1
|
Wu Q, Beland FA, Chang CW, Fang JL. XPC is essential for nucleotide excision repair of zidovudine-induced DNA damage in human hepatoma cells. Toxicol Appl Pharmacol 2010; 251:155-62. [PMID: 21192964 DOI: 10.1016/j.taap.2010.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Revised: 12/14/2010] [Accepted: 12/16/2010] [Indexed: 12/18/2022]
Abstract
Zidovudine (3'-azido-3'-dexoythymidine, AZT), a nucleoside reverse transcriptase inhibitor, can be incorporated into DNA and cause DNA damage. The mechanisms underlying the repair of AZT-induced DNA damage are unknown. To investigate the pathways involved in the recognition and repair of AZT-induced DNA damage, human hepatoma HepG2 cells were incubated with AZT for 2 weeks and the expression of DNA damage signaling pathways was determined using a pathway-based real-time PCR array. Compared to control cultures, damaged DNA binding and nucleotide excision repair (NER) pathways showed significantly increased gene expression. Further analysis indicated that AZT treatment increased the expression of genes associated with NER, including XPC, XPA, RPA1, GTF2H1, and ERCC1. Western blot analysis demonstrated that the protein levels of XPC and GTF2H1 were also significantly up-regulated. To explore further the function of XPC in the repair of AZT-induced DNA damage, XPC expression was stably knocked down by 71% using short hairpin RNA interference. In the XPC knocked-down cells, 100 μM AZT treatment significantly increased [³H]AZT incorporation into DNA, decreased the total number of viable cells, increased the release of lactate dehydrogenase, induced apoptosis, and caused a more extensive G2/M cell cycle arrest when compared to non-transfected HepG2 cells or HepG2 cells transfected with a scrambled short hairpin RNA sequence. Overall, these data indicate that XPC plays an essential role in the NER repair of AZT-induced DNA damage.
Collapse
Affiliation(s)
- Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | |
Collapse
|
2
|
Barnes LM, Bentley CM, Moy N, Dickson AJ. Molecular analysis of successful cell line selection in transfected GS-NS0 myeloma cells. Biotechnol Bioeng 2007; 96:337-48. [PMID: 17001634 DOI: 10.1002/bit.21119] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The production of recombinant proteins from mammalian cells is now an essential part of biotechnology. However, despite this importance, the detailed characteristics of good producing cell lines remain largely unknown. The industrially important GS-NS0 mammalian expression system is able to produce large amounts of protein from relatively few copies of recombinant genes. This makes GS-NS0 cell lines ideal candidates to study the consequence of recombinant plasmid transfection in mammalian cells. This study investigated the molecular features of a panel of 17 randomly chosen GS-NS0 cell lines engineered to produce a recombinant antibody. The research analysed antibody production via enzyme-linked immunosorbent assay (ELISA), and investigated the molecular features of the transfectants by Northern, Southern and copy number analysis. The cell lines generated produced a range of antibody concentrations. In addition, for transfectants defined as producers of recombinant antibody there was a positive correlation between specific productivity and heavy chain mRNA expression. The use of Northern and Southern analysis allowed determination of the functional integrity of the transfected plasmid. Over 50% of the transfectants studied had molecular defects at the level of mRNA and/or cDNA. Cell lines were identified with suspected defects in the regulatory regions of transfected genes in addition to cell lines which lacked recombinant genes. Also, "false-positive" cell lines were generated which were able to overcome the GS selection pressure without producing any recombinant antibody. This article discusses these findings in relation to vector design.
Collapse
Affiliation(s)
- Louise M Barnes
- Faculty of Life Sciences, The Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | |
Collapse
|
3
|
Olivero OA. Mechanisms of genotoxicity of nucleoside reverse transcriptase inhibitors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2007; 48:215-23. [PMID: 16395695 DOI: 10.1002/em.20195] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Nucleoside analogs were first approved by the U.S. Food and Drug Administration for use against HIV-AIDS in 1987. Since then, these agents, now commonly referred to as nucleoside reverse transcriptase inhibitors (NRTIs), have become essential components of the Highly Active Antiretroviral Therapy (HAART) drug combinations used for treatment of Human Immunodeficiency Virus-1 (HIV-1) infections. Their antiretroviral activity is likely two-fold: incorporation of the drug into viral DNA and inhibition of the viral reverse transcriptase. However, incorporation of the drug into host nuclear and mitochondrial DNA may be largely responsible for dose-limiting toxicities. Azidothymidine (AZT, 3'-azido-3'-deoxythymidine, zidovudine), the first NRTI approved for the therapy of HIV-1, is incorporated into DNA, causes mutations in the hypoxanthine-guanine phosphoribosyl-transferase (HPRT) and thymidine kinase (TK) genes, and induces micronuclei, chromosomal aberrations, sister chromatid exchange, shortened telomeres, and other genotoxic effects in cultured cells. Genomic instability would be predicted as a consequence of these events. Metabolic pathways that result in the phosphorylation of AZT play a crucial role in AZT-DNA incorporation, and may be altered after prolonged treatment. For example, thymidine kinase 1, the enzyme responsible for AZT mono-phosphorylation, is down-regulated during long-term exposure and appears to be associated with AZT-induced replication inhibition and the accumulation of cells in S-phase. Detailed information on the mechanisms underlying NRTI-associated antiretroviral efficacy, toxicity, and metabolic resistance were not available when AZT was first approved for use as an antiretroviral agent. Current insights, based on 15 years of research, may lead to intervention strategies to attenuate toxicity without altering drug efficacy.
