1
|
Frost J, Løkken TN, Helland A, Nordrum IS, Slørdal L. Post-mortem levels and tissue distribution of codeine, codeine-6-glucuronide, norcodeine, morphine and morphine glucuronides in a series of codeine-related deaths. Forensic Sci Int 2016; 262:128-37. [DOI: 10.1016/j.forsciint.2016.02.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 11/29/2022]
|
2
|
Morphine glucuronidation increases its analgesic effect in guinea pigs. Life Sci 2014; 109:104-10. [PMID: 24968302 DOI: 10.1016/j.lfs.2014.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 05/26/2014] [Accepted: 06/11/2014] [Indexed: 12/18/2022]
|
3
|
Pivaloylcodeine, a new codeine derivative, for the inhibition of morphine glucuronidation. An in vitro study in the rat. Bioorg Med Chem 2013; 21:7955-63. [DOI: 10.1016/j.bmc.2013.09.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 02/04/2023]
|
4
|
Bachs L, Høiseth G, Skurtveit S, Mørland J. Heroin-using drivers: importance of morphine and morphine-6-glucuronide on late clinical impairment. Eur J Clin Pharmacol 2006; 62:905-12. [PMID: 17021891 DOI: 10.1007/s00228-006-0195-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVE To evaluate the relationship between major heroin metabolites (morphine, morphine-6-glucoronide), pattern of drug use, and late impairment of psychomotor functions. METHODS From the database of the Norwegian Institute of Public Health, Oslo, blood morphine concentration in samples from heroin users (n=70) containing only morphine were correlated with results of the clinical test for impairment (CTI). For comparison, test results were explored in individuals without any positive analytical finding in blood samples (n=79) selected from the same database. RESULTS In the "no drug" cases, 86% were judged as not impaired and 14% as impaired. In the morphine only cases, 20% were judged as not impaired, and 80% as impaired. Both daily users and non-daily users had the same proportion of impaired cases. Median blood morphine concentration (M) was 0.09 micromol/l in the "not impaired" group and 0.15 micromol/l in the "impaired" group (P=0.067). For morphine-6-glucuronide (M6G), the median blood concentration was 0.09 micromol/l in the "not impaired" group and 0.14 micromol/l in the "impaired" group (P=0.030). A significant correlation between concentration quartiles and number of cases determined as "impaired" was found for M6G (P=0.018) and for the sum M+M6G (P=0.013). CONCLUSION In our population of heroin-drugged drivers, blood concentrations of M6G and the sum M+M6G appeared to have concentration-dependent effects on the CNS that may lead to impairment as judged from a CTI. Variations in pattern of use did not seem to have any bearing on the judgement of impairment.
Collapse
Affiliation(s)
- Liliana Bachs
- Division for Forensic Toxicology and Drug Abuse, Norwegian Institute of Public Health, P.O. Box 4404, Nydalen, 0403, Oslo, Norway.
| | | | | | | |
Collapse
|
5
|
Hashiguchi S, Morisaki H, Kotake Y, Takeda J. Effects of morphine and its metabolites on immune function in advanced cancer patients. J Clin Anesth 2006; 17:575-80. [PMID: 16427525 DOI: 10.1016/j.jclinane.2005.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 03/23/2005] [Indexed: 11/27/2022]
Abstract
STUDY OBJECTIVE To determine whether morphine and its active metabolites such as morphine-3-glucuronide (M-3-G) and morphine-6-glucuronide (M-6-G) modulate immune function in patients with advanced cancer who required morphine for pain relief. DESIGN Prospective observational clinical study. SETTING Pain clinic of a university hospital. PATIENTS Fifteen patients who visited our clinic for control of advanced cancer pain. INTERVENTIONS During the initiation or changes of morphine therapy, venous blood samples were obtained at the enrollment of this study, 1 and 3 weeks after the change of morphine dose or route. MEASUREMENTS Lymphocyte subpopulation CD4+ and CD8+, activity of natural killer cell, phytohemagglutinin (PHA)-induced T-cell proliferation, and plasma immunoglobulin M and G concentrations were measured, as well as plasma concentrations of morphine, M-3-G, and M-6-G. MAIN RESULTS At the entry of the study, 6 patients did not receive any type of morphine medication (group 1), whereas 9 patients were treated with morphine for 1 month (group 2). Cancer pain, rated as 4 at the entry period, was reduced to 2 of 10 (visual analogue scale) during the study periods. Although the plasma concentrations of M-3-G and M-6-G in Group 1 were significantly less than those in Group 2, plasma concentrations of immunologic markers were similar between the groups. In Group 1, Spearman linear regression analysis showed negative correlation between morphine-derived metabolites and immunoglobulins or PHA-induced T-cell proliferation, whereas poor correlation was found with all immunologic parameters in Group 2. Stepwise linear regression analyses showed that the metabolites, rather than morphine per se, modulated immune function, reflected by PHA-induced T-cell proliferation and immunoglobulin G concentration in Group 1. CONCLUSIONS The present study suggests that some of humoral and cellular immunity are modulated by morphine-derived metabolites at the early phase of morphine therapy in patients with advanced cancer.
