabdomyolysis, renal failure, hyperlipidemia, and hepatomegaly. Brain lesion was only reported once in a pediatric patient. We present the 1st adult case with colon polyp and cancer who was diagnosed with PRIS. Her brain magnetic resonance imaging (MRI) and computed tomography (CT) scans reveal prominent bilateral brain lesions, matching with the proposed pathophysiologic mechanism of the syndrome. The patient received prompt acidosis correction and cardiorespiratory support. At last, she died from refractory circulatory failure. CONCLUSION It may be necessary to order a prompt neuroimaging examination in patients suspected with PRIS to judge whether brain lesions exist or not.
Collapse
Affiliation(s)
| | - Zhangning Zhao
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaomin Liu
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, Shandong, China
| | - Gaoting Ma
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, Shandong, China
| | - Mei-Jia Zhu
- Department of Neurology, Affiliated Qianfoshan Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
17
|
Finsterer J, Frank M. Propofol Is Mitochondrion-Toxic and May Unmask a Mitochondrial Disorder. J Child Neurol 2016; 31:1489-1494. [PMID: 27488955 DOI: 10.1177/0883073816661458] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
Abstract
There are indications that preexisting mitochondrial disorders or beta-oxidation defects predispose for propofol infusion syndrome. This review aimed at investigating if propofol infusion syndrome occurs exclusively in patients with mitochondrial disorder and if propofol can unmask a mitochondrial disorder. Propofol infusion syndrome has been reported in genetically confirmed mitochondrial disorder patients. In addition, muscle biopsy of patients with propofol infusion syndrome revealed complex IV or complex II deficiency. In animal studies propofol disrupted the electron flow along the respiratory chain and decreased complex I, complex II, and complex III of the respiratory chain. In addition, propofol disrupted the permeability transition pore and reduced the mitochondrial membrane potential. In conclusion, propofol is mitochondrion-toxic and mitochondrial disorder patients should not receive propofol in high dosages over a prolonged period of time. Short-term application of propofol should be safe even in mitochondrial disorder patients. Not only does propofol infusion syndrome occur in mitochondrial disorder patients, but mitochondrial disorder patients are likely at higher risk to develop propofol infusion syndrome. Patients who develop propofol infusion syndrome should be screened for mitochondrial disorder. Propofol infusion syndrome is preventable if risk factors are thoroughly assessed, and if long-term propofol is avoided in patients at risk for propofol infusion syndrome.
Collapse
Affiliation(s)
| | - Marlies Frank
- First Medical Department, Krankenanstalt Rudolfstiftung, Vienna, Austria
| |
Collapse
|
18
|
Campos S, Félix L, Venâncio C, de Lurdes Pinto M, Peixoto F, de Pinho PG, Antunes L. In vivo study of hepatic oxidative stress and mitochondrial function in rabbits with severe hypotension after propofol prolonged infusion. SPRINGERPLUS 2016; 5:1349. [PMID: 27588242 PMCID: PMC4987748 DOI: 10.1186/s40064-016-2970-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/29/2016] [Indexed: 11/12/2022]
Abstract
In humans, prolonged sedations with propofol or using high doses have been associated with propofol infusion syndrome. The main objective of this study was to evaluate the effects of prolonged high-dose administration of a specific propofol emulsion (Propofol Lipuro) and an improved lipid formulation (SMOFlipid) in liver mitochondrial bioenergetics and oxidative stress of rabbits, comparatively to a saline control. Twenty-one male New Zealand white rabbits were randomly allocated in three groups that were continuously treated for 20 h. Each group of seven animals received separately: NaCl 0.9 % (saline), SMOFlipid (lipid-based emulsion without propofol) and Lipuro 2 % (propofol lipid emulsion). An intravenous propofol bolus of 20 mg kg−1 was given to the propofol Lipuro group to allow blind orotracheal intubation and mechanical ventilation. Anesthesia was maintained using infusion rates of: 20, 30, 40, 50 and 60 mg kg−1 h−1, according to the clinical scale of anesthetic depth and the index of consciousness values. The SMOFlipid and saline groups received the same infusion rate as the propofol Lipuro group, which were infused during 20 consecutive hours. At the end, the animals were euthanized, livers collected and mitochondria isolated by standard differential centrifugation. Mitochondrial respiration, membrane potential, swelling and oxidative stress were evaluated. Data were processed using one-way ANOVA (p < 0.05). The animals revealed a significant decrease in cardiovascular parameters showing bradycardia and severe hypotension. No statistical differences were observed when using pyruvate as substrate, however, when using succinate as respiratory substrate, significant decrease in ADP-stimulated respiration rate was observed for SMOFlipid group (p = 0.002). Lipid peroxides (p < 0.01) and protein carbonyls (p = 0.01) showed a statistically significant difference between propofol Lipuro and the SMOFlipid groups. These results suggest that lipid-based emulsions can be involved in the regulation of different pathways that ultimately lead to a decrease of state 3 mitochondrial respiration rate. The infusion of propofol Lipuro during prolonged periods, in addition to marked hypotension and hypoperfusion, also showed to have higher anti-oxidant activity and lower impairment of the mitochondrial function comparatively to the improved lipid formulation, SMOFlipid, using the rabbit as animal model.
