1
|
Yanai H, Adachi H, Hakoshima M, Katsuyama H. Pathology and Treatments of Alzheimer's Disease Based on Considering Changes in Brain Energy Metabolism Due to Type 2 Diabetes. Molecules 2024; 29:5936. [PMID: 39770025 PMCID: PMC11677283 DOI: 10.3390/molecules29245936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/22/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with cognitive dysfunction, memory decline, and behavioral disturbance, and it is pathologically characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. Although various hypotheses have been proposed to explain the pathogenesis of AD, including the amyloid beta hypothesis, oxidative stress hypothesis, and abnormal phosphorylation of tau proteins, the exact pathogenic mechanisms underlying AD remain largely undefined. Furthermore, effective curative treatments are very limited. Epidemiologic studies provide convincing evidence for a significant association between type 2 diabetes and AD. Here, we showed energy metabolism using glucose, lactate, ketone bodies, and lipids as energy substrates in a normal brain, and changes in such energy metabolism due to type 2 diabetes. We also showed the influences of such altered energy metabolism due to type 2 diabetes on the pathology of AD. Furthermore, we comprehensively searched for risk factors related with type 2 diabetes for AD and showed possible therapeutic interventions based on considering risk factors and altered brain energy metabolism due to type 2 diabetes for the development of AD.
Collapse
Affiliation(s)
- Hidekatsu Yanai
- Department of Diabetes, Endocrinology and Metabolism, National Center for Global Health and Medicine Kohnodai Hospital, 1-7-1 Kohnodai, Ichikawa 272-8516, Chiba, Japan; (H.A.); (M.H.); (H.K.)
| | | | | | | |
Collapse
|
2
|
Portugal CC. Ascorbate and its transporter SVCT2: The dynamic duo's integrated roles in CNS neurobiology and pathophysiology. Free Radic Biol Med 2024; 212:448-462. [PMID: 38182073 DOI: 10.1016/j.freeradbiomed.2023.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Ascorbate is a small antioxidant molecule essential for the proper development and function of the brain. Ascorbate is transported into the brain and between brain cells via the Sodium vitamin C co-transporter 2 (SVCT2). This review provides an in-depth analysis of ascorbate's physiology, including how ascorbate is absorbed from food into the CNS, emphasizing cellular mechanisms of ascorbate recycling and release in different CNS compartments. Additionally, the review delves into the various functions of ascorbate in the CNS, including its impact on epigenetic modulation, synaptic plasticity, and neurotransmission. It also emphasizes ascorbate's role on neuromodulation and its involvement in neurodevelopmental processes and disorders. Furthermore, it analyzes the relationship between the duo ascorbate/SVCT2 in neuroinflammation, particularly its effects on microglial activation, cytokine release, and oxidative stress responses, highlighting its association with neurodegenerative diseases, such as Alzheimer's disease (AD). Overall, this review emphasizes the crucial role of the dynamic duo ascorbate/SVCT2 in CNS physiology and pathology and the need for further research to fully comprehend its significance in a neurobiological context and its potential therapeutic applications.
