1
|
Dahlke P, Peltner LK, Jordan PM, Werz O. Differential impact of 5-lipoxygenase-activating protein antagonists on the biosynthesis of leukotrienes and of specialized pro-resolving mediators. Front Pharmacol 2023; 14:1219160. [PMID: 37680719 PMCID: PMC10481534 DOI: 10.3389/fphar.2023.1219160] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023] Open
Abstract
Lipoxygenases (LOX) transform arachidonic acid (AA, C20:4) and docosahexaenoic acid (DHA, C22:6) into bioactive lipid mediators (LMs) that comprise not only pro-inflammatory leukotrienes (LTs) but also the specialized pro-resolving mediators (SPMs) that promote inflammation resolution and tissue regeneration. The 5-LOX-activating protein (FLAP) is known to provide AA as a substrate to 5-LOX for generating LTs, such as LTB4, a potent chemoattractant and activator of phagocytes. Notably, 5-LOX is also involved in the biosynthesis of certain SPMs, namely, lipoxins and D-resolvins, implying a role of FLAP in SPM formation. FLAP antagonists have been intensively developed as LT biosynthesis inhibitors, but how they impact SPM formation is a matter of debate. Here, we show that FLAP antagonism suppresses the conversion of AA by 5-LOX to LT and lipoxins, while the conversion of DHA to SPM is unaffected. Screening of multiple prominent FLAP antagonists for their effects on LM formation in human M1- and M2-monocyte-derived macrophages by comprehensive LM profiling showed that all nine compounds reduced the production of 5-LOX-derived LTs but increased the formation of SPMs from DHA, e.g., resolvin D5. Some FLAP antagonists, especially those that contain an indole or benzimidazole moiety, even elicited SPM formation in resting M2-monocyte-derived macrophages. Intriguingly, in coincubations of human neutrophils and platelets that produce substantial AA-derived lipoxin and DHA-derived RvD5, FLAP antagonism abolished lipoxin formation, but resolvin D5 levels remained unaffected. Conclusively, antagonism of FLAP suppresses the conversion of AA by 5-LOX to LTs and lipoxins but not the conversion of DHA by 5-LOX to SPM, which should be taken into account for the development of such compounds as anti-inflammatory drugs.
Collapse
Affiliation(s)
- Philipp Dahlke
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Lukas K. Peltner
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Paul M. Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
2
|
Du X, Xiao Y, Yang Y, Duan Y, Li F, Hu Q, Chung LW, Chen G, Zhang X. Enantioselective Hydrogenation of Tetrasubstituted α,β‐Unsaturated Carboxylic Acids Enabled by Cobalt(II) Catalysis: Scope and Mechanistic Insights. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoyong Du
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Ye Xiao
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Yuhong Yang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Ya‐Nan Duan
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Fangfang Li
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Qi Hu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Gen‐Qiang Chen
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518000 China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| |
Collapse
|
3
|
Du X, Xiao Y, Yang Y, Duan Y, Li F, Hu Q, Chung LW, Chen G, Zhang X. Enantioselective Hydrogenation of Tetrasubstituted α,β‐Unsaturated Carboxylic Acids Enabled by Cobalt(II) Catalysis: Scope and Mechanistic Insights. Angew Chem Int Ed Engl 2021; 60:11384-11390. [DOI: 10.1002/anie.202016705] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Xiaoyong Du
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Ye Xiao
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Yuhong Yang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Ya‐Nan Duan
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Fangfang Li
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Qi Hu
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| | - Gen‐Qiang Chen
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
- Academy for Advanced Interdisciplinary Studies Southern University of Science and Technology Shenzhen 518000 China
| | - Xumu Zhang
- Shenzhen Grubbs Institute and Department of Chemistry Southern University of Science and Technology Shenzhen 518000 China
| |
Collapse
|
4
|
Meng J, Ding WW, Han ZY. Synthesis of Chiral Esters via Asymmetric Wolff Rearrangement Reaction. Org Lett 2019; 21:9801-9805. [DOI: 10.1021/acs.orglett.9b03227] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing Meng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Wei Ding
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Yong Han
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Sinha S, Doble M, Manju SL. 5-Lipoxygenase as a drug target: A review on trends in inhibitors structural design, SAR and mechanism based approach. Bioorg Med Chem 2019; 27:3745-3759. [PMID: 31331653 DOI: 10.1016/j.bmc.2019.06.040] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/22/2023]
Abstract
The most common inflammatory disease of the airways is asthma among children affecting around 235 million people worldwide. 5-Lipoxygenase (5-LOX) is a crucial enzyme which helps in the conversion of arachidonic acid (AA) to leukotrienes (LTs), the lipid mediators. It is associated with several inflammation related disorders such as asthma, allergy, and atherosclerosis. Therefore, it is considered as a promising target against inflammation and asthma. Currently, the only drug against 5-LOX which is available is Zileuton, while a few inhibitors are in clinical trial stages such as Atreleuton and Setileuton. So, there is a dire requirement in the area of progress of novel 5-LOX inhibitors which necessitates an understanding of their structure activity relationship and mode of action. In this review, novel 5-LOX inhibitors reported so far, their structural design, SAR and developmental strategies along with clinical updates are discussed over the last two decades.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India; Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology, Madras, Tamil Nadu 600036, India.
| | - S L Manju
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
6
|
Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Kraft S, Ryan K, Kargbo RB. Recent Advances in Asymmetric Hydrogenation of Tetrasubstituted Olefins. J Am Chem Soc 2017; 139:11630-11641. [DOI: 10.1021/jacs.7b07188] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Stefan Kraft
- Drug Discovery Services,
Medicinal Chemistry, Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12201-5098, United States
| | - Kristen Ryan
- Drug Discovery Services,
Medicinal Chemistry, Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12201-5098, United States
| | - Robert B. Kargbo
- Drug Discovery Services,
Medicinal Chemistry, Albany Molecular Research Inc., 26 Corporate Circle, Albany, New York 12201-5098, United States
| |
Collapse
|
8
|
Pace S, Pergola C, Dehm F, Rossi A, Gerstmeier J, Troisi F, Pein H, Schaible AM, Weinigel C, Rummler S, Northoff H, Laufer S, Maier TJ, Rådmark O, Samuelsson B, Koeberle A, Sautebin L, Werz O. Androgen-mediated sex bias impairs efficiency of leukotriene biosynthesis inhibitors in males. J Clin Invest 2017; 127:3167-3176. [PMID: 28737505 DOI: 10.1172/jci92885] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022] Open
Abstract
Proinflammatory leukotrienes (LTs) are produced by 5-lipoxygenase (5-LO) aided by 5-LO-activating protein (FLAP). LT biosynthesis inhibitors are currently under clinical investigation as treatments for respiratory and cardiovascular diseases. Here, we have revealed a sex bias in the efficiency of clinically relevant LT biosynthesis inhibitors, showing that their effects are superior in females. We found that androgens cause these sex differences by impeding the LT-biosynthetic 5-LO/FLAP complex assembly. Lower doses of the FLAP inhibitor MK886 were required to reduce LTB4 levels in exudates of female versus male mice and rats. Following platelet-activating factor-induced shock, MK886 increased survival exclusively in female mice, and this effect was abolished by testosterone administration. FLAP inhibitors and the novel-type 5-LO inhibitors licofelone and sulindac sulfide exhibited higher potencies in human blood from females, and bioactive 5-LO/FLAP complexes were formed in female, but not male, human and murine leukocytes. Supplementation of female blood or leukocytes with 5α-dihydrotestosterone abolished the observed sex differences. Our data suggest that females may benefit from anti-LT therapy to a greater extent than males, prompting consideration of sex issues in LT modifier development.