Collapse
Affiliation(s)
- Sónia Campos
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) and Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Apartado 1013, 5001-801 Vila Real, Portugal ; Institute for Research and Innovation in Health (i3S), Laboratory Animal Science, Institute of Molecular and Cell Biology (IBMC), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ; UCIBIO@REQUIMTE-Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luís Félix
- Institute for Research and Innovation in Health (i3S), Laboratory Animal Science, Institute of Molecular and Cell Biology (IBMC), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal ; Life Sciences and Environment School (ECVA), Department of Chemistry, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Carlos Venâncio
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) and Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Apartado 1013, 5001-801 Vila Real, Portugal
| | - Maria de Lurdes Pinto
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) and Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Apartado 1013, 5001-801 Vila Real, Portugal
| | - Francisco Peixoto
- Life Sciences and Environment School (ECVA), Department of Chemistry, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Paula Guedes de Pinho
- UCIBIO@REQUIMTE-Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luís Antunes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB) and Veterinary Sciences Department, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, Apartado 1013, 5001-801 Vila Real, Portugal ; Institute for Research and Innovation in Health (i3S), Laboratory Animal Science, Institute of Molecular and Cell Biology (IBMC), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
19
|
Madathil RJ, Hira RS, Stoeckl M, Sterz F, Elrod JB, Nichol G. Ischemia reperfusion injury as a modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation. Resuscitation 2016; 105:85-91. [PMID: 27131843 DOI: 10.1016/j.resuscitation.2016.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
AIMS We sought to review cellular changes that occur with reperfusion to try to understand whether ischemia-reperfusion injury (RI) is a potentially modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation. DATA SOURCES Articles written in English and published in PubMed. RESULTS Remote ischemic conditioning (RIC) involves brief episodes of non-lethal ischemia and reperfusion applied to an organ or limb distal to the heart and brain. Induction of hypothermia involves cooling an ischemic organ or body. Both have pluripotent effects that reduce the potential harm associated with RI in the heart and brain by reduced opening of the mitochondrial permeability transition pore. Recent trials of RIC and induced hypothermia did not demonstrate these treatments to be effective. Assessment of the effect of these interventions in humans to date may have been modified by use of concurrent medications including propofol. CONCLUSIONS Ongoing research is necessary to assess whether reduction of RI improves patient outcomes.
Collapse
Affiliation(s)
| | - Ravi S Hira
- University of Washington, Seattle, WA, United States
| | | | - Fritz Sterz
- Medical University of Vienna, Vienna, Austria
| | | | - Graham Nichol
- University of Washington, Seattle, WA, United States.
| |
Collapse
|
20
|
Krajčová A, Waldauf P, Anděl M, Duška F. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care 2015; 19:398. [PMID: 26558513 PMCID: PMC4642662 DOI: 10.1186/s13054-015-1112-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/22/2015] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION Propofol infusion syndrome (PRIS) is a rare, but potentially lethal adverse effect of a commonly used drug. We aimed to review and correlate experimental and clinical data about this syndrome. METHODS We searched for all case reports published between 1990 and 2014 and for all experimental studies on PRIS pathophysiology. We analysed the relationship between signs of PRIS and the rate and duration of propofol infusion causing PRIS. By multivariate logistic regression we looked at the risk factors for mortality. RESULTS Knowledge about PRIS keeps evolving. Compared to earlier case reports in the literature, recently published cases describe older patients developing PRIS at lower doses of propofol, in whom arrhythmia, hypertriglyceridaemia and fever are less frequently seen, with survival more likely. We found that propofol infusion rate and duration, the presence of traumatic brain injury and fever are factors independently associated with mortality in reported cases of PRIS (area under receiver operator curve = 0.85). Similar patterns of exposure to propofol (in terms of time and concentration) are reported in clinical cases and experimental models of PRIS. Cardiac failure and metabolic acidosis occur early in a dose-dependent manner, while arrhythmia, other electrocardiographic changes and rhabdomyolysis appear more frequently after prolonged propofol infusions, irrespective of dose. CONCLUSION PRIS can develop with propofol infusion <4 mg/kg per hour and its diagnosis may be challenging as some of its typical features (hypertriglyceridaemia, fever, hepatomegaly, heart failure) are often (>95 %) missing and others (arrhythmia, electrocardiographic changes) occur late.
Collapse
Affiliation(s)
- Adéla Krajčová
- Laboratory for Metabolism and Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
- Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | - Petr Waldauf
- Department of Anaesthesiology and Intensive Care, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | - Michal Anděl
- Laboratory for Metabolism and Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
- Centre for Research on Diabetes, Metabolism and Nutrition, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
| | - František Duška
- Laboratory for Metabolism and Bioenergetics, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
- Department of Anaesthesiology and Intensive Care, Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic.
- Adult Intensive Care Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK.
| |
Collapse
|
21
|
Lin MC, Lin CF, Li CF, Sun DP, Wang LY, Hsing CH. Anesthetic propofol overdose causes vascular hyperpermeability by reducing endothelial glycocalyx and ATP production. Int J Mol Sci 2015; 16:12092-107. [PMID: 26023717 PMCID: PMC4490431 DOI: 10.3390/ijms160612092] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/21/2015] [Indexed: 12/12/2022] Open
Abstract
Prolonged treatment with a large dose of propofol may cause diffuse cellular cytotoxicity; however, the detailed underlying mechanism remains unclear, particularly in vascular endothelial cells. Previous studies showed that a propofol overdose induces endothelial injury and vascular barrier dysfunction. Regarding the important role of endothelial glycocalyx on the maintenance of vascular barrier integrity, we therefore hypothesized that a propofol overdose-induced endothelial barrier dysfunction is caused by impaired endothelial glycocalyx. In vivo, we intraperitoneally injected ICR mice with overdosed propofol, and the results showed that a propofol overdose significantly induced systemic vascular hyperpermeability and reduced the expression of endothelial glycocalyx, syndecan-1, syndecan-4, perlecan mRNA and heparan sulfate (HS) in the vessels of multiple organs. In vitro, a propofol overdose reduced the expression of syndecan-1, syndecan-4, perlecan, glypican-1 mRNA and HS and induced significant decreases in the nicotinamide adenine dinucleotide (NAD+)/NADH ratio and ATP concentrations in human microvascular endothelial cells (HMEC-1). Oligomycin treatment also induced significant decreases in the NAD+/NADH ratio, in ATP concentrations and in syndecan-4, perlecan and glypican-1 mRNA expression in HMEC-1 cells. These results demonstrate that a propofol overdose induces a partially ATP-dependent reduction of endothelial glycocalyx expression and consequently leads to vascular hyperpermeability due to the loss of endothelial barrier functions.
Collapse
Affiliation(s)
- Ming-Chung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Liouying, 201, Taikang, Taikang Village, Liuying District, Tainan 736, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, 89, Wenhwa 1st Street, Rende District, Tainan 717, Taiwan.
| | - Chiou-Feng Lin
- Department of Microbiology and Immunology, Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, 901 Zhonghua Road, Yongkang District, Tainan 710, Taiwan.
| | - Ding-Ping Sun
- Department of Surgery, Chi Mei Medical Center, 901 Zhonghua Road, Yongkang District, Tainan 710, Taiwan.
| | - Li-Yun Wang
- Department of Anesthesiology, Chi Mei Medical Center, 901 Zhonghua Road, Yongkang District, Tainan 710, Taiwan.