Collapse
Affiliation(s)
- Camila C Portugal
- I3s - Instituto de Investigação e Inovação em Saúde da Universidade do Porto and IBMC - Instituto de Biologia Molecular e Celular, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
3
|
Choromańska B, Myśliwiec P, Dadan J, Maleckas A, Zalewska A, Maciejczyk M. Effects of age and gender on the redox homeostasis of morbidly obese people. Free Radic Biol Med 2021; 175:108-120. [PMID: 34390781 DOI: 10.1016/j.freeradbiomed.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/28/2023]
Abstract
Obesity is a chronic disease of complex etiology. Recent evidence suggests that obesity is caused by inflammation of adipose tissue leading to metabolic disorders, cardiovascular disease and cancer. This is the first study to evaluated the effects of age and gender on redox homeostasis, glutathione metabolism, and oxidative damage to plasma/serum lipids and proteins in morbidly obese patients. The study included 120 (60 men and 60 women) morbidly obese patients with class 3 obesity (BMI > 40 kg/m2), classified into three groups depending on age: 20-39 years (n = 20), 40-59 years (n = 20) and 60 years or older (n = 20). The number of patients was calculated a priori based on our previous experiment. We observed a reduction in serum activity of antioxidant enzymes (↓SOD) and plasma concentration of non-enzymatic antioxidants (↓GSH) in obese patients compared to the lean controls, which further decreased with age. Redox status (↑TAC, ↑TOS and ↓OSI) in morbidly obese men and women was shifted towards oxidation. Moreover, lipid (↑MDA and ↑LOOH) and protein (↑AOPP, ↑AGE and ↑Amadori products) damage products of oxidation and nitrosylation/nitration (↑total NO, ↑S-nitrosothiols, ↑peroxynitrite and ↑nitrotyrosine) were elevated in both genders of morbidly obese patients and were higher in the elderly. Interestingly, the concentrations of oxidative and nitrosative stress markers were generally higher in obese men compared to obese women at the same age. Summarizing, we showed that the total antioxidant/oxidant potential of obese patients is significantly increased and shifted towards oxidation. Obese patients have increased lipid and protein oxidation, glycation and nitration as compared to the lean controls. Disturbances in redox homeostasis increase with age in obese patients. Oxidative and nitrosative stress are more intense in men than in women at the same age.
Collapse
Affiliation(s)
- Barbara Choromańska
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-276, Bialystok, Poland.
| | - Piotr Myśliwiec
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-276, Bialystok, Poland.
| | - Jacek Dadan
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-276, Bialystok, Poland.
| | - Almantas Maleckas
- Department of Surgery, Lithuanian University of Health Sciences, Kaunas, Lithuania; Department of Gastrosurgical Research and Education, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Anna Zalewska
- Experimental Dentistry Laboratory, Medical University of Bialystok, 24a M. Sklodowskiej-Curie Street, 15-274, Bialystok, Poland.
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, 15-233, Bialystok, Poland.
| |
Collapse
|
4
|
Niki E, Noguchi N. Antioxidant action of vitamin E in vivo as assessed from its reaction products with multiple biological oxidants. Free Radic Res 2021; 55:352-363. [PMID: 33327809 DOI: 10.1080/10715762.2020.1866181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Vitamin E acts as essential antioxidant against detrimental oxidation of biological molecules induced by multiple reactive species. To gain more insight into the physiological role of vitamin E, the levels of its oxidation products in humans under normal and pathological conditions were compared. α-Tocopherol quinone (α-TQ) and 5-nitro-γ-tocopherol (5-NgT) were focused. α-TQ is produced by multiple oxidants including oxygen radicals, peroxynitrite, hypochlorite, singlet oxygen, and ozone, while 5-NgT is produced by nitrogen dioxide radical derived from peroxynitrite and the reaction of nitrite and hypochlorite. The reported concentrations of α-TQ and 5-NgT in healthy human plasma are highly variable ranging from 15 to 360 and 4 to 170 nM, respectively. In general, the molar ratio 5-NgT/γ-tocopherol was higher than the ratio α-TQ/α-tocopherol. Both absolute concentrations of α-TQ and 5-NgT and the molar ratios to the parent tocopherols were elevated significantly in the plasma of patients with various diseases compared with healthy subjects except neurological diseases. The molar ratios of the products to the respective parent compounds decreased in the order of 5-NgT/γ-tocopherol > α-TQ/α-tocopherol > hydroxyoctadecadienoate/linoleate > 3-nitrotyrosine/tyrosine > isoprostane/arachidonate. The molar ratios of nitrated products to the respective parent compounds in human plasma are approximately 10-2 for 5-NgT and 10-5 for 3-nitrotyrosine, nitro-oleic acid, and 8-nitroguaine. These data indicate that vitamin E acts as an important physiological antioxidant and that α-TQ and 5-NgT represent biomarker for oxidative stress and nitrative stress respectively.