Collapse
Affiliation(s)
- Simona Pace
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Carlo Pergola
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Friederike Dehm
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany.,Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Antonietta Rossi
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Jana Gerstmeier
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Fabiana Troisi
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Helmut Pein
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Anja M Schaible
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Christina Weinigel
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Silke Rummler
- Institute of Transfusion Medicine, University Hospital Jena, Jena, Germany
| | - Hinnak Northoff
- Institute for Clinical and Experimental Transfusion Medicine, University Medical Center Tuebingen, and
| | - Stefan Laufer
- Department of Medicinal Chemistry, Pharmaceutical Institute, University Tuebingen, Tuebingen, Germany
| | - Thorsten J Maier
- Aarhus University, Department of Biomedicine and Center for Study and Prevention of Neurodegenerative Inflammation (NEURODIN), Aarhus, Denmark.,Department of Anesthesia, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Samuelsson
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Koeberle
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| | - Lidia Sautebin
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, University Hospital Jena, Jena, Germany
| |
Collapse
|
9
|
Drug discovery approaches targeting 5-lipoxygenase-activating protein (FLAP) for inhibition of cellular leukotriene biosynthesis. Eur J Med Chem 2017; 153:34-48. [PMID: 28784429 DOI: 10.1016/j.ejmech.2017.07.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022]
Abstract
Leukotrienes are proinflammatory lipid mediators associated with diverse chronic inflammatory diseases such as asthma, COPD, IBD, arthritis, atherosclerosis, dermatitis and cancer. Cellular leukotrienes are produced from arachidonic acid via the 5-lipoxygenase pathway in which the 5-lipoxygenase activating protein, also named as FLAP, plays a critical role by operating as a regulatory protein for efficient transfer of arachidonic acid to 5-lipoxygenase. By blocking leukotriene production, FLAP inhibitors may behave as broad-spectrum leukotriene modulators, which might be of therapeutic use for chronic inflammatory diseases requiring anti-leukotriene therapy. The early development of FLAP inhibitors (i.e. MK-886, MK-591, BAY-X-1005) mostly concentrated on asthma cure, and resulted in promising readouts in preclinical and clinical studies with asthma patients. Following the recent elucidation of the 3D-structure of FLAP, development of new inhibitor chemotypes is highly accelerated, eventually leading to the evolution of many un-drug-like structures into more drug-like entities such as AZD6642 and BI665915 as development candidates. The most clinically advanced FLAP inhibitor to date is GSK2190918 (formerly AM803) that has successfully completed phase II clinical trials in asthmatics. Concluding, although there are no FLAP inhibitors reached to the drug approval phase yet, due to the rising number of indications for anti-LT therapy such as atherosclerosis, FLAP inhibitor development remains a significant research field. FLAP inhibitors reviewed herein are classified into four sub-classes as the first-generation FLAP inhibitors (indole and quinoline derivatives), the second-generation FLAP inhibitors (diaryl-alkanes and biaryl amino-heteroarenes), the benzimidazole-containing FLAP inhibitors and other FLAP inhibitors with polypharmacology for easiness of the reader. Hence, we meticulously summarize how FLAP inhibitors historically developed from scratch to their current advanced state, and leave the reader with a positive view that a FLAP inhibitor might soon reach to the need of patients who may require anti-LT therapy.
Collapse
|
10
|
Pergola C, Gerstmeier J, Mönch B, Çalışkan B, Luderer S, Weinigel C, Barz D, Maczewsky J, Pace S, Rossi A, Sautebin L, Banoglu E, Werz O. The novel benzimidazole derivative BRP-7 inhibits leukotriene biosynthesis in vitro and in vivo by targeting 5-lipoxygenase-activating protein (FLAP). Br J Pharmacol 2015; 171:3051-64. [PMID: 24641614 DOI: 10.1111/bph.12625] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/25/2014] [Accepted: 02/03/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Leukotrienes (LTs) are inflammatory mediators produced via the 5-lipoxygenase (5-LOX) pathway and are linked to diverse disorders, including asthma, allergic rhinitis and cardiovascular diseases. We recently identified the benzimidazole derivative BRP-7 as chemotype for anti-LT agents by virtual screening targeting 5-LOX-activating protein (FLAP). Here, we aimed to reveal the in vitro and in vivo pharmacology of BRP-7 as an inhibitor of LT biosynthesis. EXPERIMENTAL APPROACH We analysed LT formation and performed mechanistic studies in human neutrophils and monocytes, in human whole blood (HWB) and in cell-free assays. The effectiveness of BRP-7 in vivo was evaluated in rat carrageenan-induced pleurisy and mouse zymosan-induced peritonitis. KEY RESULTS BRP-7 potently suppressed LT formation in neutrophils and monocytes and this was accompanied by impaired 5-LOX co-localization with FLAP. Neither the cellular viability nor the activity of 5-LOX in cell-free assays was affected by BRP-7, indicating that a functional FLAP is needed for BRP-7 to inhibit LTs, and FLAP bound to BRP-7 linked to a solid matrix. Compared with the FLAP inhibitor MK-886, BRP-7 did not significantly inhibit COX-1 or microsomal prostaglandin E2 synthase-1, implying the selectivity of BRP-7 for FLAP. Finally, BRP-7 was effective in HWB and impaired inflammation in vivo, in rat pleurisy and mouse peritonitis, along with reducing LT levels. CONCLUSIONS AND IMPLICATIONS BRP-7 potently suppresses LT biosynthesis by interacting with FLAP and exhibits anti-inflammatory effectiveness in vivo, with promising potential for further development.
Collapse
Affiliation(s)
- C Pergola
- Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: enzymes. Br J Pharmacol 2013; 170:1797-867. [PMID: 24528243 PMCID: PMC3892293 DOI: 10.1111/bph.12451] [Citation(s) in RCA: 415] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
12
|
Steinhilber D, Hofmann B. Recent advances in the search for novel 5-lipoxygenase inhibitors. Basic Clin Pharmacol Toxicol 2013; 114:70-7. [PMID: 23953428 DOI: 10.1111/bcpt.12114] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/17/2013] [Indexed: 12/28/2022]
Abstract
5-Lipoxygenase (5-LO) is an important enzyme of the arachidonic acid cascade and catalyses with the help of FLAP, the 5-LO-activating protein, the formation of bioactive leukotrienes (LTs). LTs are inflammatory mediators playing a pathophysiological role in different diseases such as asthma, allergic rhinitis as well as cardiovascular diseases and certain types of cancer. Up to now, only one 5-LO inhibitor is on the market, zileuton for the treatment of asthma. With the rising number of indications for anti-LT therapy, 5-LO inhibitor drug development becomes more and more important. This MiniReview gives an update on 5-LO inhibitors currently under clinical development. Furthermore, the recent advances in the search for novel 5-lipoxygenase inhibitors with a focus on computational methods are summarized. Currently, licofelone is the compound with the highest clinical development status (completed phase III trials). 5-LO inhibitor screening programmes based on computational methods could deliver several promising drug-like new molecules. These activities can be expected to be driven by the newly resolved structure of human 5-LO in the future, enabling structure-based drug design. For the prospective drugs in late-stage clinical development, the future will show their clinical safety and efficacy in the particular diseases.