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, 901 Zhonghua Road, Yongkang District, Tainan 710, Taiwan.
- Department of Anesthesiology, College of Medicine, Taipei Medical University, 250 Wuxing Street, Taipei 110, Taiwan.
| |
Collapse
|
22
|
Propofol infusion syndrome in adults: a clinical update. Crit Care Res Pract 2015; 2015:260385. [PMID: 25954513 PMCID: PMC4410753 DOI: 10.1155/2015/260385] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 03/21/2015] [Accepted: 03/28/2015] [Indexed: 12/18/2022] Open
Abstract
Propofol infusion syndrome is a rare but extremely dangerous complication of propofol administration. Certain risk factors for the development of propofol infusion syndrome are described, such as appropriate propofol doses and durations of administration, carbohydrate depletion, severe illness, and concomitant administration of catecholamines and glucocorticosteroids. The pathophysiology of this condition includes impairment of mitochondrial beta-oxidation of fatty acids, disruption of the electron transport chain, and blockage of beta-adrenoreceptors and cardiac calcium channels. The disease commonly presents as an otherwise unexplained high anion gap metabolic acidosis, rhabdomyolysis, hyperkalemia, acute kidney injury, elevated liver enzymes, and cardiac dysfunction. Management of overt propofol infusion syndrome requires immediate discontinuation of propofol infusion and supportive management, including hemodialysis, hemodynamic support, and extracorporeal membrane oxygenation in refractory cases. However, we must emphasize that given the high mortality of propofol infusion syndrome, the best management is prevention. Clinicians should consider alternative sedative regimes to prolonged propofol infusions and remain within recommended maximal dose limits.
Collapse
|
23
|
Shokrzadeh M, Zamani E, Mehrzad M, Norian Y, Shaki F. Protective Effects of Propofol Against Methamphetamine-induced Neurotoxicity. Toxicol Int 2015; 22:92-9. [PMID: 26862267 PMCID: PMC4721183 DOI: 10.4103/0971-6580.172250] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CONTEXT Methamphetamine (METH) is widely abused in worldwide. METH use could damage the dopaminergic system and induce neurotoxicity via oxidative stress and mitochondrial dysfunction. Propofol, a sedative-hypnotic agent, is known for its antioxidant properties. In this study, we used propofol for attenuating of METH-induced neurotoxicity in rats. SUBJECTS AND METHODS We used Wistar rats that the groups (six rats each group) were as follows: Control, METH (5 mg/kg IP), and propofol (5, 10 and 20 mg/kg, IP) was administered 30 min before METH. After 24 h, animals were killed, brain tissue was separated and the mitochondrial fraction was isolated, and oxidative stress markers were measured. RESULTS Our results showed that METH significantly increased oxidative stress markers such as lipid peroxidation, reactive oxygen species formation and glutathione oxidation in the brain, and isolated mitochondria. Propofol significantly inhibited METH-induced oxidative stress in the brain and isolated mitochondria. Mitochondrial function decreased dramatically after METH administration that propofol pretreatment significantly improved mitochondrial function. Mitochondrial swelling and catalase activity also increased after METH exposure but was significantly decreased with propofol pretreatment. CONCLUSIONS These results suggest that propofol prevented METH-induced oxidative stress and mitochondrial dysfunction and subsequently METH-induced neurotoxicity. Therefore, the effectiveness of this antioxidant should be evaluated for the treatment of METH toxicity and neurodegenerative disease.
Collapse
Affiliation(s)
- Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| | - Ehsan Zamani
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| | - Mona Mehrzad
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| | - Yazdan Norian
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, School of Pharmacy, University of Medical Sciences, Mazandaran, Iran
| |
Collapse
|
24
|
Taheri Moghadam G, Hosseini-Zijoud SM, Heidary Shayesteh T, Ghasemi H, Ranjbar A. Attenuation of cisplathin-induced toxic oxidative stress by propofol. Anesth Pain Med 2014; 4:e14221. [PMID: 25599022 PMCID: PMC4286804 DOI: 10.5812/aapm.14221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 04/07/2014] [Accepted: 04/23/2014] [Indexed: 01/03/2023] Open
Abstract
Background: Antioxidant effects of propofol (2, 6-diisopropylphenol) were evaluated against cisplatin-induced oxidative stress in rat. Objectives: In this experimental study, 20 male rats were equally divided into 4 groups (5 rats each), and were treated by propofol (10 mg/kg/day, IP), or cisplatin (7 mg /kg/day, IP), or both. Materials and Methods: Group one was control, while group 2 was given cisplatin (7 mg /kg/day, IP). Animals of the third group received only propofol (10 mg/kg/day, IP). Group 4 was given propofol with cisplatin once per day for 7 days. After treatment, blood urea nitrogen, creatinine levels, and oxidative stress markers such as total thiol groups (TTG), lipid peroxidation (LPO), and total antioxidant capacity (TAC) were measured. Results: Oxidative stress induced by cisplatin, was evident by a significant increase in LPO and decrease in TTG and TAC. Propofol recovered cisplatin -induced changes in TAC, TTG and LPO in blood. Conclusions: It is concluded that oxidative damage is the mechanism of cisplatin toxicity, which can be recovered by propofol.