Collapse
Affiliation(s)
- Ofelia A Olivero
- Carcinogen-DNA Interactions Section, Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, NIH, Bethesda, Maryland, USA.
| |
Collapse
|
4
|
Feng JY, Murakami E, Zorca SM, Johnson AA, Johnson KA, Schinazi RF, Furman PA, Anderson KS. Relationship between antiviral activity and host toxicity: comparison of the incorporation efficiencies of 2',3'-dideoxy-5-fluoro-3'-thiacytidine-triphosphate analogs by human immunodeficiency virus type 1 reverse transcriptase and human mitochondrial DNA polymerase. Antimicrob Agents Chemother 2004; 48:1300-6. [PMID: 15047533 PMCID: PMC375312 DOI: 10.1128/aac.48.4.1300-1306.2004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Emtricitabine [(-)FTC; (-)-beta-L-2'-3'-dideoxy-5-fluoro-3'-thiacytidine] is an oxathiolane nucleoside analog recently approved by the Food and Drug Administration for the treatment of human immunodeficiency virus (HIV). Structurally, (-)FTC closely resembles lamivudine [(-)3TC] except that the former is 5-fluorinated on the cytosine ring. In HIV-1 reverse transcriptase (RT) enzymatic assays, the triphosphate of (-)FTC [(-)FTC-TP] was incorporated into both DNA-DNA and DNA-RNA primer-templates nearly 3- and 10-fold more efficiently than (-)3TC-TP. Animal studies and clinical trial studies have demonstrated a favorable safety profile for (-)FTC. However, a detailed study of the incorporation of (-)FTC-TP by human mitochondrial DNA polymerase gamma, a host enzyme associated with nucleoside toxicity, is required for complete understanding of the molecular mechanisms of inhibition and toxicity. We studied the incorporation of (-)FTC-TP and its enantiomer (+)FTC-TP into a DNA-DNA primer-template by recombinant human mitochondrial DNA polymerase in a pre-steady-state kinetic analysis. (-)FTC-TP was incorporated 2.9 x 10(5)-, 1.1 x 10(5)-, 1.6 x 10(3)-, 7.9 x 10(3)-, and 100-fold less efficiently than dCTP, ddCTP, (+)3TC-TP, (+)FTC-TP, and (-)3TC-TP, respectively. The rate of removal of (-)FTC-MP from the corresponding chain-terminated 24-mer DNA by polymerase gamma's 3'-->5' exonuclease activity was equal to the removal of (+)FTC-MP, 2-fold slower than the removal of (-)3TC-MP and (+)3TC-MP, and 4.6-fold slower than the excision of dCMP. These results demonstrate that there are clear differences between HIV-1 RT and polymerase gamma in terms of preferences for substrate structure.
Collapse
Affiliation(s)
- Joy Y Feng
- Gilead Sciences, Durham, North Carolina 27707, USA
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Perrino FW, Krol A, Harvey S, Zheng SL, Horita DA, Hollis T, Meyers DA, Isaacs WB, Xu J. Sequence variants in the 3′→5′ deoxyribonuclease TREX2: identification in a genetic screen and effects on catalysis by the recombinant proteins. ACTA ACUST UNITED AC 2004; 44:37-49. [PMID: 15581481 DOI: 10.1016/j.advenzreg.2003.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Fred W Perrino
- Department of Biochemistry, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chou KM, Cheng YC. The exonuclease activity of human apurinic/apyrimidinic endonuclease (APE1). Biochemical properties and inhibition by the natural dinucleotide Gp4G. J Biol Chem 2003; 278:18289-96. [PMID: 12624104 DOI: 10.1074/jbc.m212143200] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human DNA apurinic/apyrimidinic endonuclease (APE1) plays a key role in the DNA base excision repair process. In this study, we further characterized the exonuclease activity of APE1. The magnesium requirement and pH dependence of the exonuclease and endonuclease activities of APE1 are significantly different. APE1 showed a similar K(m) value for matched, 3' mispaired, or nucleoside analog beta-l-dioxolane-cytidine terminated nicked DNA as well as for DNA containing a tetrahydrofuran, an abasic site analog. The k(cat) for exonuclease activity on matched, 3' mispaired, and beta-l-dioxolane-cytidine nicked DNA are 2.3, 61.2, and 98.8 min(-1), respectively, and 787.5 min(-1) for APE1 endonuclease. Site-directed APE1 mutant proteins (E96A, E96Q, D210E, D210N, and H309N), which target amino acid residues in the endonuclease active site, also showed significant decrease in exonuclease activity. Gp(4)G was the only potent inhibitor to compete against the substrates of endonuclease and exonuclease activities among all tested naturally occurring ribo-, deoxyribo-nucleoside/nucleotides, NAD(+), NADP(+), and Ap(4)A. The K(i) values of Gp(4)G for the endonuclease and exonuclease activities of APE1 are 10 +/- 0.6 and 1 +/- 0.2 microm, respectively. Given the relative concentrations of Gp(4)G, 3' mispaired, and abasic DNA, Gp(4)G may play an important role in regulating APE1 activity in cells. The data presented here suggest that the APE1 exonuclease and AP endonuclease are two distinct activities. APE1 may exist in two different conformations, and each conformation has a preference for a substrate. The different conformations can be affected by MgCl(2) or salt concentrations.