Collapse
Affiliation(s)
- Saori Hashiguchi
- Department of Anesthesiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | | | |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Morphine metabolites have attracted continuing interest for their contribution to the desired and unwanted effects of morphine. Among the metabolites of morphine, morphine-6-glucuronide has been given most scientific attention. It accounts for 10% of the morphine metabolism, acts as an agonist at mu-opioid receptors and exerts antinociceptive effects. This review summarizes the recent findings on morphine-6-glucuronide and discusses its potential use as an analgesic. RECENT FINDINGS Morphine-6-glucuronide has a very long delay between the time course of its plasma concentrations and the time course of its central nervous effects, with 6-8 h probably the longest transfer half-life between plasma and effect site of all opioids administered in humans. This complicates the control of morphine-6-glucuronide therapy when used as an intravenous analgesic, and the long duration of action confers no advantage over other opioids because long-lasting opioid analgesia can be readily obtained with sustained release formulations of other opioids. During acute treatment, however, morphine-6-glucuronide appears to be sufficiently potent to exert peripheral analgesic effects, without exerting major central nervous opioid side effects for a short period of time. The side effects profile does not clearly separate morphine-6-glucuronide from morphine, with reports of similar side effects. There are contrasting reports, however, about similar or less respiratory depression and other side effects compared with morphine after systemic injection. SUMMARY Morphine-6-glucuronide might qualify as an analgesic but it has several pharmacological properties that make it far from ideal for therapeutic use. Whether it will be a useful addition to the currently established analgesics has yet to be demonstrated.
Collapse
Affiliation(s)
- Jörn Lötsch
- Institute of Clinical Pharmacology, Johann Wolfgang Goethe-University, Frankfurt, Germany.
| |
Collapse
|
7
|
Leck KJ, Bartlett SE, Smith MT, Megirian D, Holgate J, Powell KL, Matthaei KI, Hendry IA. Deletion of guanine nucleotide binding protein alpha z subunit in mice induces a gene dose dependent tolerance to morphine. Neuropharmacology 2004; 46:836-46. [PMID: 15033343 DOI: 10.1016/j.neuropharm.2003.11.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2002] [Revised: 09/30/2003] [Accepted: 11/21/2003] [Indexed: 11/23/2022]
Abstract
The mechanism underlying the development of tolerance to morphine is still incompletely understood. Morphine binds to opioid receptors, which in turn activates downstream second messenger cascades through heterotrimeric guanine nucleotide binding proteins (G proteins). In this paper, we show that G(z), a member of the inhibitory G protein family, plays an important role in mediating the analgesic and lethality effects of morphine after tolerance development. We blocked signaling through the G(z) second messenger cascade by genetic ablation of the alpha subunit of the G protein in mice. The Galpha(z) knockout mouse develops significantly increased tolerance to morphine, which depends on Galpha(z) gene dosage. Further experiments demonstrate that the enhanced morphine tolerance is not caused by pharmacokinetic and behavioural learning mechanisms. The results suggest that G(z) signaling pathways are involved in transducing the analgesic and lethality effects of morphine following chronic morphine treatment.
Collapse
Affiliation(s)
- K J Leck
- Division of Neuroscience, John Curtin School of Medical Research, Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Shimizu N, Kishioka S, Maeda T, Fukazawa Y, Yamamoto C, Ozaki M, Yamamoto H. Role of Pharmacokinetic Effects in the Potentiation of Morphine Analgesia by L-Type Calcium Channel Blockers in Mice. J Pharmacol Sci 2004; 94:240-5. [PMID: 15037808 DOI: 10.1254/jphs.94.240] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The present study was designed to investigate the pharmacokinetic interaction of morphine with three classes of L-type calcium channel blockers (CCB) and its relationship to morphine-induced mechanical antinociception in mice. The CCB classes were benzothiazepine (diltiazem), dihydropyridine (nimodipine), and phenylalkylamine (verapamil). Each of the three classes of L-type CCB (diltiazem, 40 and 80 mg/kg; nimodipine, 40 mg/kg; verapamil, 40 mg/kg), when administered prior to morphine (4 mg/kg, s.c.), potentiated the analgesic effect of morphine and markedly increased the level of morphine in serum. Pretreatment with diltiazem (40 and 80 mg/kg) and verapamil (40 mg/kg) also increased morphine level in the brain. However, these drugs produced less increase in morphine level in the brain than they produced in serum (i.e., they decreased the brain-to-serum ratio of morphine). Pretreatment with nimodipine (40 mg/kg) did not affect the morphine level in the brain and also decreased the brain-to-serum ratio of morphine. When morphine (3.2-100 mg/kg, s.c.) was injected alone, the brain-to-serum ratio of morphine was constant, regardless of the morphine dose. These results suggest that increases in morphine concentration in peripheral blood may be, at least in part, involved in the ability of L-type CCBs to potentiate the analgesic effect of morphine.