Collapse
Affiliation(s)
| | - Seyed-Mostafa Hosseini-Zijoud
- Clinical Research Development Unit, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tavakol Heidary Shayesteh
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hassan Ghasemi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Akram Ranjbar
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
- Corresponding author: Akram Ranjbar, Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran. Tel/Fax: + 98-8118380031, E-mail:
| |
Collapse
|
25
|
|
26
|
Savard M, Dupré N, Turgeon AF, Desbiens R, Langevin S, Brunet D. Propofol-related infusion syndrome heralding a mitochondrial disease: case report. Neurology 2013; 81:770-1. [PMID: 23873972 DOI: 10.1212/wnl.0b013e3182a1aa78] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Martin Savard
- Department of Neurological Sciences, L'Enfant-Jésus Hospital, CHU de Québec, Canada.
| | | | | | | | | | | |
Collapse
|
27
|
Lin MC, Chen CL, Yang TT, Choi PC, Hsing CH, Lin CF. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo. Toxicol Appl Pharmacol 2012; 265:253-62. [DOI: 10.1016/j.taap.2012.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Larach DB, Kofke WA, Le Roux P. Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature. Neurocrit Care 2012; 15:609-22. [PMID: 21336786 DOI: 10.1007/s12028-011-9517-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microdialysis, an in vivo technique that permits collection and analysis of small molecular weight substances from the interstitial space, was developed more than 30 years ago and introduced into the clinical neurosciences in the 1990s. Today cerebral microdialysis is an established, commercially available clinical tool that is focused primarily on markers of cerebral energy metabolism (glucose, lactate, and pyruvate) and cell damage (glycerol), and neurotransmitters (glutamate). Although the brain comprises only 2% of body weight, it consumes 20% of total body energy. Consequently, the ability to monitor cerebral metabolism can provide significant insights during clinical care. Measurements of lactate, pyruvate, and glucose give information about the comparative contributions of aerobic and anaerobic metabolisms to brain energy. The lactate/pyruvate ratio reflects cytoplasmic redox state and thus provides information about tissue oxygenation. An elevated lactate pyruvate ratio (>40) frequently is interpreted as a sign of cerebral hypoxia or ischemia. However, several other factors may contribute to an elevated LPR. This article reviews potential non-hypoxic/ischemic causes of an increased LPR.
Collapse
Affiliation(s)
- Daniel B Larach
- University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| | | | | |
Collapse
|
29
|
Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes. Toxicol Appl Pharmacol 2011; 257:437-48. [PMID: 22015447 DOI: 10.1016/j.taap.2011.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 09/18/2011] [Accepted: 10/03/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. METHODS Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1μM), propofol (1μM), or propofol plus doxorubicin (given 1h post propofol). After 24h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. RESULTS Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-δ was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. CONCLUSIONS Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application.
Collapse
|
30
|
Diedrich DA, Brown DR. Analytic Reviews: Propofol Infusion Syndrome in the ICU. J Intensive Care Med 2011; 26:59-72. [DOI: 10.1177/0885066610384195] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Propofol is an alkylphenol derivative named 2, 6, diisopropylphenol and is a potent intravenous short-acting hypnotic agent. It is commonly used as sedation, as well as an anesthetic agent in both pediatric and adult patient populations. There have been numerous case reports describing a constellation of findings including metabolic derangements and organ system failures known collectively as propofol infusion syndrome (PRIS). Although there is a high mortality associated with PRIS, the precise mechanism of action has yet to be determined. The best preventive measure for this syndrome is awareness and avoidance of clinical scenarios associated with development of PRIS. There is no established treatment for PRIS; care is primarily supportive in nature and may include the full array of advanced cardiopulmonary support, including extracorporeal membrane oxygenation (ECMO). This article reviews the reported cases of PRIS and describes the current understanding of the underlying pathophysiology and treatment options.
Collapse
Affiliation(s)
- Daniel A. Diedrich
- Division of Critical Care, Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Daniel R. Brown
- Division of Critical Care, Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA,
| |
Collapse
|
31
|
Le syndrome de perfusion du propofol. ACTA ACUST UNITED AC 2010; 29:377-86. [PMID: 20399595 DOI: 10.1016/j.annfar.2010.02.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 02/17/2010] [Indexed: 01/08/2023]
|
32
|
Kneiseler G, Bachmann HS, Bechmann LP, Dechene A, Heyer T, Baba H, Saner F, Jochum C, Gerken G, Canbay A. A Rare Case of Propofol-Induced Acute Liver Failure and Literature Review. Case Rep Gastroenterol 2010; 4:57-65. [PMID: 21103229 PMCID: PMC2988899 DOI: 10.1159/000262448] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The incidence of drug-induced acute liver failure is increasing. A number of drugs can inhibit mitochondrial functions, alter β-oxidation and cause accumulation of free fatty acids within the hepatocytes. This may result in hepatic steatosis, cell death and liver injury. In our case, propofol, an anesthetic drug commonly used in adults and children, is suspected to have induced disturbance of the mitochondrial respiratory chain, which in consequence led to insufficient energy supply and finally liver failure. We report the case of a 35-year-old Caucasian woman with acute liver failure after anesthesia for stripping of varicose veins. Liver histology, imaging and laboratory data indicate drug-induced acute liver failure, presumably due to propofol. Hepatocyte death and microvesicular fatty degeneration of 90% of the liver parenchyma were observed before treatment with steroids. Six months later, a second biopsy was performed, which revealed only minimal steatosis and minimal periportal hepatitis. We suggest that propofol led to impaired fatty acid oxidation possibly due to a genetic susceptibility. This caused free fatty acid accumulation within hepatocytes, which presented as hepatocellular fatty degeneration and cell death. Large scale hepatocyte death was followed by impaired liver function and, consecutively, progressed to acute liver failure.
Collapse
Affiliation(s)
- G Kneiseler
- Division of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Riezzo I, Centini F, Neri M, Rossi G, Spanoudaki E, Turillazzi E, Fineschi V. Brugada-like EKG pattern and myocardial effects in a chronic propofol abuser. Clin Toxicol (Phila) 2009; 47:358-63. [PMID: 19514884 DOI: 10.1080/15563650902887842] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Cases of death are reported due to medical use of propofol, whereas deaths due to recreational purpose are unusual. CASE REPORT A 26-year-old Caucasian man, physician trainee in anesthesiology, was referred to an intensive care unit. The man was found unconscious in his bed with a butterfly-needle canalized into the vein of the left forearm and connected to an empty syringe. Transferred to the local hospital, the patient was monitored, and EKG showed typical Brugada features in V1-V3. Profound hypotension and metabolic acidosis were registered. Half an hour after admission, the patient developed prolonged QT interval, idioventricular rhythm, and ventricular fibrillation. Strong positive reaction for tumor necrosis factor alpha in cardiac myocytes and a diffuse apoptotic process in the heart specimens were observed. The multiple needle marks on the hands and forearms, and the propofol concentration in the hair examined (0.73 microg/g), led us to believe that the young man was a long-term propofol abuser. DISCUSSION Development of the EKG pattern of ST-segment elevation in leads V1-V3 may be the first indicator of electrical instability and high risk for imminent sudden death. Whether this finding applies to other patients poisoned with propofol is unclear, but the association of sudden death and the acquired EKG pattern has been observed in other disease states. CONCLUSION This article describes a fatal propofol-related death case because of recreational purpose; the EKG pattern, the cardiac morphology, and the expression of tumor necrosis factor alpha and apoptosis in cardiac tissue specimens are discussed to elucidate the mechanism of death.