Collapse
Affiliation(s)
- Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany
| | | |
Collapse
|
13
|
|
14
|
Song S, Zhu SF, Li Y, Zhou QL. Iridium-Catalyzed Enantioselective Hydrogenation of α,β-Unsaturated Carboxylic Acids with Tetrasubstituted Olefins. Org Lett 2013; 15:3722-5. [DOI: 10.1021/ol401593a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Song Song
- State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Shou-Fei Zhu
- State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Li
- State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
15
|
Haeggström JZ, Funk CD. Lipoxygenase and leukotriene pathways: biochemistry, biology, and roles in disease. Chem Rev 2011; 111:5866-98. [PMID: 21936577 DOI: 10.1021/cr200246d] [Citation(s) in RCA: 654] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jesper Z Haeggström
- Department of Medical Biochemistry and Biophysics, Division of Chemistry 2, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
16
|
Busacca CA, Fandrick DR, Song JJ, Senanayake CH. The Growing Impact of Catalysis in the Pharmaceutical Industry. Adv Synth Catal 2011. [DOI: 10.1002/adsc.201100488] [Citation(s) in RCA: 343] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
|
18
|
Xie JH, Zhou QL. Chiral diphosphine and monodentate phosphorus ligands on a spiro scaffold for transition-metal-catalyzed asymmetric reactions. Acc Chem Res 2008; 41:581-93. [PMID: 18311931 DOI: 10.1021/ar700137z] [Citation(s) in RCA: 562] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The preparation of chiral compounds in enantiomerically pure form is a challenging goal in modern organic synthesis. The use of chiral metal complex catalysis is a powerful, economically feasible tool for the preparation of optically active organic compounds on both laboratory and industrial scales. In particular, the metals coordinated by one or more chiral phosphorus ligands exhibit amazing enantioselectivity and reactivity. Many chiral phosphorus ligands have been synthesized and used in transition-metal-catalyzed asymmetric reactions in past decades. However, a large number of reactions still lack effective chiral ligands, and the enantioselectivities in many reactions are substrate-dependent. The development of effective chiral phosphorus ligands, especially ligands having novel chiral backbones, is still an important task in the area of asymmetric catalysis. Molecules containing a spirocyclic framework are ubiquitous in nature. The synthesis of molecules with this spiro structure can be traced back to 100 years ago. However, the use of this spirocyclic framework to construct chiral phosphorus ligands is a recent event. This Account outlines the design and synthesis of a new family of chiral spiro phosphorus ligands including spiro diphosphines and spiro monodentate phosphorus ligands with 1,1'-spirobiindane and 9,9'-spirobifluorene backbone and their applications in transition-metal-catalyzed asymmetric hydrogenation and carbon-carbon bond formation reactions. The chiral spiro diphosphine lgands SDP with a 1,1'-spirobiindane backbone and SFDP with a 9,9'-spirobifluorene backbone, and the spiro monophosphorus ligands including phosphoramidites, phosphites, phosphonites, and phospholane with a 1,1'-spirobiindane backbone were synthesized in good yields from enantiomerically pure 1,1'-spirobiindane-7,7'-diol and 9,9'-spirobifluoren-1,1'-diol. The ruthenium complexes of chiral spiro diphosphine ligands proved to be very effective catalysts for asymmetric hydrogenations of ketones, alpha-arylaldehydes and alpha,beta-unsaturated acids. The rhodium complexes of chiral spiro monophosphorus ligands are highly enantioselective for the asymmetric hydrogenations of alpha- and beta-dehydroamino acid derivatives, alpha-arylethenyl acetamides and non- N-acyl enamines. The spiro monophosphorus ligands were demonstrated to be highly efficient for the Rh-catalyzed asymmetric addition of arylboronic acids to aldehydes and N-tosylarylimines, Pd-catalyzed asymmetric allylation of aldehydes with allylic alcohols, Cu-catalyzed asymmetric ring opening reactions with Grignard reagents, and Ni-catalyzed asymmetric hydrovinylation of styrene derivatives with ethylene. The chiral spiro phosphorus ligands show high enantioselectivities for a wide range of transition-metal-catalyzed asymmetric reactions. In most of these transformations, the enantioselectivities of spiro phosphorus ligands are superior to those obtained by using the corresponding phosphorus ligands with other backbones. These results arise from the intriguing chiral inducement of spiro structures of the ligands.
Collapse
Affiliation(s)
- Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Kreft AF, Schiehser GA, Skotnicki JS. Patent Update: Anti-inflammatory Patent Highlights from the Second Half of 1992. ACTA ACUST UNITED AC 2008. [DOI: 10.1517/13543776.3.5.513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Brooks DW. Progress with investigational drugs for the treatment of pulmonary and inflammatory diseases. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.3.2.185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Rådmark O, Samuelsson B. 5-Lipoxygenase: Regulation and possible involvement in atherosclerosis. Prostaglandins Other Lipid Mediat 2007; 83:162-74. [PMID: 17481551 DOI: 10.1016/j.prostaglandins.2007.01.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This review article focuses on two aspects regarding 5-lipoxygenase. First, mechanisms for activation of the enzyme. Second, the involvement of 5-lipoxygenase and leukotrienes in atherosclerosis.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry II, Karolinska Institute, S-17177 Stockholm, Sweden.
| | | |
Collapse
|
22
|
Detsi A, Bouloumbasi D, Prousis KC, Koufaki M, Athanasellis G, Melagraki G, Afantitis A, Igglessi-Markopoulou O, Kontogiorgis C, Hadjipavlou-Litina DJ. Design and synthesis of novel quinolinone-3-aminoamides and their alpha-lipoic acid adducts as antioxidant and anti-inflammatory agents. J Med Chem 2007; 50:2450-8. [PMID: 17444626 DOI: 10.1021/jm061173n] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of N-substituted-quinolinone-3-aminoamides and their hybrids containing the alpha-lipoic acid functionality were designed and synthesized as potential bifunctional agents combining antioxidant and anti-inflammatory activity. The new compounds were evaluated for their antioxidant activity and for their ability to inhibit in vitro lipoxygenase as well as for their anti-inflammatory activity in vivo. In general, the derivatives were found to be potent antioxidant or anti-inflammatory agents. The results are discussed in terms of structure-activity relationships and an attempt is made to define the structural features required for activity.
Collapse
Affiliation(s)
- Anastasia Detsi
- Laboratory of Organic Chemistry, School of Chemical Engineering, National Technical University of Athens, Zorgafou Campus, GR 157 73, Athens, Greece.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Xie JH, Zhou ZT, Kong WL, Zhou QL. Ru-Catalyzed Asymmetric Hydrogenation of Racemic Aldehydes via Dynamic Kinetic Resolution: Efficient Synthesis of Optically Active Primary Alcohols. J Am Chem Soc 2007; 129:1868-9. [PMID: 17263537 DOI: 10.1021/ja0680109] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | | | | | | |
Collapse
|
24
|
Eggler JF, Cheng JB, Cooper K, Hanak LM, Pillar JS, Zdankiewicz M. Synthesis of an 125I analog of MK-0591 and characterization of a 5-lipoxygenase activating protein binding assay. J Labelled Comp Radiopharm 2006. [DOI: 10.1002/jlcr.2580341204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Rotondo S, Krauze-Brzósko K, Manarini S, Evangelista V, Cerletti C. Licofelone, an inhibitor of cyclooxygenase and 5-lipoxygenase, specifically inhibits cyclooxygenase-1-dependent platelet activation. Eur J Pharmacol 2004; 488:79-83. [PMID: 15044038 DOI: 10.1016/j.ejphar.2004.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2003] [Revised: 02/04/2004] [Accepted: 02/06/2004] [Indexed: 10/26/2022]
Abstract
5-Lipoxygenase/cyclooxygenase inhibitors, possessing anti-inflammatory action and gastric safety due to cyclooxygenase-2 and 5-lipoxygenase inhibition and antiplatelet activity due to cyclooxygenase-1 blockade, would be beneficial in the treatment of ischemic disease because they may reduce, at the same time, inflammation, underlying the atherosclerotic process, and platelet activation, responsible for acute thrombotic events. In this study, we characterized the antiplatelet effects of the new 5-lipoxygenase/cyclooxygenase inhibitor licofelone ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3,dihydro-1H-pyrrolizine-5-yl]-acetic acid. Licofelone completely prevented platelet aggregation induced in platelet-rich plasma by threshold aggregating concentrations of arachidonic acid (0.87+/-0.14 mM) at threshold inhibitory concentrations of 0.75+/-0.35 microM (n=5). Platelet-rich plasma aggregation induced by threshold aggregating concentrations of collagen/adrenalin (0.3+/-0.05 microg/ml and 0.4+/-0.1 microM, respectively) was reduced to 3.2+/-2% of control at licofelone 100 microM, (P<0.05, n=6). Washed platelet aggregation induced by threshold aggregating concentrations of thrombin (0.07+/-0.01 U/ml) was only partially affected by licofelone at concentrations one or two order of magnitude higher than those fully preventing arachidonic acid-induced aggregation (44+/-11% of control at 100 microM, P<0.05, n=7). Failure to prevent aggregation triggered by high concentrations of collagen/adrenalin in aspirin-treated platelets supports cyclooxygenase-1 as a specific target of licofelone. In fact, licofelone inhibited thromboxane B(2) (TxB(2)) production by all the agonists tested at concentrations between 0.5 and 50 microM. At this concentration, TxB(2) production was reduced at values similar to those of unstimulated platelets. These results indicate that, at clinically relevant concentrations, licofelone exerts a potent antiplatelet effect mediated by the inhibition of cyclooxygenase-1 activity.