Collapse
Affiliation(s)
- Kai-Ming Chou
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | |
Collapse
|
7
|
Lilling G, Elena N, Sidi Y, Bakhanashvili M. p53-associated 3'-->5' exonuclease activity in nuclear and cytoplasmic compartments of cells. Oncogene 2003; 22:233-45. [PMID: 12527892 DOI: 10.1038/sj.onc.1206111] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The tumor suppressor protein p53 plays an important role in maintenance of the genomic integrity of cells. p53 possesses an intrinsic 3'-->5' exonuclease activity. p53 was found in the nucleus and in the cytoplasm of the cell. In order to evaluate the subcellular location and extent of p53-associated 3'--> 5' exonuclease activity, we established an in vitro experimental system of cell lines with different nuclear/cytoplasmic distribution of p53. Nuclear and cytoplasmic extracts obtained from LCC2 cells (expressing a high level of cytoplasmic wild-type p53), MCF-7 cells (expressing a high level of wild-type nuclear p53), MDA cells (expressing mutant p53) and H1299 cells (p53-null) were subjected to the analysis of exonuclease activity. Interestingly, 3'-->5' exonuclease was predominantly cytoplasmic; the nuclear extracts derived from all cell lines tested, exerted a low level of exonuclease activity. Cytoplasmic extracts of LCC2 cells, with a high level of wild-type p53, showed an enhanced exonuclease activity in comparison to those expressing either a low level of wild-type p53 (in MCF-7 cells) or the mutant p53 (in MDA cells). Evidence that exonuclease function detected in cytoplasmic extracts is attributed to the p53 is supported by several facts: First, this activity closely parallels with levels and status of endogenous cytoplasmic p53. Second, immunoprecipitation of p53 from cytoplasmic extracts of LCC2 cells markedly reduced the exonuclease activity. Third, the observed 3'-->5' exonuclease in cytoplasmic fraction of LCC2 cells displays identical biochemical properties characteristic of recombinant wild-type p53. The biochemical functions include: (a) substrate specificity; exonuclease hydrolyzes single-stranded DNA in preference to double-stranded DNA and RNA/DNA template-primers, (b) efficient excision of 3'-terminal mispairs from DNA/DNA and RNA/DNA substrates, (c) the preferential excision of purine-purine mispairs over purine-pyrimidine mispairs and (d) functional interaction with exonuclease-deficient DNA polymerase, for example, murine leukemia virus reverse transcriptase (representing a relatively low fidelity enzyme), thus enhancing the fidelity of DNA synthesis by excision of mismatched nucleotides from the nascent DNA strand. Taken together, the data demonstrate that wild-type p53 in cytoplasm, in its noninduced state, is functional; it displays intrinsic 3'-->5' exonuclease activity. The possible role of p53-associated 3'-->5' exonuclease activity in DNA repair in nucleus and cytoplasm is discussed.
Collapse
Affiliation(s)
- Gila Lilling
- Department of Medicine C, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | |
Collapse
|
8
|
Chou KM, Cheng YC. An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3' mispaired DNA. Nature 2002; 415:655-9. [PMID: 11832948 DOI: 10.1038/415655a] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Human apurinic/apyrimidinic endonuclease (APE1) is an essential enzyme in DNA base excision repair that cuts the DNA backbone immediately adjacent to the 5' side of abasic sites to facilitate repair synthesis by DNA polymerase beta (ref. 1). Mice lacking the murine homologue of APE1 die at an early embryonic stage. Here we report that APE1 has a DNA exonuclease activity on mismatched deoxyribonucleotides at the 3' termini of nicked or gapped DNA molecules. The efficiency of this activity is inversely proportional to the gap size in DNA. In a base excision repair system reconstituted in vitro, the rejoining of nicked mismatched DNA depended on the presence of APE1, indicating that APE1 may increase the fidelity of base excision repair and may represent a new 3' mispaired DNA repair mechanism. The exonuclease activity of APE1 can remove the anti-HIV nucleoside analogues 3'-azido-3'-deoxythymidine and 2',3'-didehydro-2', 3'-dideoxythymidine from DNA, suggesting that APE1 might have an impact on the therapeutic index of antiviral compounds in this category.