Collapse
Affiliation(s)
- Irene Riezzo
- Department of Forensic Pathology, University of Foggia, Foggia, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Certain anesthetics exhibit neurotoxicity in the brains of immature but not mature animals. Gamma-aminobutyric acid (GABA), the primary inhibitory neurotransmitter in the adult brain, is excitatory on immature neurons via its action at the GABAA receptor, due to a reversed transmembrane chloride gradient. GABAA receptor activation in immature neurons is sufficient to open L-type voltage-gated calcium channels. As propofol is a GABAA agonist, we hypothesized that it and more specific GABAA modulators would increase intracellular free calcium ([Ca2+]i), resulting in the death of neonatal rat hippocampal neurons. Neuronal [Ca2+]i was monitored using Fura2-AM fluorescence imaging. Cell death was assessed by double staining with propidium iodide and Hoechst 33258 at 1 hour (acute) and 48 hours (delayed) after 5 hours exposure of neurons to propofol or the GABAA receptor agonist, muscimol, in the presence and absence of the GABA receptor antagonist, bicuculline, or the L-type Ca2+ channel blocker, nifedipine. Fluorescent measurements of caspase-3,-7 activities were performed at 1 hour after exposure. Both muscimol and propofol induced a rapid increase in [Ca2+]i in days in vitro (DIV) 4, but not in DIV 8 neurons, that was inhibited by nifedipine and bicuculline. Caspase-3,-7 activities and cell death increased significantly in DIV 4 but not DIV 8 hippocampal neuronal cultures 1 hour after 5 hours exposure to propofol, but not muscimol, and were inhibited by the presence of bicuculline or nifedipine. We conclude that an increase in [Ca2+]i, due to activation of GABAA receptors and opening of L-type calcium channels, is necessary for propofol-induced death of immature rat hippocampal neurons but that additional mechanisms not elicited by GABAA activation alone also contribute to cell death.
Collapse
|
35
|
Corbett SM, Montoya ID, Moore FA. Propofol-related infusion syndrome in intensive care patients. Pharmacotherapy 2008; 28:250-8. [PMID: 18225970 DOI: 10.1592/phco.28.2.250] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Institute of Medicine has identified adverse drug events as factors that significantly contribute to increased patient morbidity and mortality. As critically ill patients receive numerous drugs to treat a multitude of complicated health problems, they are at high risk for adverse drug events. Sedation is often a key requirement for the optimal management of critical illness, and propofol, a common sedative, has many desirable characteristics that make it the ideal agent in numerous circumstances. However, over the last decade, increasing numbers of reports have described a potentially fatal adverse effect called propofol-related infusion syndrome. Whether this adverse drug event is preventable is unclear, but recommendations have been proposed to minimize the potential for development of this syndrome. Research is under way to collect data on the use of propofol in intensive care units and on its prevalence.
Collapse
Affiliation(s)
- Stephanie Mallow Corbett
- University of Houston College of Pharmacy, Department of Pharmacy, Methodist Hospital, Houston, TX, USA.
| | | | | |
Collapse
|
36
|
Parviainen I, Kälviäinen R, Ruokonen E. Propofol and barbiturates for the anesthesia of refractory convulsive status epilepticus: pros and cons. Neurol Res 2008; 29:667-71. [PMID: 18173905 DOI: 10.1179/016164107x240044] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To discuss mainly the use of propofol and barbiturates in the anesthesia of refractory status epilepticus (RSE). METHODS Review of literature. RESULTS There are no prospective, randomized works comparing the effects of anesthetics in the treatment of RSE. Recently, the use of propofol has increased in the treatment of RSE. Propofol terminates both clinical and electric seizures quickly, but the maintenance of burst-suppression EEG pattern requires repetitive titration of doses. Relapses of seizures have occurred in 19-33% of patients, especially when tapering of dose. The advantages of barbiturates are lower frequency of short-term treatment failures, breakthrough seizures and changes to a different anesthetic agent. On the other hand, prolonged recovery leads to prolonged duration of mechanical ventilation, intensive care and hospital stay. DISCUSSION The use of propofol, barbiturates or midazolam in the anesthesia of RSE can be justified. When using propofol, the duration of high doses should be limited to 48 hours and the risk of propofol infusion syndrome should be kept in mind. High doses of barbiturates terminate effectively seizures but recovery from anesthesia prolongs ventilator treatment and intensive care.
Collapse
Affiliation(s)
- Ilkka Parviainen
- Department of Anesthesiology and Intensive Care, Kuopio Epilepsy Center, Kuopio University Hospital, Kuopio, Finland.
| | | | | |
Collapse
|
37
|
Nouette-Gaulain K, Quinart A, Letellier T, Sztark F. [Mitochondria in anaesthesia and intensive care]. ACTA ACUST UNITED AC 2007; 26:319-33. [PMID: 17349772 DOI: 10.1016/j.annfar.2007.01.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2006] [Accepted: 01/17/2007] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Mitochondria play a key role in energy metabolism within the cell through the oxidative phosphorylation. They are also involved in many cellular processes like apoptosis, calcium signaling or reactive oxygen species production. The objectives of this review are to understand the interactions between mitochondrial metabolism and anaesthetics or different stress situations observed in ICU and to know the clinical implications. DATA SOURCES References were obtained from PubMed data bank (http://www.ncbi.nlm.nih.gov/entrez/query.fcgi) using the following keywords: mitochondria, anaesthesia, anaesthetics, sepsis, preconditioning, ischaemia, hypoxia. DATA SYNTHESIS Mitochondria act as a pharmacological target for the anaesthetic agents. The effects can be toxic like in the case of the local anaesthetics-induced myotoxicity. On the other hand, beneficial effects are observed in the anaesthetic-induced myocardial preconditioning. Mitochondrial metabolism could be disturbed in many critical situations (sepsis, chronic hypoxia, ischaemia-reperfusion injury). The study of the underlying mechanisms should allow to propose in the future new specific therapeutics.