Collapse
Affiliation(s)
- Serenella Rotondo
- Laboratory of Vascular Biology and Pharmacology, Consorzio Mario Negri Sud, Via Nazionale, 66030 Santa Maria Imbaro, Italy.
| | | | | | | | | |
Collapse
|
26
|
Rotondo S, Dell'Elba G, Krauze-Brzósko K, Manarini S, Martelli N, Pecce R, Evangelista V, Cerletti C. Licofelone, a dual lipoxygenase-cyclooxygenase inhibitor, downregulates polymorphonuclear leukocyte and platelet function. Eur J Pharmacol 2002; 453:131-9. [PMID: 12393068 DOI: 10.1016/s0014-2999(02)02385-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Polymorphonuclear leukocytes are strongly implicated in the pathogenesis of inflammatory disease. Polymorphonuclear leukocyte recruitment at sites of inflammation, mainly sustained by the beta2-integrins, is followed by the synthesis and release of inflammatory mediators, such as leukotrienes, proteolytic enzymes and reactive oxygen species. Functional and metabolic interactions between polymorphonuclear leukocytes and platelets can contribute to and exacerbate the process. The effects of the dual 5-lipoxygenase and cyclooxygenase inhibitor licofelone ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-yl]-acetic acid) were studied on arachidonic acid transcellular metabolism occurring between polymorphonuclear leukocytes and platelets. The formation of leukotriene C(4), a leukotriene A(4)-derived metabolite, by mixed polymorphonuclear leukocyte/platelet suspensions stimulated with 10 microM A23187 was inhibited by licofelone with an IC(50) of 3.8 +/- 0.07 microM. The formation of 5,12-di-hydroxy-eicosatetraenoic acid (HETE) was abolished at concentrations > or = 10 microM. Licofelone also inhibited the generation of reactive oxygen species by polymorphonuclear leukocytes stimulated with 1 microM n-formyl-methionyl-leucyl-phenylalanine (fMLP), 10 nM complement fraction 5a (C5a) and 1 microM platelet activating factor (PAF) with IC(50)s of 24.4 +/- 0.6, 11.0 +/- 1.5 and 11.7 +/-1.2 microM; elastase release induced by the three agonists was inhibited with IC(50)s of 12.2 +/- 2.2, 23.5 +/- 8 and 2.6 +/- 1 microM, respectively. Homotypic polymorphonuclear leukocyte aggregation induced by fMLP, C5A and PAF was inhibited by licofelone with IC(50)s of 23.7 +/- 4.8, 15.6 +/- 3.4 and 15.4 +/- 4 microM, respectively. The present study extends the anti-lipoxygenase and anti-cyclooxygenase activities of licofelone to the production of arachidonic acid metabolites generated as a consequence of polymorphonuclear leukocyte-platelet transcellular metabolism and to polymorphonuclear leukocyte responses relevant to the pathogenesis of inflammation. The coexistence within the same molecule of a wide spectrum of anti-inflammatory properties is of interest.
Collapse
Affiliation(s)
- Serenella Rotondo
- G Bizzozero Laboratory of Blood and Vascular Cell Interactions, Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Via Nazionale, Santa Maria Imbaro 66030, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
In this article, it has been attempted to review data primarily on the activation of human 5-lipoxygenase, in vitro and in the cell. First, structural properties and enzyme activities are described. This is followed by the activating factors: Ca2+, membranes, ATP, and lipid hydroperoxide. Also, studies on phosphorylation of 5-lipoxygenase, interaction with other proteins, and the intracellullar mobility of 5-lipoxygenase, are reviewed.
Collapse
Affiliation(s)
- Olof Rådmark
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
28
|
Gompertz S, Stockley RA. A randomized, placebo-controlled trial of a leukotriene synthesis inhibitor in patients with COPD. Chest 2002; 122:289-94. [PMID: 12114372 DOI: 10.1378/chest.122.1.289] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVE Patients with COPD classically have neutrophilic bronchial inflammation and raised airway concentrations of the neutrophil chemoattractant leukotriene B(4) (LTB(4)). A small phase II trial was conducted to assess the effects of a leukotriene synthesis inhibitor on bronchial inflammation in patients with stable COPD. DESIGN A randomized, double-blind, placebo-controlled, parallel-group study. SETTING Respiratory medicine department of a university hospital. PATIENTS AND INTERVENTION Seventeen patients with chronic bronchitis and COPD (mean FEV(1), 35.5% predicted; SD, 14.8% predicted) were randomized to receive 14 days of the oral leukotriene synthesis inhibitor BAYx1005 (500 mg bid) or placebo. MEASUREMENTS AND RESULTS Spontaneous sputum samples obtained at baseline and at the end of treatment were assayed for LTB(4), myeloperoxidase (an indirect marker of neutrophil numbers and/or activation), and chemotactic activity (Boyden chamber). After 14 days, there were no significant differences (p > 0.05) in absolute LTB(4) concentrations between the two treatment groups. However, BAYx1005 treatment produced a significantly greater median reduction in LTB(4) of - 3.1 nM (interquartile range [IQR], - 9.6 to - 0.2 nM) vs 3.0 nM (IQR, - 0.3 to 8.5 nM) [p = 0.001], with concentrations decreasing from 8.0 nM (IQR, 4.3 to 24.4 nM) at baseline to 4.2 nM (IQR, 1.9 to 11.9 nM) at the end of treatment (p = 0.03). There were no changes in the placebo group and no differences in sputum myeloperoxidase concentration or chemotaxis between the two treatment arms (p > 0.05). CONCLUSIONS This small study suggests that a leukotriene synthesis inhibitor can produce modest reductions in some measures of neutrophilic bronchial inflammation in patients with COPD. This class of anti-inflammatory agent requires further study in larger numbers of patients to determine clinical benefit.