Collapse
Affiliation(s)
- Etsuo Niki
- Research Center for Advanced Science and Technology, University of Tokyo, Komaba, Japan
| | - Noriko Noguchi
- Faculty of Life and Medical Sciences, Doshisha University, Kyoto, Japan
| |
Collapse
|
5
|
The Impact of Hypertension and Metabolic Syndrome on Nitrosative Stress and Glutathione Metabolism in Patients with Morbid Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1057570. [PMID: 32963689 PMCID: PMC7501544 DOI: 10.1155/2020/1057570] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/08/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
In this pathbreaking study, we evaluated nitrosative stress in morbidly obese patients with and without metabolic syndrome. 62 women with class 3 obesity (BMI > 40 kg/m2) were divided into three subgroups: obese patients (OB), obese patients with hypertension (OB+HYP), and obese patients with metabolic syndrome (OB+MS). In comparison to the lean patients, OB had increased levels of serum myeloperoxidase (MPO), plasma nitric oxide (NO), S-nitrosothiols, and peroxynitrite (ONOO−), as well as nitrotyrosine, while oxidized glutathione (GSSG) rose only in OB+HYP group. Interestingly, ONOO− was significantly higher in OB+HYP and OB+MS as compared to OB group, while MPO only in OB+MS group. OB+MS had greater nitrotyrosine and S-nitrosothiol values than OB+HYP. Moreover, peroxynitrite could differentiate OB from OB+HYP and OB+MS (AUC 0.9292; p < 0.0001; 87.5% sensitivity, 90% specificity) as well as between OB and OB+MS group (AUC 0.9125; p < 0.0001; 81.25% sensitivity, 83.33%). In conclusion, we showed that MPO activity, NO formation, and nitrosative damage to proteins parallel the progression of metabolic disturbances of obesity. Evaluation of ONOO− concentrations may help predict the development of hypertension and metabolic syndrome in patients with morbid obesity; however, longer-term studies are required for larger numbers of patients.
Collapse
|
6
|
Ballaz SJ, Rebec GV. Neurobiology of vitamin C: Expanding the focus from antioxidant to endogenous neuromodulator. Pharmacol Res 2019; 146:104321. [PMID: 31229562 DOI: 10.1016/j.phrs.2019.104321] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 01/06/2023]
Abstract
Ascorbic acid (AA) is a water-soluble vitamin (C) found in all bodily organs. Most mammals synthesize it, humans are required to eat it, but all mammals need it for healthy functioning. AA reaches its highest concentration in the brain where both neurons and glia rely on tightly regulated uptake from blood via the glucose transport system and sodium-coupled active transport to accumulate and maintain AA at millimolar levels. As a prototype antioxidant, AA is not only neuroprotective, but also functions as a cofactor in redox-coupled reactions essential for the synthesis of neurotransmitters (e.g., dopamine and norepinephrine) and paracrine lipid mediators (e.g., epoxiecoisatrienoic acids) as well as the epigenetic regulation of DNA. Although redox capacity led to the promotion of AA in high doses as potential treatment for various neuropathological and psychiatric conditions, ample evidence has not supported this therapeutic strategy. Here, we focus on some long-neglected aspects of AA neurobiology, including its modulatory role in synaptic transmission as demonstrated by the long-established link between release of endogenous AA in brain extracellular fluid and the clearance of glutamate, an excitatory amino acid. Evidence that this link can be disrupted in animal models of Huntington´s disease is revealing opportunities for new research pathways and therapeutic applications (e.g., epilepsy and pain management). In fact, we suggest that improved understanding of the regulation of endogenous AA and its interaction with key brain neurotransmitter systems, rather than administration of AA in excess, should be the target of future brain-based therapies.