Collapse
Affiliation(s)
- K Nouette-Gaulain
- Département d'anesthésie-réanimation I, CHU Pellegrin, 33076 Bordeaux cedex, France
| | | | | | | |
Collapse
|
38
|
Jung YH, Kang DU, Lee SS, Lim YH, Yoo BH, Yon JH. Experience of Suspected Propofol Infusion Syndrome in a Status Epilepticus Patient - A case report -. Korean J Anesthesiol 2007. [DOI: 10.4097/kjae.2007.53.3.s58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Young Ho Jung
- Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| | - Dong Uk Kang
- Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| | - Sang Seok Lee
- Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| | - Yun Hee Lim
- Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| | - Byung Hoon Yoo
- Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| | - Jun Heum Yon
- Department of Anesthesiology and Pain Medicine, Sanggye Paik Hospital, College of Medicine, Inje University, Seoul, Korea
| |
Collapse
|
39
|
McCunn M, Reynolds HN, Reuter J, McQuillan K, McCourt T, Stein D. Continuous renal replacement therapy in patients following traumatic injury. Int J Artif Organs 2006; 29:166-86. [PMID: 16552665 DOI: 10.1177/039139880602900204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In critically injured patients, the incidence of acute renal failure has been reported to occur in as many as 31% of patients. The use of CRRT modalities for patients following traumatic injuries is becoming more common, albeit slowly, and this therapy may impact upon long-term recovery of renal function and mortality. Historical studies investigating the early use of intermittent dialysis reported significant improvement in survival in patients who were dialyzed earlier and more vigorously than in control subjects. Early trauma patients also showed improved survival following war injuries when dialyzed prophylactically. Although there is a growing acceptance in favor of earlier renal replacement therapy, the published consensus and the practice in many centers has been to dialyze/filter relatively ill rather than relatively healthy patients. The R Adams Cowley Shock Trauma Center (STC) in Baltimore, Maryland, USA, admits over 8,000 trauma patients each year. Within the STC, a program of continuous renal replacement therapy was established in the early 1980's. We review both historical and current literature on the use of renal replacement therapies after traumatic injury, and suggest some future areas of investigation and indications for these modalities.
Collapse
Affiliation(s)
- M McCunn
- Division of Surgical Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Vernooy K, Delhaas T, Cremer OL, Di Diego JM, Oliva A, Timmermans C, Volders PG, Prinzen FW, Crijns HJ, Antzelevitch C, Kalkman CJ, Rodriguez LM, Brugada R. Electrocardiographic changes predicting sudden death in propofol-related infusion syndrome. Heart Rhythm 2006; 3:131-7. [PMID: 16443524 PMCID: PMC1474111 DOI: 10.1016/j.hrthm.2005.11.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2005] [Accepted: 11/04/2005] [Indexed: 11/20/2022]
Abstract
BACKGROUND The occurrence of metabolic acidosis, rhabdomyolysis, hyperkalemia, and sudden cardiac death after long-term, high-dose propofol infusion has been referred to as propofol infusion syndrome (PRIS). OBJECTIVES The purpose of this study was to explore the ECG abnormalities observed in a patient with PRIS in order to identify possible pathophysiologic mechanisms of the syndrome. METHODS ECG changes in the index case were characterized by down-sloping ST-segment elevation in precordial leads V1 to V3 (Brugada-like ECG pattern). We subsequently assessed the relationship between this ECG pattern and the propofol infusion rate, the development of arrhythmias, and the occurrence of sudden death in a previously described cohort of 67 head-injured patients, seven of whom had been identified as having PRIS. RESULTS Six of the PRIS patients developed the ECG pattern of ST-segment elevation in leads V1 to V3 and died within hours of irrecoverable electrical storm. This ECG pattern was the first aberration recorded hours before the death of these patients. ECGs that were available for 30 of 60 unaffected patients exhibited a normal pattern. None of the 60 patients developed ventricular arrhythmias. CONCLUSION Our findings indicate that development of an acquired Brugada-like ECG pattern in severely head-injured patients is a sign of cardiac electrical instability that predicts imminent cardiac death. Future studies will determine whether such an ECG pattern also predicts imminent cardiac arrhythmia in other patient populations.
Collapse
Affiliation(s)
- Kevin Vernooy
- From the Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Tammo Delhaas
- From the Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Olaf L. Cremer
- Department of Perioperative Care, Anaesthesiology and Pain Treatment, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | | - Antonio Oliva
- Masonic Medical Research Laboratory, Utica, New York
| | - Carl Timmermans
- From the Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Paul G. Volders
- From the Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Frits W. Prinzen
- From the Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Harry J.G.M. Crijns
- From the Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | | - Cornelis J. Kalkman
- Department of Perioperative Care, Anaesthesiology and Pain Treatment, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Luz-Maria Rodriguez
- From the Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | | |
Collapse
|
41
|
Casserly B, O'Mahony E, Timm EG, Haqqie S, Eisele G, Urizar R. Propofol infusion syndrome: an unusual cause of renal failure. Am J Kidney Dis 2005; 44:e98-101. [PMID: 15558515 DOI: 10.1053/j.ajkd.2004.08.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Propofol infusion syndrome has been increasingly recognized as a syndrome of unexplained myocardial failure, metabolic acidosis, and rhabdomyolysis with renal failure. It has been described only with acute neurologic injury or acute inflammatory diseases complicated by severe infections or sepsis. It appears to develop in the context of high-dose, prolonged propofol (100 microg/kg/min) treatment in combination with catecholamines and/or steroids. This was first noted in children but is increasingly recognized in adults. This is a case report of 2 patients (a 42-year-old man and a 17-year-old girl) who had acute renal failure associated with use of propofol in the appropriate clinical setting. It examines the pathophysiology and the possible mechanisms of this condition and illustrates the need to consider it as the cause of rhabdomyolysis and acute renal failure in critically ill patients.