Collapse
Affiliation(s)
- Simon Gompertz
- Department of Respiratory Medicine, Queen Elizabeth Hospital, Birmingham, UK.
| | | |
Collapse
|
29
|
Steinbrink K, Schönlau F, Rescher U, Henseleit U, Vogel T, Sorg C, Sunderkötter C. Ineffective elimination of Leishmania major by inflammatory (MRP14-positive) subtype of monocytic cells. Immunobiology 2000; 202:442-59. [PMID: 11205374 DOI: 10.1016/s0171-2985(00)80103-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Myeloid-related protein (MRP) 14, an intracellular protein involved in calcium-dependent activation of myeloid cells, presents a differentiation marker for a subtype of macrophages. In experimental leishmaniasis, BALB/c mice succumb to visceral dissemination after infection with L. major, due to a Th2 cell response, while C57Bl/6 mice develop protective immunity associated with a Th1 cell response. We have previously shown that resistance in (C57Bl/6 mice was also associated with a significantly lower percentage of MRP14-positive cells in the infiltrate than in susceptible BALB/c mice. In C57Bl/6 mice, weekly injections of bone marrow (BM) cells enriched with MRP14-positive cells (d1 of culture) did not reverse, but prolonged the course of infection, associated with increased local parasite spread. In BALB/c mice a single dose of an antiphlogistic agent (dexamethasone or lipoxygenase inhibitor) was associated with reduction of infiltrating MRP14-positive cells and also with a decrease of parasite loads in footpads, lymph nodes as well as spleens, and with delayed progression of disease, Double labeling experiments in vitro revealed that at least 43.1% of MRP14-positive mononuclear cells in BM cultures (8h) had phagocytosed parasites after 4 h of co-incubation. Activation by IFN-gamma (20 U/ml) for 24h and 48h did not significantly reduce parasite load in these cells. In contrast, 77.0% of F4/80-positive macrophages (6d of culture) were infected with L. major parasites and these cells responded to activation with IFN-gamma (20 U/ml) with significant reduction of parasite load (25.3%). The protein MRP14 did not have an effect on parasite survival in vitro. Thus, the impaired capability of MRP14-positive cells to kill L. major upon stimulation may be one reason for the adverse course of infection observed with their increased appearance.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/administration & dosage
- Antigens, Differentiation/analysis
- Antigens, Differentiation/pharmacology
- Calgranulin B
- Cells, Cultured
- Dexamethasone/administration & dosage
- Disease Models, Animal
- Female
- Immunohistochemistry
- In Vitro Techniques
- Interferon-gamma/pharmacology
- Leishmania major/drug effects
- Leishmania major/pathogenicity
- Leishmaniasis, Cutaneous/drug therapy
- Leishmaniasis, Cutaneous/immunology
- Leishmaniasis, Cutaneous/parasitology
- Lymph Nodes/parasitology
- Macrophages/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Monocytes/immunology
- Phagocytosis
- Quinolines/administration & dosage
- S100 Proteins/analysis
- S100 Proteins/pharmacology
- Spleen/parasitology
Collapse
Affiliation(s)
- K Steinbrink
- Institute of Experimental Dermatology, University of Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Steele VE, Holmes CA, Hawk ET, Kopelovich L, Lubet RA, Crowell JA, Sigman CC, Kelloff GJ. Potential use of lipoxygenase inhibitors for cancer chemoprevention. Expert Opin Investig Drugs 2000; 9:2121-38. [PMID: 11060797 DOI: 10.1517/13543784.9.9.2121] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Increasing evidence suggests that lipoxygenase (LO)-catalysed metabolites have a profound influence on the development and progression of human cancers. Compared with normal tissues, significantly elevated levels of LO products have been found in breast tumours, colon cancers, lung, skin and prostate cancers, as well as in cells from patients with both acute and chronic leukaemias. LO-mediated products elicit diverse biological activities needed for neoplastic cell growth, influencing growth factor and transcription factor activation, oncogene induction, stimulation of tumour cell adhesion and regulation of apoptotic cell death. Agents that block LO catalytic activity may be effective in preventing cancer by interfering with signalling events needed for tumour growth. In the past ten years, pharmaceuticals agents that specifically inhibit the 5-LO metabolic pathway have been developed to treat inflammatory diseases such as asthma, arthritis and psoriasis. Some of these compounds possess anti-oxidant properties and may be effective in preventing cancer by blocking free radical-induced genetic damage or by preventing the metabolic activation of carcinogens. Other compounds may work by negatively modulating DNA synthesis. Pharmacological profiles of potential chemopreventive agents are compiled from enzyme assays, in vitro testing (e.g., cell proliferation inhibition in human cancer cells) and in vivo animal carcinogenesis models (e.g., N-methyl-N-nitrosourea-induced rat mammary cancer, benzo(a)pyrene-induced lung tumours in strain A/J mice and hormone-induced prostate tumours in rats). In this way, compounds are identified for chemoprevention trials in human subjects. Based on currently available data, it is expected that the prevention of lung and prostate cancer will be initially studied in human trials of LO inhibitors.
Collapse
Affiliation(s)
- V E Steele
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Affiliation(s)
- O P Rådmark
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
32
|
Müller-Peddinghaus R. Pharmacological aspects of 5-lipoxygenase inhibition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1999; 447:117-21. [PMID: 10086188 DOI: 10.1007/978-1-4615-4861-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
33
|
Mancini JA, Waterman H, Riendeau D. Cellular oxygenation of 12-hydroxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid by 5-lipoxygenase is stimulated by 5-lipoxygenase-activating protein. J Biol Chem 1998; 273:32842-7. [PMID: 9830031 DOI: 10.1074/jbc.273.49.32842] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been proposed that 5-lipoxygenase (5-LO)-activating protein (FLAP) is an arachidonate transfer protein for leukotriene biosynthesis. Using the Spodoptera frugiperda (Sf9) insect cells, we demonstrate that FLAP causes a large stimulation (190-fold) of the conversion of 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE) to 5, 12-diHETE when co-expressed with 5-lipoxygenase. We also demonstrate that FLAP can stimulate (2-2.5-fold) the oxygenation of 15(S)-HETE by 5-LO to 5,15-diHETE. The stimulation of both 12(S)-HETE and 15(S)-HETE oxygenation by 5-LO is completely inhibitable by the FLAP inhibitor, MK-886. In order to determine which residues of FLAP are important for 12(S)-HETE and arachidonic acid utilization by 5-LO, various mutants of FLAP were co-expressed with 5-LO in Sf9 cells. The FLAP deletion mutants del 37-53, del 52-58, del 106-108, and del 148-161 and the point mutant D62N were analyzed. The D62N mutation, which reduces the binding of indole inhibitors to FLAP, had no effect on the stimulation of substrate utilization by 5-LO. In contrast to wild type FLAP, the mutant proteins del 37-53, del 106-108, and del 148-161 failed to stimulate 12(S)-HETE and arachidonic acid utilization by 5-LO. Only one of the latter three mutations (del 37-53) has been shown to abolish the binding of indole inhibitors to FLAP. These results suggest that the lipid binding site of FLAP overlaps the inhibitor binding site and occupies several regions of the protein not essential for inhibitor binding. Because FLAP can stimulate the utilization of 12(S)-HETE, 15(S)-HETE, and arachidonic acid by 5-LO, FLAP may also function as a more general lipid carrier protein for the biosynthesis of multiple oxygenation products of arachidonic acid in addition to its role in leukotriene biosynthesis.
Collapse
Affiliation(s)
- J A Mancini
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Kirkland, Quebec H9R 4P8, Canada.
| | | | | |
Collapse
|
34
|
Sala A, Rossoni G, Berti F, Müller-Peddinghaus R, Folco G. Transcellular synthesis of Cys-LT: from isolated cells to complex organ system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 433:95-8. [PMID: 9561112 DOI: 10.1007/978-1-4899-1810-9_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Sala
- Center for Cardiopulmonary Pharmacology, University of Milan, Italy
| | | | | | | | | |
Collapse
|
35
|
Larsson PK, Hammarberg T, Johnsson T, Lindgren JA, Rådmark O, Claesson HE. Effects of 1-chloro-2,4,6-trinitrobenzene on 5-lipoxygenase activity and cellular leukotriene synthesis. Biochem Pharmacol 1998; 55:863-71. [PMID: 9586959 DOI: 10.1016/s0006-2952(97)00579-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
5-Lipoxygenase (EC 1.13.11.34) is the key enzyme in the regulation of leukotriene synthesis. Here, the effects of various substituted nitrobenzene compounds on 5-lipoxygenase activity and the formation of leukotriene B4 (LTB4) were studied in polymorphonuclear leukocytes (PMNL), B lymphocytes, and human whole blood. 1-Chloro-2,4,6-trinitrobenzene (TNCB) was found to inhibit calcium ionophore A23187-induced leukotriene synthesis in PMNL in a biphasic manner. Thus, 1.0 microM TNCB caused 50% inhibition of LTB4 formation, but only 16% inhibition was found at 10 times higher concentration. In contrast, this higher concentration of TNCB activated the synthesis of LTB4 when PMNL were stimulated with arachidonic acid alone, demonstrating that TNCB can exert both stimulatory and inhibitory effects on leukotriene synthesis depending on the experimental conditions. The inhibitory effect of 1.0 microM TNCB on ionophore A23187-induced leukotriene synthesis could be circumvented by addition of exogenous arachidonic acid. At high concentrations of TNCB (25-100 microM), the drug blocked ionophore A23187-induced leukotriene synthesis. TNCB also inhibited LTB4 formation in B lymphocytes, as well as in human whole blood. The activity of recombinant 5-lipoxygenase was inhibited by TNCB, and reduced glutathione or beta-mercaptoethanol counteracted this inhibition. This suggests that TNCB might inhibit 5-lipoxygenase by alkylating thiol groups. TNCB possessed a high specificity for 5-lipoxygenase with only modest inhibitory effects on 12-lipoxygenase (EC 1.13.11.31), 15-lipoxygenase (EC 1.13.11.12), and phospholipase A2 (EC 3.1.1.4) activities. Taken together, these results show that TNCB can both specifically inhibit and stimulate leukotriene formation and might be useful in further studies on the regulation of 5-lipoxygenase.