Collapse
Affiliation(s)
- Kai-Ming Chou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
9
|
Giles FJ, Garcia-Manero G, Cortes JE, Baker SD, Miller CB, O'Brien SM, Thomas DA, Andreeff M, Bivins C, Jolivet J, Kantarjian HM. Phase II study of troxacitabine, a novel dioxolane nucleoside analog, in patients with refractory leukemia. J Clin Oncol 2002; 20:656-64. [PMID: 11821445 DOI: 10.1200/jco.2002.20.3.656] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To investigate the activity of a novel dioxolane L-nucleoside analog, troxacitabine (L-(-)-OddC, BCH-4556), in patients with refractory leukemia. PATIENTS AND METHODS Study participants were patients with refractory or relapsed acute myeloid (AML) or lymphocytic (ALL) leukemia, myelodysplastic syndromes (MDS), or chronic myelogenous leukemia in blastic phase (CML-BP). Troxacitabine was provided as an intravenous infusion for more than 30 minutes daily for 5 days at a dose of 8.0 mg/m(2)/d (40 mg/m(2) per course). Courses were given every 3 to 4 weeks according to antileukemic efficacy. RESULTS Forty-two patients (AML, 18 patients; MDS, one patient; ALL, six patients; CML-BP, 17 patients) were treated. Median age was 51 years (range, 23 to 80 years); 22 patients were male. Stomatitis was the most significant adverse event, with three patients (7%) and two patients (5%), respectively, experiencing grade 3 or 4 toxicity. Ten patients (24%) had grade 3 hand-foot syndrome, and two patients (5%) had grade 3 skin rash. One patient (2%) had grade 3 fatigue and anorexia. Marrow hypoplasia occurred between days 14 and 28 in 12 (75%) of 16 assessable patients with AML. Two complete remissions and one partial remission (18%) were observed in 16 assessable patients with AML. None of six patients with ALL responded. Six (37%) of 16 assessable patients with CML-BP experienced a return to chronic-phase disease. CONCLUSION Troxacitabine has significant antileukemic activity in patients with AML and CML-BP.
Collapse
Affiliation(s)
- Francis J Giles
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Feng JY, Johnson AA, Johnson KA, Anderson KS. Insights into the molecular mechanism of mitochondrial toxicity by AIDS drugs. J Biol Chem 2001; 276:23832-7. [PMID: 11328813 DOI: 10.1074/jbc.m101156200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Several of the nucleoside analogs used in the treatment of AIDS exhibit a delayed clinical toxicity limiting their usefulness. The toxicity of nucleoside analogs may be related to their effects on the human mitochondrial DNA polymerase (Pol gamma), the polymerase responsible for mitochondrial DNA replication. Among the AIDS drugs approved by the FDA for clinical use, two are modified cytosine analogs, Zalcitabine (2',3'-dideoxycytidine (ddC)) and Lamivudine (beta-d-(+)-2',3'-dideoxy-3'-thiacytidine ((-)3TC])). (-)3TC is the only analog containing an unnatural l(-) nucleoside configuration and is well tolerated by patients even after long term administration. In cell culture (-)3TC is less toxic than its d(+) isomer, (+)3TC, containing the natural nucleoside configuration, and both are considerably less toxic than ddC. We have investigated the mechanistic basis for the differential toxicity of these three cytosine analogs by comparing the effects of dideoxy-CTP), (+)3TC-triphosphate (TP), and (-)3TC-TP on the polymerase and exonuclease activities of recombinant human Pol gamma. This analysis reveals that Pol gamma incorporates (-)3TC-triphosphate 16-fold less efficiently than the corresponding (+)isomer and 1140-fold less efficiently than dideoxy-CTP, showing a good correlation between incorporation rate and toxicity. The rates of excision of the incorporated analogs from the chain-terminated 3'-end of the DNA primer by the 3'-5'-exonuclease activity of Pol gamma were similar (0.01 s(-)1) for both 3TC analogs. In marked contrast, the rate of exonuclease removal of a ddC chain-terminated DNA occurs at least 2 orders of magnitude slower, suggesting that the failure of the exonuclease to remove ddC may play a major role in its greater toxicity. This study demonstrates that direct analysis of the mitochondrial DNA polymerase structure/function relationships may provide valuable insights leading to the design of less toxic inhibitors.
Collapse
Affiliation(s)
- J Y Feng
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | |
Collapse
|
11
|
Abstract
Nucleoside reverse transcriptase inhibitors (NRTIs) remain the cornerstone of highly active antiretroviral therapy (HAART) combination regimens. However, it has been known for some time that these agents have the potential to cause varied side effects, many of which are thought to be due to their effects on mitochondria. Mitochondria, the key energy generating organelles in the cell, are unique in having their own DNA, a double stranded circular genome of about 16 000 bases. There is a separate enzyme present inside the cell that replicates mitochondrial DNA, polymerase gamma. NRTIs can affect the function of this enzyme and this may lead to depletion of mitochondrial DNA or qualitative changes. The study of inherited mitochondrial diseases has led to further understanding of the consequences of mutations or depletion in mitochondrial DNA. Key among these is the realisation that there may be substantial heteroplasmy among mitochondria within a given cell, and among cells in a particular tissue. The unpredictable nature of mitochondrial segregation during cellular replication makes it difficult to predict the likelihood of dysfunction in a given tissue. In addition, there is a threshold effect for the expression of mitochondrial dysfunction, both at the mitochondrial and cellular level. Various clinical and in vitro studies have suggested that NRTIs are associated with mitochondrial dysfunction in different tissues, although the weight of evidence is limited in many cases. The heterogeneity in the tissues affected by the different drugs raises interesting questions, and possible explanations include differential distribution or activation of these agents. This article reviews the major recognised toxicities associated with NRTI therapy and evidence for mitochondrial dysfunction in these complications. Data were identified through searching of online databases including Medline and Current Contents for relevant articles, along with abstracts and posters from recent conferences in the HIV and mitochondrial fields.