Collapse
Affiliation(s)
- Brian Casserly
- Department of Internal Medicine, Albany Medical Center Hospital, Albany, NY, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Acco A, Comar JF, Bracht A. Metabolic effects of propofol in the isolated perfused rat liver. Basic Clin Pharmacol Toxicol 2005; 95:166-74. [PMID: 15504152 DOI: 10.1111/j.1742-7843.2004.pto950404.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inhibitory effects of the intravenous anaesthetic propofol on mitochondrial energy metabolism have been reported by several authors. Impairment of energy metabolism is usually coupled to reduction in ATP production, which in turn is expected to lead to several alterations in cell metabolism such as stimulation of glycolysis and inhibition of gluconeogenesis. The present work aimed at finding an answer to the question of how propofol affects energy metabolism-linked parameters in the isolated perfused rat liver. In the fed state, propofol increased glycogenolysis (glucose release), glycolysis (lactate and pyruvate production) and oxygen uptake in the range between 10 and 500 microM. In the liver of fasted rats, propofol up to 100 microM increased oxygen uptake but decreased gluconeogenesis from three different substrates: lactate, alanine and glycerol. When lactate was the substrate 50% inhibition occurred at a propofol concentration of 50 microM. Propofol (100 microM) decreased the ATP content of the liver (-33.3%), increased the AMP content (+25%) and decreased the ATP/ADP and ATP/AMP ratios (49 and 45%, respectively). Most effects of propofol are probably due to impairment of oxidative phosphorylation. Particularly, the combined differential action on oxygen uptake (stimulation) and gluconeogenesis (inhibition) is strongly suggestive of an uncoupling action also under the conditions of the intact cell. This effect, in turn, is consistent with the reported high affinity of the cellular hepatic structure, especially membranes, for propofol.
Collapse
Affiliation(s)
- Alexandra Acco
- Laboratory of Liver Metabolism, University of Maringá, 87020900 Maringá, Brazil
| | | | | |
Collapse
|
43
|
Abstract
Propofol infusion syndrome has not only been observed in patients undergoing long-term sedation with propofol, but also during propofol anesthesia lasting 5 h. It has been assumed that the pathophysiologic cause is propofol's impairment of oxidation of fatty acid chains and inhibition of oxidative phosphorylation in the mitochondria, leading to lactate acidosis and muscular necrosis. It has been postulated that propofol might act as a trigger substrate in the presence of priming factors. Severe diseases in which the patient has been exposed to high catecholamine and cortisol levels have been identified as trigger substrates. Once the development of propofol infusion syndrome is suspected, propofol infusion has to be stopped immediately and specific therapeutic measures initiated, including cardiocirculatory stabilization and correction of metabolic acidosis. To increase elimination of propofol and its potential toxic metabolites, hemodialysis or hemofiltration are recommended. Due to its possible fatal side effects, the use of propofol for long-term sedation in critically ill patients should be reconsidered. In cases of unexplained lactate acidosis occurring during continuous propofol infusion, propofol infusion syndrome must be taken into consideration.
Collapse
Affiliation(s)
- J Motsch
- Klinik für Anästhesiologie, Universitätsklinikum Heidelberg.
| | | |
Collapse
|
44
|
Abstract
Status epilepticus is a major medical emergency associated with significant morbidity and mortality. Status epilepticus is best defined as a continuous, generalized, convulsive seizure lasting > 5 min, or two or more seizures during which the patient does not return to baseline consciousness. Lorazepam in a dose of 0.1 mg/kg is the drug of first choice for terminating status epilepticus. Patients who continue to have clinical or EEG evidence of seizure activity after treatment with lorazepam should be considered to have refractory status epileptics and should be treated with a continuous infusion of propofol or midazolam. This article reviews current information regarding the management of status epilepticus in adults.
Collapse
Affiliation(s)
- Paul E Marik
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | |
Collapse
|
45
|
Felmet K, Nguyen T, Clark RS, Orr D, Carcillo J. The FDA warning against prolonged sedation with propofol in children remains warranted. Pediatrics 2003; 112:1002-3; author reply 1002-3. [PMID: 14523206 DOI: 10.1542/peds.112.4.1002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
46
|
Vasile B, Rasulo F, Candiani A, Latronico N. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intensive Care Med 2003; 29:1417-25. [PMID: 12904852 DOI: 10.1007/s00134-003-1905-x] [Citation(s) in RCA: 435] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2003] [Accepted: 06/18/2003] [Indexed: 02/08/2023]
Abstract
Propofol infusion syndrome (PRIS) is a rare and often fatal syndrome described in critically ill children undergoing long-term propofol infusion at high doses. Recently several cases have been reported in adults, too. The main features of the syndrome consist of cardiac failure, rhabdomyolysis, severe metabolic acidosis and renal failure. To date 21 paediatric cases and 14 adult cases have been described. These latter were mostly patients with acute neurological illnesses or acute inflammatory diseases complicated by severe infections or even sepsis, and receiving catecholamines and/or steroids in addition to propofol. Central nervous system activation with production of catecholamines and glucocorticoids, and systemic inflammation with cytokine production are priming factors for cardiac and peripheral muscle dysfunction. High-dose propofol, but also supportive treatments with catecholamines and corticosteroids, act as triggering factors. At the subcellular level, propofol impairs free fatty acid utilisation and mitochondrial activity. Imbalance between energy demand and utilisation is a key pathogenetic mechanism, which may lead to cardiac and peripheral muscle necrosis. Propofol infusion syndrome is multifactorial, and propofol, particularly when combined with catecholamines and/or steroids, acts as a triggering factor. The syndrome can be lethal and we suggest caution when using prolonged (>48 h) propofol sedation at doses higher than 5 mg/kg per h, particularly in patients with acute neurological or inflammatory illnesses. In these cases, alternative sedative agents should be considered. If unsuitable, strict monitoring of signs of myocytolysis is advisable.