Collapse
Affiliation(s)
- P K Larsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
36
|
Fischer AR, Rosenberg MA, Roth M, Loper M, Jungerwirth S, Israel E. Effect of a novel 5-lipoxygenase activating protein inhibitor, BAYx 1005, on asthma induced by cold dry air. Thorax 1997; 52:1074-7. [PMID: 9516902 PMCID: PMC1758459 DOI: 10.1136/thx.52.12.1074] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Leukotrienes have been implicated in the mediation of airway obstruction induced by hyperventilation of cold dry air in asthmatic subjects. The effect of a novel inhibitor of 5-lipoxygenase activating protein, BAYx 1005, on the bronchospastic response to cold dry air hyperventilation was investigated in asthmatic patients. METHODS After a screening cold dry air hyperventilation challenge to document cold air responsiveness, 16 asthmatic subjects (baseline forced expiratory volume in one second (FEV1) > 60% of predicted) underwent cold air challenge three hours after receiving 750 mg of BAYx 1005 or placebo using a randomised, double blind, crossover design. Leukotriene synthesis inhibition was estimated by measuring the concentration of leukotriene B4 in whole blood stimulated with calcium ionophore A21387. RESULTS Treatment with BAYx 1005 produced a 34% (95% CI 11 to 63) increase in the amount of cold air minute ventilation required for a 10% decrease in FEV1 (PD10VE) compared with placebo (mean (SE) 37.6 (1.12) 1/min compared with 28.0 (1.13) 1/min, p < 0.006). The PD20VE increased 19% (95% CI 8 to 31) after treatment with BAYx 1005 compared with placebo (57.3(1.10)1/min versus 48.1 (1.10) 1/min, p < 0.002). Treatment with BAYx 1005 produced a 15.4% decrease in ionophore-stimulated LTB4 production, while treatment with placebo produced a 7.1% increase in ex vivo LTB4 (p < 0.02). CONCLUSIONS Treatment with BAYx 1005, a novel inhibitor of leukotriene synthesis, produced a significant blunting of cold dry air responsiveness consistent with the hypothesis that leukotrienes mediate part of the bronchoconstriction induced by hyperventilation of cold dry air.
Collapse
Affiliation(s)
- A R Fischer
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
37
|
Hamilton AL, Watson RM, Wyile G, O'Byrne PM. Attenuation of early and late phase allergen-induced bronchoconstriction in asthmatic subjects by a 5-lipoxygenase activating protein antagonist, BAYx 1005. Thorax 1997; 52:348-54. [PMID: 9196518 PMCID: PMC1758536 DOI: 10.1136/thx.52.4.348] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND The cysteinyl leukotrienes (LTC4, LTD4 and LTE4) have been implicated in the pathogenesis of allergen-induced airway responses. The effects of pretreatment with BAYx 1005, an inhibitor of leukotriene biosynthesis via antagonism of 5-lipoxygenase activating protein, on allergen-induced early and late asthmatic responses has been evaluated. METHODS Eight atopic subjects with mild asthma participated in a two period, double blind, placebo controlled, cross-over trial. Subjects were selected on the basis of a forced expiratory volume in one second (FEV1) of > 70% predicted, a methacholine provocative concentration causing a 20% fall in FEV1 (PC20) of < 32 mg/ ml, a documented allergen-induced early response (EAR, > 15% fall in FEV1 0-1 hour after allergen inhalation) and late response (LAR, > 15% fall in FEV1 3-7 hours after allergen inhalation), and allergen-induced airway hyperresponsiveness (at least a doubling dose reduction in the methacholine PC20 30 hours after allergen inhalation). During the treatment periods subjects received BAYx 1005 (500 mg twice daily) or placebo for 3.5 days; treatment periods were separated by at least two weeks. On the third day of treatment, two hours after administration of medication, subjects performed an allergen inhalation challenge and FEV1 was measured for seven hours. RESULTS Treatment with BAYx 1005 attenuated the magnitude of both the allergen-induced early and late asthmatic responses. The mean (SE) maximal fall in FEV1 during the EAR was 26.6 (3.3)% during placebo treatment and 11.4 (3.3)% during treatment with BAYx 1005 (mean difference 15.2 (95% confidence interval (CI) 9.4 to 21.00) with a mean protection afforded by BAYx 1005 of 57.1%. The mean (SE) maximal fall in FEV1 during the LAR was 19.8 (5.7)% during placebo treatment and 10.7 (4.4)% during BAYx 1005 treatment (mean difference 9.2 (95% CI 1.4 to 17.0) with a mean protection afforded by BAYx 1005 of 46.0%. The area under the time response curve (AUC0-3) was also reduced after treatment with BAYx 1005 compared with placebo by 86.5%.h (mean difference 26.3 (95% CI 17.1 to 38.5)) and the AUC3-7 by 59.6%.h (mean difference 26.9 (95% CI-3.8 to 57.6)). CONCLUSIONS These results show that antagonism of 5-lipoxygenase activating protein can attenuate allergen-induced bronchoconstrictor responses and support an important role for the cysteinyl leukotrienes in mediating these asthmatic responses.
Collapse
Affiliation(s)
- A L Hamilton
- Department of Medicine, McMaster University, Hamilton, Ontario Canada
| | | | | | | |
Collapse
|
38
|
Dahlén B, Kumlin M, Ihre E, Zetterström O, Dahlén SE. Inhibition of allergen-induced airway obstruction and leukotriene generation in atopic asthmatic subjects by the leukotriene biosynthesis inhibitor BAYx 1005. Thorax 1997; 52:342-7. [PMID: 9196517 PMCID: PMC1758539 DOI: 10.1136/thx.52.4.342] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Leukotriene receptor antagonists significantly blunt allergen-induced bronchoconstriction in asthmatic subjects. Inhibitors of leukotriene synthesis should theoretically provide similar protection, but conflicting results have been obtained when synthesis inhibitors have been tested in allergen challenge. BAYx 1005, a new inhibitor of leukotriene synthesis, was therefore evaluated in an allergen bronchoprovocation study. METHODS Ten men with mild allergic asthma and bronchial hyperresponsiveness to histamine were recruited. On two different occasions each subject inhaled a single dose of allergen, previously determined to cause at least a 20% fall in forced expiratory volume in one second (FEV1) four hours after ingestion of 750 mg BAYx 1005 or placebo in a double blind crossover design. Urinary excretion of leukotriene E4 was measured before and during the challenges. RESULTS The mean (SE) maximal fall in FEV1 was 7.1 (1.7)% after BAYx 1005 and 21.0 (3.0)% after placebo (p < 0.001). The mean difference between treatments was 13.9 (95% CI 7.0 to 20.8) for the maximal fall in FEV1. All subjects were protected by BAYx 1005, the mean inhibition of the fall in FEV1 being 70.0 (7.0)%. The mean area under the curve (AUC) for urinary excretion of leukotriene E4 in the first two hours after the challenge was 1.7 (0.9) after placebo and 0.4 (0.6) after BAYx 1005 (difference = 1.3 (95% CI-0.1 to 2.7); p < 0.05). CONCLUSIONS These results indicate that BAYx 1005 is a potent inhibitor of allergen-provoked leukotriene synthesis in asthmatic subjects and lend further support to the suggestion that leukotrienes are important mediators of allergen-induced bronchoconstriction.