Collapse
Affiliation(s)
- A J White
- Anti-Infectives Clinical Development and Product Strategy, GlaxoSmithKline Research and Development, Greenford Road, Greenford, Middlesex, UB6 0HE, UK.
| |
Collapse
|
12
|
Chou KM, Kukhanova M, Cheng YC. A novel action of human apurinic/apyrimidinic endonuclease: excision of L-configuration deoxyribonucleoside analogs from the 3' termini of DNA. J Biol Chem 2000; 275:31009-15. [PMID: 10906132 DOI: 10.1074/jbc.m004082200] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
beta-l-Dioxolane-cytidine (l-OddC, BCH-4556, Troxacitabine) is a novel unnatural stereochemical nucleoside analog that is under phase II clinical study for cancer treatment. This nucleoside analog could be phosphorylated and subsequently incorporated into the 3' terminus of DNA. The cytotoxicity of l-OddC was correlated with the amount of l-OddCMP in DNA, which depends on the incorporation by DNA polymerases and the removal by exonucleases. Here we reported the purification and identification of the major enzyme that could preferentially remove l-OddCMP compared with dCMP from the 3' termini of DNA in human cells. Surprisingly, this enzyme was found to be apurinic/apyrimidinic endonuclease (APE1) (), a well characterized DNA base excision repair protein. APE1 preferred to remove l- over d-configuration nucleosides from 3' termini of DNA. The efficiency of removal of these deoxycytidine analogs were as follows: l-OddC > beta-l-2',3'-dideoxy-2', 3'-didehydro-5-fluorocytidine > beta-l-2',3'-dideoxycytidine > beta-l-2',3'-dideoxy-3'-thiocytidine > beta-d-2',3'-dideoxycytidine > beta-d-2',2'-difluorodeoxycytidine > beta-d-2'-deoxycytidine >/= beta-d-arabinofuranosylcytosine. This report is the first demonstration that an exonuclease can preferentially excise l-configuration nucleoside analogs. This discovery suggests that APE1 could be critical for the activity of l-OddC or other l-nucleoside analogs and may play additional important roles in cells that were not previously known.
Collapse
Affiliation(s)
- K M Chou
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
13
|
Skalski V, Brown KR, Choi BY, Lin ZY, Chen S. A 3'-5' exonuclease in human leukemia cells: implications for resistance to 1-beta -D-arabinofuranosylcytosine and 9-beta -D-arabinofuranosyl-2-fluoroadenine 5'-monophosphate. J Biol Chem 2000; 275:25814-9. [PMID: 10833512 DOI: 10.1074/jbc.m001460200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 3'-5' exonuclease that excises the nucleotide analogs 1-beta-d-arabinofuranosylcytosine monophosphate and 9-beta-d-arabinofuranosyl-2-fluoroadenine 5'-monophosphate incorporated at 3' ends of DNA was purified from the nuclei of: 1) primary human chronic lymphocytic leukemia cells, 2) primary and established human acute myeloblastic leukemia cells, and 3) lymphocytes obtained from healthy individuals. The activity of this nuclear exonuclease (exoN) is elevated approximately 6-fold in 1-beta-d-arabinofuranosylcytosine-resistant leukemia cells as compared with drug-sensitive cells, and it differs between two healthy individuals and among three leukemia patients. exoN is a 46-kDa monomer, requires 50 mm KCl and 1 mm magnesium for optimal activity, and shows a preference for single-stranded over duplex DNA. Its physical and enzymatic properties indicate that exoN is a previously uncharacterized enzyme whose activity may confer resistance to clinical nucleoside analogs in leukemia cells.