Collapse
|
9
|
Jairaj M, Watson DG, Grant MH, Gray AI, Skellern GG. Comparative biotransformation of morphine, codeine and pholcodine in rat hepatocytes: identification of a novel metabolite of pholcodine. Xenobiotica 2002; 32:1093-107. [PMID: 12593758 DOI: 10.1080/0049825021000017911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
1. Pholcodine (3-morpholinoethylmorphine), a semi-synthetic alkaloid, is widely used as an antitussive agent. 2. Norpholcodine [7,8-didehydro-4,5alpha-epoxy-3-(2-morpholinoethoxy)morphinan-6alpha-ol] (NP) and pholcodine-N-oxide [1(9a)-dehydro-(4aR,5S,7aR,9cS,12S)-4a,5,7a,8,9,9a-hexahydro-5-hydroxy-12-methyl-3-morpholinoethoxy-1H-8,9,c-(iminoethano)phenanthro[4,5-bcd] furan-12-oxide] (PNOX) were identified in incubations of pholcodine with freshly isolated rat hepatocytes by liquid chromatography/electrospray-mass spectrometry (LC/ESI-MS). 3. Synthesized NP and PNOX were characterized by mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. 4. N-oxidation was the major metabolic pathway for pholcodine, producing a previously unreported metabolite. 5. The metabolism of morphine and codeine was also determined using freshly isolated hepatocytes. 6. For morphine, 3-glucuronidation was the major metabolic pathway, whilst for codeine it was dealkylation (O- and N-). 7. Neither morphine nor its metabolites were metabolites of pholcodine. 8. This observation supports the hypothesis that the absence of analgesic activity with pholcodine may be due to less O-dealkylation in vivo. 9. Together with the slow biotransformation of pholcodine (k(met) = 0.021 microM min(-1)) in comparison with morphine (k(met) = 0.057 microM min(-1)) and codeine (k(met) = 0.112 microM min(-1)), the results obtained were consistent with its low addiction potential and suggest that its antitussive efficacy is mediated by the parent drug or one of its metabolites other than morphine.
Collapse
Affiliation(s)
- M Jairaj
- Department of Pharmaceutical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK
| | | | | | | | | |
Collapse
|
10
|
Handal M, Grung M, Skurtveit S, Ripel A, Mørland J. Pharmacokinetic differences of morphine and morphine-glucuronides are reflected in locomotor activity. Pharmacol Biochem Behav 2002; 73:883-92. [PMID: 12213535 DOI: 10.1016/s0091-3057(02)00925-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The main metabolites of morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G), have been considered to participate in some of the effects of morphine. There is limited knowledge of the pharmacokinetics and dynamics of morphine and the main metabolites in mice, but mice are widely used to study both the analgesic effects and the psychomotor effects of morphine. The present study aimed to explore pharmacokinetic differences between morphine and morphine-glucuronides in mice after different routes of administration, and to investigate how possible differences were reflected in locomotor activity, a measure of psychostimulant properties. Mice were given morphine, M3G or M6G by different routes of administration. Serum concentrations versus time curves, pharmacokinetic parameters and locomotor activity were determined. Intraperitoneal administration of morphine reduced the bioavailability compared to intravenous and subcutaneous administration, but not so for morphine-glucuronides. The two morphine-glucuronides had similar pharmacokinetics, but morphine demonstrated higher volume of distribution and clearance than morphine-glucuronides. The present results demonstrated no locomotor effect of M3G, but a serum concentration effect relationship for morphine and M6G. When serum concentrations and effect changes were followed over time, there was some right hand shifts with respect to locomotor activity, especially during the declining phase of the concentration curve and particularly for M6G.