Collapse
Affiliation(s)
- B Dahlén
- Department of Internal Medicine at Karolinska Hospital, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
39
|
Sala A, Folco G, Henson PM, Murphy RC. Pharmacological modulation of human platelet leukotriene C4-synthase. Biochem Pharmacol 1997; 53:905-8. [PMID: 9113110 DOI: 10.1016/s0006-2952(96)00819-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study was to test if human platelet leukotriene C4-synthase (LTC4-S) is pharmacologically different from cloned and expressed LTC4-S and, in light of the significant homologies between 5-lipoxygenase activating protein (FLAP) and LTC4-S, if different potencies of leukotriene synthesis inhibitors acting through binding with FLAP (FLAP inhibitors) reflect in different potencies as LTC4-S inhibitors. Leukotriene C4 (LTC4) synthesis by washed human platelets supplemented with synthetic leukotriene A4 (LTA4) was studied in the absence and presence of two different, structurally unrelated FLAP inhibitors (MK-886 and BAY-X1005) as well as a direct 5-lipoxygenase inhibitor (zileuton). LTC4 production was analyzed by RP-HPLC coupled to diode array detection. We report that human platelet LTC4-S was inhibited by MK-886 and BAY-X1005 (IC50 of 4.7 microM and 91.2 microM, respectively), but not by zileuton (inactive up to 300 microM); all 3 compounds were able to inhibit 5-lipoxygenase metabolite biosynthesis in intact human polymorphonuclear leukocytes (IC50 of 0.044 microM, 0.85 microM, and 1.5 microM, respectively). Platelet LTC4-S does not appear pharmacologically different from expression cloned LTC4-S. LTC4-S inhibition by FLAP inhibitors is in agreement with the significant homology reported for expression-cloned LTC4-S with FLAP, Furthermore, functional homology of the binding sites for inhibitors on LTC4-S and FLAP is suggested by the conservation of the relative potencies of MK-886 and BAY-X1005 vs FLAP-dependent 5-lipoxygenase activity and LTC4-S inhibition: MK-886 was 19.3-fold more potent than BAY-X1005 as FLAP inhibitor and 19.6-fold more potent than BAY-X1005 as LTC4-S inhibitor.
Collapse
Affiliation(s)
- A Sala
- Center for Cardiopulmonary Pharmacology, School of Pharmacy, University of Milan, Italy
| | | | | | | |
Collapse
|
40
|
Chapter 9. Leukotriene Modulators as Therapeutic Agents in Asthma and Other Inflammatory Diseases. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1997. [DOI: 10.1016/s0065-7743(08)61467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
41
|
Gorenne I, Alaoui HS, Gascard JP, Labat C, Norel X, De Montpreville V, Brink C. Leukotriene synthesis inhibition and anti-ige challenge of human lung parenchyma. Life Sci 1996; 59:PL213-9. [PMID: 8809230 DOI: 10.1016/0024-3205(96)00426-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The leukotriene (LT) synthesis inhibitors BAY x1005 and MK-886 were evaluated in human lung parenchyma challenged with an anti-IgE. The anti-IgE-induced LTE4 release was time- and dose-dependent. Treatment of the parenchyma with indomethacin (3 microM) prior to anti-IgE challenge inhibited the 6-keto prostaglandin F1 alpha (6-keto PGF1 alpha) release and enhanced (36%) the quantities of LTE4 detected during IgE-stimulations. BAY x1005 and MK-886 were assessed in the presence of indomethacin (3 microM) and the IC50 values for both inhibitors were similar (0.13 microM). BAY x1005 (1 microM) produced the same percent of inhibition of anti-IgE-induced LTE4 release in the presence or absence of indomethacin. BAY x1005 (1 microM) did not alter the 6-keto PGF1 alpha release during anti-IgE challenge. The results indicate that BAY x1005 and MK-886 are potent inhibitors of LT synthesis when human lung parenchyma were stimulated by an anti-IgE.
Collapse
Affiliation(s)
- I Gorenne
- CNRS URA 1159, Centre Chirurgical Marie Lannelongue, Le Plessis-Robinson, France
| | | | | | | | | | | | | |
Collapse
|
42
|
Brooks CD, Summers JB. Modulators of leukotriene biosynthesis and receptor activation. J Med Chem 1996; 39:2629-54. [PMID: 8709092 DOI: 10.1021/jm960088k] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C D Brooks
- Abbott Laboratories, Abbott Park, Illinois 60064-3500, USA
| | | |
Collapse
|
43
|
Groen H, Moesker HL, Leeuwenkamp OR, Sollie FA, Jonkman JH. No pharmacokinetic or pharmacodynamic interaction between theophylline and the leukotriene biosynthesis inhibitor BAY x 1005. J Clin Pharmacol 1996; 36:639-46. [PMID: 8844447 DOI: 10.1002/j.1552-4604.1996.tb04229.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
An open, randomized, three-period crossover study was conducted to compare the steady-state pharmacokinetics, pharmacodynamics, and tolerability of concomitant administration of BAY x 1005 and theophylline in 12 healthy volunteers. BAY x 1005 (250 mg twice daily; treatment A) and theophylline (400 mg twice daily; treatment B), were administered alone and concomitantly (treatment C) for 6 days with a final morning dose on day 7. The treatments were separated by washout periods of at least 5 days. Pharmacokinetic parameters were derived from concentrations of BAY x 1005 and theophylline as measured by high-performance liquid chromatography in plasma collected before the morning dose on days 5 and 6 and at various times on day 7 of each period until 24 hours after drug administration. Adverse events, vital signs, electrocardiograms, and clinical laboratory studies were monitored as safety parameters. Levels of leukotriene B4 (LTB4) were assessed in plasma collected on days 1 and 7. The treatments were well tolerated by all participants. The ratios of maximum concentration (Cmax) and area under the concentration-time curve for one 12-hour dosing interval (AUC tau) for treatment C versus B for theophylline on day 7 was 98% for both parameters. For BAY x 1005, the ratios of treatment C versus treatment A were 94% for Cmax and 101% for AUC tau. Plasma LTB4 remained virtually unchanged during either treatment. Steady-state concentrations of theophylline were not affected by concomitant BAY x 1005 intake, and addition of theophylline had no clinically relevant effect on steady-state plasma concentrations of BAY x 1005. The combination of theophylline and BAY x 1005 did not lead to a change in nature, intensity, or frequency of adverse events.