Collapse
MESH Headings
- Antimetabolites, Antineoplastic/pharmacology
- Arabinonucleotides/pharmacology
- Cell Nucleus/enzymology
- Cells, Cultured
- Cytidine Monophosphate/analogs & derivatives
- Cytidine Monophosphate/pharmacology
- DNA-Directed DNA Polymerase/metabolism
- Drug Resistance, Neoplasm
- Exodeoxyribonuclease V
- Exodeoxyribonucleases/genetics
- Exodeoxyribonucleases/isolation & purification
- Exodeoxyribonucleases/metabolism
- Exonucleases/biosynthesis
- Exonucleases/chemistry
- Exonucleases/metabolism
- Humans
- Leukemia/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Myeloid, Acute/blood
- Leukemia, Myeloid, Acute/enzymology
- Lymphocytes/enzymology
- Magnesium/metabolism
- Neoplasm Proteins
- Potassium Chloride/metabolism
- Protein Biosynthesis
- Time Factors
- Transcription, Genetic
- Tumor Cells, Cultured
- Up-Regulation
- Vidarabine Phosphate/analogs & derivatives
- Vidarabine Phosphate/pharmacology
Collapse
Affiliation(s)
- V Skalski
- Division of Experimental Therapeutics, Ontario Cancer Institute, Princess Margaret Hospital and the Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
14
|
Skalski V, Lin ZY, Choi BY, Brown KR. Substrate specificity of the p53-associated 3'-5' exonuclease. Oncogene 2000; 19:3321-9. [PMID: 10918588 DOI: 10.1038/sj.onc.1203649] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
p53 exhibits 3'-5' exonuclease activity and the significance of this biochemical function is currently not defined. In order to gain information about the potential role(s) of this exonuclease activity, recombinant and wild-type human p53 was examined for excision of nucleotides from defined synthetic DNA substrates. p53 removes nucleotides threefold faster from single-strand DNA than from DNA duplexes, exhibits a 1.5-fold preference for 3'-terminals of DNA that contain a single nucleotide mispair (mismatch) as compared to correctly paired DNA and efficiently excises nucleotides from 3'-ends of blunt and cohesive (staggered) DNA double-strand breaks. The p53 exonuclease is predominantly non-processive on DNA which is 17 nucleotides long (or shorter) and processive on the longer 30-mers. The processivity of nucleotide excision is decreased in the presence of 50 mM potassium phosphate and eliminated when full-length p53 is replaced with the core domain, comprised of amino acids 82-292. Photoaffinity labeling indicates that (1) p53 monomers, rather than dimers, bind to single-strand forms of these oligomers; (2) complexes between p53 and 30-mers are more stable than those formed with 17-mers. The stability of these complexes determines processivity during nucleotide removal and modulates the 3'-5' exonuclease activity of p53. The relevance of substrate specificity of the p53 exonuclease to DNA repair is discussed.
Collapse
Affiliation(s)
- V Skalski
- Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | |
Collapse
|
15
|
Kukhanova M, Liu TW, Pelicano H, Cheng YC. Excision of beta-L- and beta-D-nucleotide analogs from DNA by p53 protein. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2000; 19:435-46. [PMID: 10772725 DOI: 10.1080/15257770008033019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The tumor suppressor p53 protein plays a critical role in the cell-cycle progression. The role of the 3'-to-5' exonuclease activity of p53 protein in the DNA repair process remains elusive. Using an in vitro exonuclease assay and defined oligonucleotides terminated with beta-D- and beta-L-nucleoside analogs at the 3'-terminus, we studied the ability of p53 protein to excise beta-L- and beta-D-nucleoside analogs which have anticancer or antiviral potential. p53 protein removes beta-D-nucleoside analogs more efficiently compared to that of beta-L-nucleoside analogs. The affinity of p53 protein for an beta-L-nucleotide terminated primer was 5 fold lower compared to non-modified primer. The hypothesis on an important role of the 3'-to-5' exonuclease activity of p53 protein in the action of nucleoside analogs was proposed.
Collapse
Affiliation(s)
- M Kukhanova
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
16
|
Perrino FW, Mazur DJ, Ward H, Harvey S. Exonucleases and the incorporation of aranucleotides into DNA. Cell Biochem Biophys 1999; 30:331-52. [PMID: 10403055 DOI: 10.1007/bf02738118] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The polymerization of nucleotide analogs into DNA is a common strategy used to inhibit DNA synthesis in rapidly dividing tumor cells and viruses. The mammalian DNA polymerases catalyze the insertion of the arabinofuranosyl analogs of dNTPs (aranucleotides) into DNA efficiently, but elongate from the 3' aranucleotides poorly. Slow elongation provides an opportunity for exonucleases to remove aranucleotides. The exonuclease activity associated with DNA polymerase delta removes araCMP from 3' termini with the same efficiency that it removes a paired 3' deoxycytosine suggesting that the proofreading exonucleases associated with DNA polymerases might remove aranucleotides inefficiently. A separate 30 kDa exonuclease has been purified from mammalian cells that removes araCMP from 3' termini. The activity of this enzyme in the cell could remove aranucleotides from 3' termini of DNA and decrease the efficacy of the analogs. Inhibition analysis of the purified exonuclease shows that this enzyme is inhibited by thioinosine monophosphate (TIMP) with a Ki = 17 microM. When high TIMP levels are generated in HL-60 cells, incorporation of araC in DNA is increased about 16-fold relative to total DNA synthesis. This increased araC in DNA is likely a result of exonuclease inhibition in the cell. Thus, exonucleases in cells might play an important role in removing aranucleotides inserted by DNA polymerases.