Collapse
Affiliation(s)
- Marte Handal
- National Institute of Forensic Toxicology, P.O. Box 495, Sentrum, N-0105, Oslo, Norway.
| | | | | | | | | |
Collapse
|
11
|
Abstract
The effect of morphine administration on immune parameters is well documented. However, there exists a limited knowledge of the effect of morphine's metabolites on immune status. The present study examines the immunomodulatory effects of the morphine metabolite, morphine-6 beta-glucuronide (M6G), in the rat and provides further evaluation of the antinociceptive effects of M6G. Animals were administered phosphate-buffered saline (PBS) or M6G in doses of 1.0, 3.16, or 10.0 mg/kg (subcutaneous (s.c.)) or 0.1, 0.316, or 1.0 microgram (intracerebroventricular (i.c.v.)). Animals were tested for antinociception in the warm water tail-withdrawal procedure. In a separate set of animals, assessments of splenic natural killer cell activity, lymphocyte proliferative responses to mitogenic stimulation, and production of interferon-gamma were made 1 h following the s.c. or i.c.v. administration of M6G. The results show that M6G induced potent antinociception that was evident for at least 120 min following administration. M6G also produced decreases in natural killer cell activity, lymphocyte proliferation, and interferon-gamma production 1 h following both routes of administration. The difference in potency between immune alterations induced by subcutaneous vs. intracerebroventricular administration suggest central mediation of the immunomodulatory properties of M6G. Thus, M6G produces significant antinociception and immunomodulation in the rat. These findings demonstrate potent immunomodulatory properties of a metabolite of morphine, 1M6G.
Collapse
Affiliation(s)
- K A Carrigan
- Biological Psychology Program, Department of Psychology, Davie Hall, CB#3270, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA.
| | | |
Collapse
|
12
|
Smith SA, Nagalla SR, Andrews DP, Olsen GD. Morphine regulation of a novel uridine diphosphate glucuronosyl-transferase in guinea pig pups following in utero exposure. Mol Genet Metab 1999; 68:68-77. [PMID: 10479484 DOI: 10.1006/mgme.1999.2892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The uridine diphosphate glucuronosyltransferases (UGTs) catalyze conjugation reactions between various substrates and glucuronic acid, UDPGA (uridine diphosphate glucuronic acid), within the endoplasmic reticulum. Conjugation with UDPGA (glucuronidation) is an important pathway in the elimination, detoxification, and activation of compounds including steroid hormones, xenobiotics, and quaternary ammonium substrates. The guinea pig, which has a placental structure and a glucuronidation profile for morphine that are similar to the human, serves as a good small animal model to study the ontogeny of UGTs and the effect of in utero exposure to morphine on UGTs. We examined type 2 UGTs expressed in the guinea pig using amplification and cloning of partial cDNAs from liver RNA. Sequence analysis revealed a novel UGT2 (subsequently named UGT2A3),(2) that has a 64% amino acid sequence similarity to a known UGT2.(3) Full-length cDNAs were isolated from a guinea pig liver cDNA library. Tissue distribution of UGT2A3 using Northern blot analysis showed expression of three distinct size UGT2A3 mRNAs with unique expression in liver and small intestine. UGT2A3 mRNA is expressed at high levels in liver and lower levels in kidney and small intestine. In utero exposure to chronic intermittent morphine resulted in the up regulation of mRNA in 7-day-old female pups' liver and kidney as determined by quantitative RT-PCR analysis. The conjugation profile for UGT2A3 using stable expression in CHO cells and thin-layer chromatography demonstrated active conjugation of phenolic substrates. Regulation of UGTs by in utero morphine exposure may play an important role in fetal development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Animals, Newborn
- Base Sequence
- Blotting, Northern
- CHO Cells
- Chromatography, Thin Layer
- Cricetinae
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Female
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Glucuronosyltransferase/genetics
- Glucuronosyltransferase/metabolism
- Guinea Pigs
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Molecular Sequence Data
- Morphine/pharmacology
- Narcotics/pharmacology
- Pregnancy
- Prenatal Exposure Delayed Effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Substrate Specificity
- Tissue Distribution
Collapse
Affiliation(s)
- S A Smith
- Department of Pediatrics, School of Medicine, Oregon Health Sciences University, Portland 97201, USA.
| | | | | | | |
Collapse
|
13
|
Aasmundstad TA, Størset P. Influence of ranitidine on the morphine-3-glucuronide to morphine-6-glucuronide ratio after oral administration of morphine in humans. Hum Exp Toxicol 1998; 17:347-52. [PMID: 9688360 DOI: 10.1177/096032719801700611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
1. In humans morphine is metabolised to morphine-3-glucuronide (M3G) which possess no opioid activity, and morphine-6-glucuronide (M6G) which is a potent opioid receptor agonist that probably contribute to the desired as well as toxic effects of morphine. 2. In order to investigate the possible effect of ranitidine on morphine glucuronidation indicated by clinical studies and later confirmed in vitro, a double blind cross-over study on eight human volunteers administered oral morphine plus ranitidine or placebo was conducted. 3. Urine was collected in fractions for 24 h. Serum and urine samples were prepared by solid phase extraction and morphine, M3G and M6G were quantified by HPLC. 4. Ranitidine significantly reduced the individual serum M3G/M6G ratio, and tended to increase the serum AUC(0-90) of morphine. In contrast, ranitidine had no significant effect on the urinary M3G/M6G ratio. The urinary recovery of morphine or morphine glucuronides was unaffected by ranitidine. 5 Possible explanations to the apparent incongruity between the serum and urine data are discussed.