Collapse
Affiliation(s)
- H Groen
- Pharma Bio-Research International BV, Zuidlaren, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- C Denzlinger
- Medizinische Klinik III, Klinikum Grosshadern, Ludwig-Maximilians Universität München, Germany
| |
Collapse
|
45
|
Nickerson-Nutter CL, Medvedeff ED. The effect of leukotriene synthesis inhibitors in models of acute and chronic inflammation. ARTHRITIS AND RHEUMATISM 1996; 39:515-21. [PMID: 8607901 DOI: 10.1002/art.1780390320] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To assess the efficacy of leukotriene synthesis inhibitors, alone and in combination with a nonsteroidal antiinflammatory drug, as potential treatments for rheumatoid arthritis (RA), using the mouse air pouch model and the collagen-induced arthritis (CIA) model. METHODS Two selective leukotriene synthesis inhibitors, Bay x 1005 and Bay y 1015, were compared with zileuton in terms of their ability to decrease exudate volume, cell infiltration, and leukotriene B4 (LTB4) production in response to zymosan injection in the mouse air pouch model. The mouse CIA model was used to assess the effect of leukotriene synthesis inhibitors in a model of chronic inflammation. Bay y 1015 and Bay x 1005, and the cyclooxygenase inhibitor naproxen, were evaluated individually and in combination, for their antiarthritic potency in the mouse CIA model. RESULTS The results indicate that neither zileuton, Bay x 1005, nor Bay y 1015 inhibited exudate production. All 3 compounds decreased LTB4 levels in be air pouch, with Bay y 1015 being the most effective. Cell infiltration was significantly decreased with Bay x 1005, but the degree of this decrease did not appear to correlate with LTB4 levels. No inhibition of arthritis was observed with any compound administered alone. In contrast, a significant inhibition of CIA was observed in animals that received both naproxen and either Bay y 1015 or Bay x 1005. CONCLUSION Inhibitors of both cyclooxygenase and leukotriene synthesis in combination may be a more effective treatment of RA than either class of inhibitors alone.
Collapse
|
46
|
Nagai H, Takeda H, Uno T, Tanaka H, Matsuo A. Effect of a novel leukotoriene synthesis inhibitor, BAY x1005, on the antigen-and LPS-induced airway hyperresponsiveness in guinea pigs. PROSTAGLANDINS 1996; 51:139-48. [PMID: 8711135 DOI: 10.1016/0090-6980(95)00184-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Due to the inhibition of 5-lipoxygenase-activating protein (FLAP), BAY x1005 is a new selective inhibitor of leukotriene synthesis. The effects of BAY x1005 on the antigen- and bacterial lipopolysaccharide (LPS)-induced airway hyperresponsiveness in guinea pigs were investigated. Six times provocation of aeroantigen caused biphasic increases in airway resistance which peaked at 1 hr (immediate phase reaction) and 4 hrs (late phase reaction). It also caused airway hyperreactivity to acetylcholine. BAY x1005 at doses of 10 mg/kg and 30 mg/kg significantly inhibited antigen-induced increase in respiratory resistance (Rrs) at 1 and 4 hrs after the last antigen challenge. Simultaneously, BAY x1005 inhibited the antigen-induced airway hyperresponsiveness at doses of 10 and 30 mg/kg and airway eosinophilia (bronchoalveolar lavage study) at a dose of 30 mg/kg. In addition, BAY x1005 at a dose of 30 mg/kg inhibited bacterial LPS-induced airway hyperreactivity to acetylcholine. In this model, BAY x1005 did not affect the increase of the number of leukocytes in bronchoalveolar lavage fluid. These results suggest that BAY x1005 is a potent anti-asthmatic agent with an inhibitory action to airway hyperreactivity.
Collapse
Affiliation(s)
- H Nagai
- Department of Pharmacology, Gifu Pharmaceutical University, Japan
| | | | | | | | | |
Collapse
|
47
|
Mamot C, Hildebrand B, Olenik C, Simmet T, Meyer DK. Evidence for the involvement of 5-lipoxygenase products in the regulation of the expression of the proenkephalin gene in cultured astroglial cells. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:79-86. [PMID: 8774948 DOI: 10.1016/0169-328x(95)00108-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cultured astroglial cells secrete eicosanoids which are produced by the cyclooxygenase and lipoxygenases. These cells also transcribe the proenkephalin gene. In the present study, it was investigated whether agents which inhibit the metabolism of arachidonic acid affect the basal and stimulated expression of the gene. Tetradecanoyl phorbol acetate (TPA; 1-1000 nmol/l) increases the concentration of proenkephalin mRNA in these cells by activating protein kinase C. The enhancement in proenkephalin mRNA caused by TPA (10 nmol/l) was not affected by the cyclooxygenase inhibitor indomethacin (5 mumol/l). However, nordihydroguaiaretic acid, which blocks cyclooxygenase and lipoxygenases, potentiated the effect of TPA on proenkephalin mRNA, when used at concentrations of 0.5-50 mumol/l. Two selective inhibitors of 5-lipoxygenase, i.e. MK886 (5 mumol/l) and BAY X1005 (1 mumol/l), also enhanced the effect of TPA (10 nmol/l) without affecting the basal expression of the gene. When added to the incubation medium, leukotriene E4 (10-1000 nmol/l) diminished in a dose-dependent manner the basal and TPA-induced expression of the proenkephalin gene. It is concluded that in astroglial cells derived from cortex of new-born rats products of 5-lipoxygenase can diminish the action of protein kinase C on the proenkephalin gene.
Collapse
Affiliation(s)
- C Mamot
- Department of Pharmacology, University of Freiburg, Germany
| | | | | | | | | |
Collapse
|
48
|
Vickers PJ. 5-Lipoxygenase-activating protein (FLAP). JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1995; 12:185-94. [PMID: 8777565 DOI: 10.1016/0929-7855(95)00018-l] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- P J Vickers
- Department of Biochemistry and Molecular Biology, Merck Frosst Centre for Therapeutic Research, Quebec, Canada
| |
Collapse
|
49
|
Müller MJ. [The leukotriene signal pathway--a very promising point of entry for inhibitors in therapy of inflammatory diseases]. PHARMAZIE IN UNSERER ZEIT 1995; 24:264-72. [PMID: 7480089 DOI: 10.1002/pauz.19950240506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- M J Müller
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Schweden
| |
Collapse
|
50
|
Woods JW, Coffey MJ, Brock TG, Singer II, Peters-Golden M. 5-Lipoxygenase is located in the euchromatin of the nucleus in resting human alveolar macrophages and translocates to the nuclear envelope upon cell activation. J Clin Invest 1995; 95:2035-46. [PMID: 7738170 PMCID: PMC295787 DOI: 10.1172/jci117889] [Citation(s) in RCA: 145] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
5-Lipoxygenase (5-LO) and 5-lipoxygenase-activating protein (FLAP) are two key proteins involved in the synthesis of leukotrienes (LT) from arachidonic acid. Although both alveolar macrophages (AM) and peripheral blood leukocytes (PBL) produce large amounts of LT after activation, 5-LO translocates from a soluble pool to a particulate fraction upon activation of PBL, but is contained in the particulate fraction in AM irrespective of activation. We have therefore examined the subcellular localization of 5-LO in autologous human AM and PBL collected from normal donors. While immunogold electron microscopy demonstrated little 5-LO in resting PBL, resting AM exhibited abundant 5-LO epitopes in the euchromatin region of the nucleus. The presence of substantial quantities of 5-LO in the nucleus of resting AM was verified by cell fractionation and immunoblot analysis and by indirect immunofluorescence microscopy. In both AM and PBL activated by A23187, all of the observable 5-LO immunogold labeling was found associated with the nuclear envelope. In resting cells of both types, FLAP was predominantly associated with the nuclear envelope, and its localization was not affected by activation with A23187. The effects of MK-886, which binds to FLAP, were examined in ionophore-stimulated AM and PBL. Although MK-886 inhibited LT synthesis in both cell types, it failed to prevent the translocation of 5-LO to the nuclear envelope. These results indicate that the nuclear envelope is the site at which 5-LO interacts with FLAP and arachidonic acid to catalyze LT synthesis in activated AM as well as PBL, and that in resting AM the euchromatin region of the nucleus is the predominant source of the translocated enzyme. In addition, LT synthesis is a two-step process consisting of FLAP-independent translocation of 5-LO to the nuclear envelope followed by the FLAP-dependent activation of the enzyme.
Collapse
Affiliation(s)
- J W Woods
- Department of Biochemical and Molecular Pathology, Merck Research Laboratories, Rahway, New Jersey 07065, USA
| | | | | | | | | |
Collapse
|