Collapse
Affiliation(s)
- F W Perrino
- Wake Forest University School of Medicine, Department of Biochemistry, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
17
|
Mazur DJ, Perrino FW. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3'-->5' exonucleases. J Biol Chem 1999; 274:19655-60. [PMID: 10391904 DOI: 10.1074/jbc.274.28.19655] [Citation(s) in RCA: 223] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 3'-->5' exonucleases catalyze the excision of nucleoside monophosphates from the 3' termini of DNA. We have identified the cDNA sequences encoding two 3'-->5' exonucleases (TREX1 and TREX2) from mammalian cells. The TREX1 and TREX2 proteins are 304 and 236 amino acids in length, respectively. Analysis of the TREX1 and TREX2 sequences identifies three conserved motifs that likely generate the exonuclease active site in these enzymes. The specific amino acids in these three conserved motifs suggest that these mammalian exonucleases are most closely related to the proofreading exonucleases of the bacterial replicative DNA polymerases and the RNase T enzymes. Expression of TREX1 and TREX2 in Escherichia coli demonstrates that these recombinant proteins are active 3'-->5' exonucleases. The recombinant TREX1 protein was purified, and exonuclease activity was measured using single-stranded, partial duplex, and mispaired oligonucleotide DNA substrates. The greatest activity of the TREX1 protein was detected using a partial duplex DNA containing five mispaired nucleotides at the 3' terminus. No activity was detected using single-stranded RNA or an RNA-DNA partial duplex. Identification of the TREX1 and TREX2 cDNA sequences provides the genetic tools to investigate the physiological roles of these exonucleases in mammalian DNA replication, repair, and recombination pathways.
Collapse
Affiliation(s)
- D J Mazur
- Wake Forest University School of Medicine, Department of Biochemistry, Winston-Salem, North Carolina 27157, USA
| | | |
Collapse
|
18
|
Zhu L, Halligan BD. Characterization of a 3'-5' exonuclease associated with VDJP. Biochem Biophys Res Commun 1999; 259:262-70. [PMID: 10362497 DOI: 10.1006/bbrc.1999.0774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
VDJP (V(D)J RSS Dependent DNA Joining Protein) was cloned based on binding to the nonamer portion of the V(D)J recombinational signal sequence (RSS), and genetic analysis revealed that VDJP is encoded by the same gene as the large subunit of Replication Factor C (RF-C). Recombinant VDJP has a site directed DNA joining activity and is capable of forming a covalent bond between DNA fragments containing an RSS element near their ends and exhibits 3' to 5' exonuclease activity. In this report, we examine the biochemical properties of the VDJP exonuclease activity such as directionality of nuclease action (3' to 5' or 5' to 3'), single-strand substrate preference, cleavage products, dependence on cofactors and metal cations, and optimal reaction conditions. From this analysis, we conclude that VDJP has an intrinsic 3'-5' exonuclease activity that produces mononucleotide products.
Collapse
Affiliation(s)
- L Zhu
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
19
|
Dutschman GE, Bridges EG, Liu SH, Gullen E, Guo X, Kukhanova M, Cheng YC. Metabolism of 2',3'-dideoxy-2',3'-didehydro-beta-L(-)-5-fluorocytidine and its activity in combination with clinically approved anti-human immunodeficiency virus beta-D(+) nucleoside analogs in vitro. Antimicrob Agents Chemother 1998; 42:1799-804. [PMID: 9661024 PMCID: PMC105686 DOI: 10.1128/aac.42.7.1799] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
2',3'-Dideoxy-2',3'-didehydro-beta-L(-)-5-fluorocytidine [L(-)Fd4C] has been reported to be a potent inhibitor of the human immunodeficiency virus (HIV) in cell culture. In the present study the antiviral activity of this compound in two-drug combinations and its intracellular metabolism are addressed. The two-drug combination of L(-)Fd4C plus 2',3'-didehydro-2'-3'-dideoxythymidine (D4T, or stavudine) or 3'-azido-3'-deoxythymidine (AZT, or zidovudine) synergistically inhibited replication of HIV in vitro. Additive antiviral activity was observed with L(-)Fd4C in combination with 2',3'-dideoxycytidine (ddC, or zalcitabine) or 2',3'-dideoxyinosine (ddI, or didanosine). This beta-L(-) nucleoside analog has no activity against mitochondrial DNA synthesis at concentrations up to 10 microM. As we previously reported for other beta-L(-) nucleoside analogs, L(-)Fd4C could protect against mitochondrial toxicity associated with D4T, ddC, and ddI. Metabolism studies showed that this drug is converted intracellularly to its mono-, di-, and triphosphate metabolites. The enzyme responsible for monophosphate formation was identified as cytoplasmic deoxycytidine kinase, and the K(m) is 100 microM. L(-)Fd4C was not recognized in vitro by human mitochondrial deoxypyrimidine nucleoside kinase. Also, L(-)Fd4C was not a substrate for deoxycytidine deaminase. L(-)Fd4C 5'-triphosphate served as an alternative substrate to dCTP for incorporation into DNA by HIV reverse transcriptase. The favorable anti-HIV activity and protection from mitochondrial toxicity by L(-)Fd4C in two-drug combinations favors the further development of L(-)Fd4C as an anti-HIV agent.