Collapse
Affiliation(s)
- Beatrice Vasile
- Institute of Anesthesiology-Intensive Care, University of Brescia, Piazzale Ospedali Civili 1, 25125 Brescia, Italy
| | | | | | | |
Collapse
|
47
|
Stevanato R, Momo F, Marian M, Rigobello MP, Bindoli A, Bragadin M, Vincenti E, Scutari G. Effects of nitrosopropofol on mitochondrial energy-converting system. Biochem Pharmacol 2002; 64:1133-8. [PMID: 12234616 DOI: 10.1016/s0006-2952(02)01253-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitrosopropofol (NOPR) is a relatively stable compound obtained from the reaction between the general anesthetic 2,6 diisopropylphenol (propofol) and nitrosoglutathione (GSNO) and bearing a more acidic phenol group than propofol. It interfered with mitochondrial energetic metabolism in a concentration-dependent manner. Concentrations as high as 100 or 200 microM disrupted both oxidative phosphorylation and electron transport. Low concentrations of NOPR (50 microM) markedly slowed down the electron transport rate which was insensitive both to ADP and uncoupler stimulation and spontaneously gradually stopped. Consequently, both the transmembrane potential production and the ATP synthesis system were affected. In the presence of 10 or 20 microM NOPR, mitochondria respired but showed a worsening of the respiratory control and produced a transmembrane potential useful to respond to a phosphorylation pulse, but were not able to restore it. These results were consistent with ATP synthesis and swelling experiments. NOPR was effective at concentrations lower than those required by the combination of propofol and GSNO, suggesting that mitochondria might be able to catalyze the reaction between GSNO and propofol and that the resulting metabolite was more active on mitochondrial membrane structure than the parent compounds. Although the details of the process are yet unknown, the mechanism presented may be of potential relevance to rationalize the pathophysiological effects of propofol.
Collapse
Affiliation(s)
- Roberto Stevanato
- Department of Physical Chemistry, University of Venice, Venice, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Momo F, Fabris S, Bindoli A, Scutari G, Stevanato R. Different effects of propofol and nitrosopropofol on DMPC multilamellar liposomes. Biophys Chem 2002; 95:145-55. [PMID: 11897153 DOI: 10.1016/s0301-4622(02)00003-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mechanisms of reaction of propofol with nitrosoglutathione lead to the formation of an active species which was identified, and then synthesised, as 2,6-diisopropyl-4-nitrosophenol. In the present work, we demonstrate the in vitro formation of 2,6-diisopropyl-4-nitrosophenol, then we discuss the interaction of propofol and 2,6-diisopropyl-4-nitrosophenol with dimyristoylphosphatidylcholine and egg yolk phosphatidylcholine multilamellar liposomes using differential scanning calorimetry and spin labelling techniques. It was demonstrated that both molecules are highly lipophylic and absorb almost entirely in the lipid phase. The thermotropic profiles showed that these molecules affect the temperature and the co-operativity of the gel-to-fluid state transition of the liposomes differently: the effects of 2,6-diisopropylphenol on the lipid organisation are quite similar to phenol and coherently interpretable in terms of the disorder produced in the membrane by a bulky group; 2,6-diisopropyl-4-nitrosophenol is a stronger perturbing agent, and ESR spectra suggest that this is due to a relative accumulation of the molecule into the interfacial region of the bilayer.
Collapse
Affiliation(s)
- Federico Momo
- Department of Physical Chemistry, University of Venice-Dorsoduro 2137, 30123, Venezia, Italy.
| | | | | | | | | |
Collapse
|
49
|
Stevanato R, Momo F, Marian M, Rigobello MP, Bindoli A, Bragadin M, Vincenti E, Scutari G. Combined effect of propofol and GSNO on oxidative phosphorylation of isolated rat liver mitochondria. Nitric Oxide 2001; 5:158-65. [PMID: 11292365 DOI: 10.1006/niox.2001.0331] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isolated rat liver mitochondria have been treated with the general anaesthetic propofol (2,6-diisopropylphenol, 200 microM) and the physiological NO donor nitrosoglutathione (GSNO, 200 or 250 microM). The efficiency of the oxidative phosphorylation has been evaluated by measuring the respiration and ATP synthesis rates and the behavior of transmembrane electrical potential. In mitochondria energized by succinate, the simultaneous presence of both propofol and GSNO gives rise to a synergic action in affecting the resting and the ADP-stimulated respiration, the respiratory control ratio, the ATP synthesis, and the formation and utilization of the electrochemical transmembrane potential.
Collapse
Affiliation(s)
- R Stevanato
- Department of Physical Chemistry, University of Venice, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Schenkman KA, Yan S. Propofol impairment of mitochondrial respiration in isolated perfused guinea pig hearts determined by reflectance spectroscopy. Crit Care Med 2000; 28:172-7. [PMID: 10667518 DOI: 10.1097/00003246-200001000-00028] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To simultaneously determine the effect of propofol on myocardial oxygenation, mitochondrial function, and whole organ function in an isolated heart model, using optical reflectance spectroscopy. DESIGN Controlled laboratory investigation. SETTING Research laboratory. SUBJECTS Twenty adult guinea pigs. INTERVENTIONS Isolated hearts were perfused alternately with a modified oxygenated Krebs-Henseleit buffer and with buffer containing varied concentrations of propofol. Ninety seconds of ischemia were produced during perfusion with each solution studied. MEASUREMENTS AND MAIN RESULTS Myoglobin oxygen saturation, cytochrome c and cytochrome a/a3 redox state, and ventricular pressure were continuously measured from isolated guinea pig hearts during a 2-hr period. Myoglobin oxygen saturation increased and both cytochromes became more oxidized in the presence of propofol. During ischemia, myoglobin desaturation and cytochrome reduction were delayed and less complete in the presence of propofol. The mean ischemic time to 50% myoglobin desaturation was, on average, 14.3 secs with buffer perfusion, and increased to 24.5, 27.9, and 41.8 secs, with 50, 100, and 200 microM propofol perfusion, respectively. Ventricular function decreased linearly with increasing propofol concentration. From baseline buffer perfusion, maximal dP/dt per cardiac cycle decreased on average by 30.4%, 40.9%, and 69.4%, with 50, 100, and 200 microM propofol perfusion, respectively. CONCLUSIONS Propofol impairs either oxygen utilization or inhibits electron flow along the mitochondrial electron transport chain in the guinea pig cardiomyocyte. Propofol also significantly decreases ventricular performance in the isolated perfused heart. These effects are linearly correlated with propofol concentration in the range studied.
Collapse
Affiliation(s)
- K A Schenkman
- Department of Pediatrics, University of Wisconsin, Madison, USA.
| | | |
Collapse
|