Collapse
|
14
|
Aasmundstad TA, Mørland J. Differential inhibition of morphine glucuronidation in the 3- and 6-position by ranitidine in isolated hepatocytes from guinea pig. PHARMACOLOGY & TOXICOLOGY 1998; 82:272-9. [PMID: 9677618 DOI: 10.1111/j.1600-0773.1998.tb01573.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of ranitidine on morphine metabolism, with special emphasise on the ratio between morphine-3-glucuronide and morphine-6-glucuronide was studied in isolated guinea pig hepatocytes. Ranitidine reduced the Kel of morphine dose-dependently with a maximum effect of 50%, and increased the relative concentration of morphine-6-glucuronide to morphine-3-glucuronide. These effects could be due to a direct or indirect effect on the conjugation enzymes involved, or an effect on the transport of morphine or glucuronides across cell membranes. The latter explanation was rejected on the basis of the observation that the ratios between intra- and extracellular concentrations of morphine, morphine-3-glucuronide and morphine-6-glucuronide were not influenced by ranitidine. Increasing concentrations of ranitidine gradually decreased the morphine-3-glucuronide/morphine-6-glucuronide ratio by up to 21%. This could stem from interference of energy or co-substrate supply, or through direct effects on the different UDPGTases involved. The observation that the present effect on morphine glucuronidation was the opposite of that observed when administering a known co-substrate (UDPGA) depletor, indicated that in all probability the effect of ranitidine was a direct inhibition on the uridine 5'-diphosphate glucuronyltransferases involved, with a more pronounced effect for the isoenzymes responsible for the 3'-glucuronidation.
Collapse
|
15
|
Grung M, Skurtveit S, Aasmundstad TA, Handal M, Alkana RL, Mørland J. Morphine-6-glucuronide-induced locomotor stimulation in mice: role of opioid receptors. PHARMACOLOGY & TOXICOLOGY 1998; 82:3-10. [PMID: 9527644 DOI: 10.1111/j.1600-0773.1998.tb01390.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Morphine-6beta-glucuronide is a major metabolite of morphine with potent analgesic actions. To explore the importance of this opiate when administered as a drug by its own or in morphine action, we studied the locomotor activity response to morphine and morphine-6-glucuronide in drug-naive C57 BL/6JBom mice. The effects of administration of the two opiates on a battery of 7 different locomotor activities were studied and compared to saline controls. A dose of 20 micromol/kg morphine-6-glucuronide resulted in more locomotion than the same dose of morphine, while at higher doses (up to 120 micromol/kg), similar increases for most locomotor behaviours were recorded for both drugs. Pretreatment with naltrindole indicated that the delta-receptors play an equivalent but minor role in mediating both morphine-6-glucuronide and morphine hyperlocomotion. Administration of high naltrexone doses (10 mg/kg) completely abolished the locomotor stimulation induced by both opiates. However, at intermediate naltrexone doses of 0.25 and 0.5 mg/kg, morphine-induced behaviours was completely inhibited while morphine-6-glucuronide induced behaviours demonstrated partial resistance to naltrexone inhibition. The mu1-specific receptor antagonist naloxonazine caused 75% reduction of morphine induced behaviours and only 50% inhibition of morphine-6-glucuronide induced behaviors. Taken together our observations indicated general similarity but also marked differences between morphine and morphine-6-glucuronide with respect to opiate receptors mediating the locomotor stimulatory effect.