Collapse
Affiliation(s)
- G E Dutschman
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Gosselin G, Boudou V, Griffon JF, Pavia G, Pierra C, Imbach JL, Aubertin AM, Schinazi RF, Faraj A, Sommadossi JP. New Unnatural L-Nucleoside Enantiomers:From Their Stereospecific Synthesis to Their Biological Activities. ACTA ACUST UNITED AC 1997. [DOI: 10.1080/07328319708006190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Keilbaugh SA, Hobbs GA, Simpson MV. Effect of 2',3'-dideoxycytidine on oxidative phosphorylation in the PC12 cell, a neuronal model. Biochem Pharmacol 1997; 53:1485-92. [PMID: 9260876 DOI: 10.1016/s0006-2952(97)82442-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peripheral neuropathy induced by 2',3'-dideoxycytidine (ddC) could result from the previously shown inhibition of mtDNA replication by the action of ddC on the mitochondrial enzyme DNA polymerase gamma. Such inhibition would be expected to impair oxidative phosphorylation, and this was demonstrated in the present study for the PC12 cell, a model of a peripheral neuron. The dramatic rise in lactate formation upon exposure of the cell to ddC indicated that increased glycolysis was needed to produce ATP. A concomitant rise in O2 uptake indicated that oxidative phosphorylation had become uncoupled. When tested in a standard respiratory control system (isolated rat liver mitochondria), however, we found ddC not to be an uncoupler. Rather, the uncoupling most likely resulted from the failure of synthesis of one or more mitochondrial gene products necessary for oxidative phosphorylation. We also observed an important distinction between the manner in which ddC and 3'-azido-3'-deoxythymidine (AZT) act. ddC-exerted inhibition of oxidative phosphorylation was delayed for several days. This is consistent with the inhibition occurring indirectly, most likely as a result of the prior destruction of the mitochondrial genome, which encodes many of the components of the oxidative phosphorylation system. In contrast, we have shown previously that although AZT also impairs replication of the mitochondrial genome (in the Friend murine erythroleukemic cell), it also attacks directly an additional primary target leading to impairment of oxidative phosphorylation; its initial inhibition of this process is immediate, not occurring via inhibition of mitochondrial DNA replication.
Collapse
Affiliation(s)
- S A Keilbaugh
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook 11794, U.S.A
| | | | | |
Collapse
|
22
|
Kamiya K, Huang P, Plunkett W. Inhibition of the 3' --> 5' exonuclease of human DNA polymerase epsilon by fludarabine-terminated DNA. J Biol Chem 1996; 271:19428-35. [PMID: 8702631 DOI: 10.1074/jbc.271.32.19428] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Incorporation of the anticancer drug fludarabine (9-beta-D-arabinofuranosyl-2-fluoroadenine 5'-monophosphate; F-ara-AMP) into the 3'-end of DNA during replication causes termination of DNA strand elongation and is strongly correlated with loss of clonogenicity. Because the proofreading mechanisms that remove 3'-F-ara-AMP from DNA represent a possible means of resistance to the drug, the present study investigated the excision of incorporated F-ara-AMP from DNA by the 3' --> 5'-exonuclease activity of DNA polymerase epsilon from human leukemia CEM cells. Using the drug-containing and normal deoxynucleotide oligomers (21-base) annealed to M13mp18(+) DNA as the excision substrates, we demonstrated that DNA polymerase epsilon was unable to effectively remove F-ara-AMP from the 3'-end of the oligomer. However, 3'-terminal dAMP and subsequently other deoxynucleotides were readily excised from DNA in a distributive fashion. Kinetic evaluation demonstrated that although DNA polymerase epsilon has a higher affinity for F-ara-AMP-terminated DNA (Km = 7.1 pM) than for dAMP-terminated DNA of otherwise identical sequence (Km = 265 pM), excision of F-ara-AMP proceeded at a substantially slower rate (Vmax = 0.053 pmol/min/mg) than for 3'-terminal dAMP (Vmax = 1.96 pmol/min/mg). When the 3'-5' phosphodiester bond between F-ara-AMP at the 3'-terminus and the adjacent normal deoxynucleotide was cleaved by DNA polymerase epsilon, the reaction products appeared to remain associated with the enzyme but without the formation of a covalent bond. No further excision of the remaining oligomers was observed after the addition of fresh DNA polymerase epsilon to the reaction. Furthermore, the addition of DNA polymerase alpha and deoxynucleoside triphosphates to the excision reaction failed to extend the oligomers. After DNA polymerase epsilon had been incubated with 3'-F-ara-AMP-21-mer for 10 min, the enzyme was no longer able to excise 3'-terminal dAMP from a freshly added normal 21-mer annealed to M13mp18(+) template. We conclude that the 3' --> 5' exonuclease of human DNA polymerase epsilon can remove 3'-terminal F-ara-AMP from DNA with difficulty and that this excision results in a mechanism-mediated formation of "dead end complex."
Collapse
Affiliation(s)
- K Kamiya
- Department of Clinical Investigation, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|