Collapse
Affiliation(s)
- M Grung
- National Institute of Forensic Toxicology, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
16
|
Xu BQ, Aasmundstad TA, Christophersen AS, Mørland J, Bjørneboe A. Evidence for CYP2D1-mediated primary and secondary O-dealkylation of ethylmorphine and codeine in rat liver microsomes. Biochem Pharmacol 1997; 53:603-9. [PMID: 9105413 DOI: 10.1016/s0006-2952(96)00736-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of the present study was to investigate the role of specific CYPs responsible for the O-dealkylation of ethylmorphine (EM) and codeine (CD) to morphine (M), as well as that of norethylmorphine (NEM) and norcodeine (NCD) to normorphine (NM) in rat liver microsomes. Liver microsomes metabolize EM and CD to M, and NEM and NCD to NM, in the presence of an NADPH-generating system. The metabolites of EM and CD were determined by HPLC with UV and electrochemical detection. In the present study, the role of CYP2D1 in O-dealkylation of EM/NEM and CD/NCD was investigated by use of specific antiCYP antibodies. When testing rabbit antirat CYP2D1, 2E1, 2C11, and 3A2 antibodies, only the antiCYP2D1 antibody inhibited the EM/NEM and CD/NCD O-dealkylase activities significantly. The maximum inhibition achieved was approximately 80% at a protein ratio (IgG to microsomes) of 10:1, p = 0.001. The contribution of CYP2D1 to the O-dealkylation of EM/NEM and CD/NCD was further confirmed by use of the specific CYP2D1 inhibitors quinine and propafenone. Five microM of quinine inhibited the EM/NEM and CD/NCD O-dealkylase activities by approximately 80%. The CYP3A inhibitor troleandomycin (TAO) failed to inhibit the CYP2D1 catalyzed reaction, but did inhibit the N-demethylation of EM and CD. The O-dealkylation of NEM and NCD was also impaired in Dark Agouti rat (DA) liver microsomes. Taken together, the immunoinhibition and chemical-inhibitor studies of rat liver microsomes provided convincing evidence for the involvement of CYP2D1, the rat counterpart of human CYP2D6, in the metabolism of EM/NEM and CD/NCD to the corresponding O-dealkylated metabolites.
Collapse
Affiliation(s)
- B Q Xu
- National Institute of Forensic Toxicology, Oslo, Norway
| | | | | | | | | |
Collapse
|
17
|
|
18
|
Smith GD, Prankerd RJ, Smith MT. Biochemical synthesis, purification and preliminary pharmacological evaluation of normorphine-3-glucuronide. Life Sci 1997; 61:95-104. [PMID: 9217268 DOI: 10.1016/s0024-3205(97)00364-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Normorphine was synthesised from morphine by thermal decomposition of an N-alpha-chloroethylchloroformate adduct, and purified (> 98% purity) using semi-preparative HPLC with ultraviolet detection. Normorphine-3-glucuronide (NM3G) was biochemically synthesised using the substrate normorphine, uridine diphosphoglucuronic acid and Sprague-Dawley rat liver microsomes in a 75% yield (relative to normorphine base). The synthesised NM3G was purified by precipitation and washing with acetonitrile. Determinations of purity using HPLC with electrochemical and ultraviolet detection confirmed that the NM3G produced was of high (> 99%) purity. Mass spectrometry, fourier transform infrared spectrophotometry and nuclear magnetic resonance spectrometry confirmed the structure, especially placement of the glucuronide moiety at the 3-phenolic position and not at the 17-nitrogen. Administration of NM3G by the intracerebroventricular (icv) route to rats in doses of 2.5 and 7.5 microg resulted in the development of central nervous system (CNS) excitatory behavioural effects including myoclonus, chewing, wet-dog shakes, ataxia and explosive motor behaviour. At an icv dose of 7.5 microg, NM3G also induced short periods of tonic-clonic convulsive activity. Thus, NM3G elicits CNS excitation following supraspinal administration in a manner analogous to morphine-3-glucuronide (M3G), the major metabolite of morphine (1). Further studies are required to determine whether NM3G attenuates morphine-induced antinociception in a similar manner to M3G.
Collapse
Affiliation(s)
- G D Smith
- Department of Pharmacy, The University of Queensland, Brisbane, Australia
| | | | | |
Collapse
|
19
|
Aasmundstad TA, Lillekjendlie B, Mørland J. Ethanol interference with morphine metabolism in isolated guinea pig hepatocytes. PHARMACOLOGY & TOXICOLOGY 1996; 79:114-9. [PMID: 8884868 DOI: 10.1111/j.1600-0773.1996.tb00253.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It has previously been shown that guinea pig hepatocytes metabolise morphine in a fashion similar to humans. The metabolism of morphine (5 muM) and the formation of metabolites morphine-3-glucuronide, morphine-6-glucuronide and normorphine was studied in the absence and presence of ethanol (5, 10, 25, 60 and 100 mM) in freshly isolated guinea pig hepatocytes. In order to gain more detailed information, a mathematical model was estimated on experimental data and used to analyse the effects of ethanol on the reaction rates of the different morphine metabolites. Ethanol inhibited the rate of morphine elimination in a dose-related manner, at the high ethanol concentrations the elimination rate was 40 per cent of the control rate. The formation of morphine-glucuronides was influenced in a biphasic manner. Five and 10 mM ethanol increased both the morphine-3-glucuronide and morphine-6-glucuronide levels after 60 min incubation compared to the control, whereas at the higher ethanol concentrations (25-100 mM) the levels of morphine-glucuronides were reduced. Data from the mathematical model, however, demonstrated that the reaction rates for morphine-glucuronide formation were decreased at all ethanol concentrations and in a dose-dependent manner, the interpretation of this being that at the lower (5 and 10 mM) ethanol concentrations employed in this study, other metabolic pathways of morphine are more heavily inhibited than the glucuronidations, resulting in a shunting towards morphine-3-glucuronide and morphine-6-glucuronide. The pharmacodynamic consequences of these pharmacokinetic effects are thus somewhat difficult to predict since morphine-6-glucuronide has a higher agonist potency than morphine. At high concentrations ethanol inhibition of morphine metabolism will increase the concentration of morphine and subsequently the euphoric and the toxic effects. The lower quantities of morphine-6-glucuronide formed in the presence of high ethanol concentrations on the other hand most probably imply reduction of such effects and the net pharmacodynamic effect would be uncertain. At low ethanol concentrations, however, morphine-6-glucuronide concentrations increased and morphine metabolism was less inhibited leading to a possible potentiation of the effects of morphine. Thus, a low ethanol concentration might exert a more pronounced ethanol-drug effect interaction than a higher ethanol concentration.
Collapse
|
20
|
Milne RW, Nation RL, Somogyi AA. The disposition of morphine and its 3- and 6-glucuronide metabolites in humans and animals, and the importance of the metabolites to the pharmacological effects of morphine. Drug Metab Rev 1996; 28:345-472. [PMID: 8875123 DOI: 10.3109/03602539608994011] [Citation(s) in RCA: 164] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- R W Milne
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | | |
Collapse
|
21
|
|
22
|
Aasmundstad TA, Xu BQ, Johansson I, Ripel A, Bjørneboe A, Christophersen AS, Bodd E, Mørland J. Biotransformation and pharmacokinetics of ethylmorphine after a single oral dose. Br J Clin Pharmacol 1995; 39:611-20. [PMID: 7654478 PMCID: PMC1365072 DOI: 10.1111/j.1365-2125.1995.tb05720.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
1. The pharmacokinetics of ethylmorphine after administration of a single dose of the cough mixture Cosylan were investigated in 10 healthy subjects. 2. The median urinary recovery of ethylmorphine and measured metabolites was 77% over 48 h. The median tmax of unchanged ethylmorphine was 45 min, and the terminal elimination t1/2 was 2 h. Ethylmorphine-6-glucuronide was found to be the major metabolite. 3. Two subjects had significantly lower urinary recovery (0.48 h) of morphine and morphine-glucuronides than the remainder. Furthermore, these two had urinary metabolic ratios (MRO) and partial metabolic clearances (CLmO) for O-deethylation of ethylmorphine tentatively classifying them phenotypically as poor metabolisers of the debrisoquine/sparteine type. 4. Genotyping for cytochrome P450 (CYP) 2D6 alleles revealed five homozygote (wt/wt) and five heterozygote subjects. Two subjects phenotypically classified as poor metabolisers were genotypically CYP2D6A/wt and CYP2D6D/wt, respectively. 5. Serum and urine samples taken more than 8 and 24 h after administration of ethyl-morphine respectively, contained morphine and morphine-glucuronides, but no ethylmorphine, ethylmorphine-6-glucuronide or (serum only) norethylmorphine. Norethylmorphine could be detected after hydrolysis of urine samples in all subjects. The urinary recovery of the active metabolites morphine and morphine-6-glucuronide after administration of ethylmorphine varied by a factor of 9 between individuals. 6. The wide variation in recovery of morphine and morphine-glucuronides after oral administration of ethylmorphine could not be explained simply by a difference in CYP2D6 genotype. Constitutional variation in other enzymatic pathways involved in ethylmorphine metabolism is probably crucial. Ratios of morphine to parent drug cannot be used to distinguish the source of morphine after administration of ethylmorphine. Norethylmorphine should be included in urine assays for opiates in forensic toxicology, and no firm conclusions about the source of morphine are possible based on serum samples obtained more than 24 h after drug administration.
Collapse
|
23
|
Xu BQ, Aasmundstad TA, Bjørneboe A, Christophersen AS, Mørland J. Ethylmorphine O-deethylation in isolated rat hepatocytes. Involvement of codeine O-demethylation enzyme systems. Biochem Pharmacol 1995; 49:453-60. [PMID: 7872951 DOI: 10.1016/0006-2952(94)00481-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The O-dealkylation of ethylmorphine (EM) and codeine (CD) to morphine (M) co-segregates with debrisoquine/sparteine genetic polymorphism in man. CD O-demethylation is catalysed by cytochrome P450 2D1 (CYP2D1) in rats. In the present study, the O-deethylation of EM was examined and compared with that of CD in suspensions of freshly-isolated hepatocytes prepared by a collagenase method from Wistar rats with and without CYP2D1 inhibitors. Isolated hepatocytes were also prepared from Dark Agouti (DA) rats deficient in CYP2D1, and were incubated with EM or CD. EM, CD and their metabolites were quantified by HPLC with UV detection. EM had a similar pattern of metabolism to that of CD in suspensions of hepatocytes from Wistar rats. Both EM and CD were O-dealkylated to form M plus morphine-3-glucuronide (M3G) and N-demethylated to form norethylmorphine (NEM) or norcodeine (NCD), respectively, which were further metabolized to normorphine (NM) and finally glucuronidated to normorphine-3-glucuronide (NM3G). As compared to hepatocytes from Wistar rats, DA rats were characterized by a markedly decreased formation (70 approximately 75% reduction) of M plus M3G from both EM and CD. Quinine, quinidine, propafenone and sparteine all inhibited EM O-deethylation as well as CD O-demethylation. Quinine was the most potent inhibitor of both these O-dealkylations (Ki = 0.2 microM for both EM and CD, respectively). Quinine as well as the other inhibitors inhibited both EM and CD O-dealkylation competitively and with small differences in Ki versus EM and CD, respectively. The metabolism of EM to M plus M3G and that of CD to M plus M3G was highly correlated when results from the various separate cell suspensions were plotted. In conclusion all findings indicated that the enzyme responsible for O-demethylation of CD, CYP2D1 was also responsible for the O-deethylation of EM to M.
Collapse
Affiliation(s)
- B Q Xu
- National Institute of Forensic Toxicology, Oslo, Norway
| | | | | | | | | |
Collapse
|
24
|
Abstract
Morphine is the most widely used compound among narcotic analgesics and remains the gold standard when the effects of other analgetic drugs are compared. Apart from its presence in the poppy plant Papaver somniferum, morphine has been shown to be present in milk, cerebrospinal fluid and also in nervous tissue extracts. Recent evidence suggests that biosynthetic pathways for morphine exist in animal and even human tissues such as liver, blood and brain. The most characteristic effect of morphine is the modulation of pain perception resulting in an increase in the threshold of noxious stimuli. Antinociception induced by morphine is mediated via opioid receptors and therefore can be inhibited by opioid antagonists, e.g., naloxone. Nevertheless, consideration of morphine as endogenous ligand for opioid receptors seems to be speculative. Recently, the primary receptor for morphine-type drugs called the mu-opioid receptor has been cloned from rat brain. There is accumulating evidence that morphine actions are, at least partly, due to one of its major metabolite morphine-6-glucuronide in man. It is concluded that further investigations are necessary to elucidate the mechanisms, whereby multiple actions of morphine are expressed in the nervous system.
Collapse
Affiliation(s)
- S Benyhe
- Institute of Biochemistry, Hungarian Academy of Sciences, Szeged
| |
Collapse
|
25
|
Mørland J, Jones BL, Palomares ML, Alkana RL. Morphine-6-glucuronide: a potent stimulator of locomotor activity in mice. Life Sci 1994; 55:PL163-8. [PMID: 8046991 DOI: 10.1016/0024-3205(94)00493-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The present study tested the hypothesis that morphine glucuronides have stimulant properties by studying their effects on locomotor activity in mice. Drug-naive C57BL/6J male mice were injected with saline, morphine, morphine-6-glucuronide (M6G) or morphine-3-glucuronide (M3G). In some experiments, mice were injected with saline or naloxone 5 min prior to drug treatment. Injection of 40 mg/kg morphine or M6G, but not M3G, significantly increased activity versus saline. The extent of activation induced by M6G was markedly higher than for morphine. Subsequent dose-response studies across a somewhat lower dose range using equimolar doses of morphine and M6G (3-80 mumoles/kg) found that both drugs significantly increased locomotor activity beginning at 20 mumoles/kg. M6G increased locomotor activity from 1.3 to 2.1 times more than for equimolar doses of morphine. Pretreatment with naloxone (10 mg/kg) completely abolished the locomotor stimulation induced by 32 mumoles/kg morphine and M6G. These findings present evidence that M6G is an active metabolite of morphine which has behaviorally stimulating effects and may play an important role in mediating the reinforcing properties of morphine in humans.
Collapse
Affiliation(s)
- J Mørland
- National Institute of Forensic Toxicology, Oslo, Norway
| | | | | | | |
Collapse
|