Collapse
Affiliation(s)
- Santiago J Ballaz
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuqui, Ecuador.
| | - George V Rebec
- Program in Neuroscience, Department Psychological & Brain Sciences, Indiana University, Bloomington, USA.
| |
Collapse
|
7
|
Jung IJ, Seo YM, Jekal SJ. The Protective Effect of Rosmarinic Acid on the Aluminum of Dementia Inducer. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2017. [DOI: 10.15324/kjcls.2017.49.1.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- In-Ju Jung
- Department of Cosmetology, Dongshin University, Naju, Korea
| | - Young-Mi Seo
- Department of Nursing, Seonam University, Namwon, Korea
| | - Seung-Joo Jekal
- Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, Korea
| |
Collapse
|
8
|
Bowman GL. Ascorbic acid, cognitive function, and Alzheimer's disease: a current review and future direction. Biofactors 2012; 38:114-22. [PMID: 22419527 PMCID: PMC3594659 DOI: 10.1002/biof.1002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 01/10/2012] [Indexed: 12/18/2022]
Abstract
This narrative review appraises the human and animal studies implicating ascorbic acid (AA) in normal cognitive function and Alzheimer's disease. A research framework for how nutrition affects brain aging is proposed with emphasis on AA intake, status, metabolism, and transport into brain tissue. A final synopsis highlights areas for future research regarding AA nourishment and healthy brain aging.
Collapse
Affiliation(s)
- Gene L Bowman
- Department of Neurology, CR-131, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
9
|
|
10
|
Dkhar P, Sharma R. Amelioration of age-dependent increase in protein carbonyls of cerebral hemispheres of mice by melatonin and ascorbic acid. Neurochem Int 2011; 59:996-1002. [DOI: 10.1016/j.neuint.2011.08.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/24/2011] [Accepted: 08/25/2011] [Indexed: 11/26/2022]
|
11
|
Pubill D, Garcia-Ratés S, Camarasa J, Escubedo E. Neuronal Nicotinic Receptors as New Targets for Amphetamine-Induced Oxidative Damage and Neurotoxicity. Pharmaceuticals (Basel) 2011. [PMCID: PMC4055958 DOI: 10.3390/ph4060822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Amphetamine derivatives such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA, “ecstasy”) are widely abused drugs in a recreational context. This has led to concern because of the evidence that they are neurotoxic in animal models and cognitive impairments have been described in heavy abusers. The main targets of these drugs are plasmalemmal and vesicular monoamine transporters, leading to reverse transport and increased monoamine efflux to the synapse. As far as neurotoxicity is concerned, increased reactive oxygen species (ROS) production seems to be one of the main causes. Recent research has demonstrated that blockade of α7 nicotinic acetylcholine receptors (nAChR) inhibits METH- and MDMA-induced ROS production in striatal synaptosomes which is dependent on calcium and on NO-synthase activation. Moreover, α7 nAChR antagonists (methyllycaconitine and memantine) attenuated in vivo the neurotoxicity induced by METH and MDMA, and memantine prevented the cognitive impairment induced by these drugs. Radioligand binding experiments demonstrated that both drugs have affinity to α7 and heteromeric nAChR, with MDMA showing lower Ki values, while fluorescence calcium experiments indicated that MDMA behaves as a partial agonist on α7 and as an antagonist on heteromeric nAChR. Sustained Ca increase led to calpain and caspase-3 activation. In addition, modulatory effects of MDMA on α7 and heteromeric nAChR populations have been found.
Collapse
Affiliation(s)
- David Pubill
- Author to whom correspondence should be addressed; E-Mails: ; Tel.: +34-93-402-4531; Fax: +34-93-403-5982
| | | | | | | |
Collapse
|
12
|
Escubedo E, Camarasa J, Chipana C, García-Ratés S, Pubill D. Involvement of nicotinic receptors in methamphetamine- and MDMA-induced neurotoxicity: pharmacological implications. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2009; 88:121-66. [PMID: 19897077 DOI: 10.1016/s0074-7742(09)88006-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the last years, we have focused on the study of the neurotoxic effects of 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine (METH) on the central nervous system (CNS) and their pharmacological prevention methods. In the process of this research, we have used a semipurified synaptosomal preparation from striatum of mice or rats as a reliable in vitro model to study reactive oxygen species (ROS) production by these amphetamine derivatives, which is well-correlated with their dopaminergic injury in in vivo models. Using this preparation, we have demonstrated that blockade of alpha7 nicotinic receptors with methyllycaconitine (MLA) prevents ROS production induced by MDMA and METH. Consequently, in vivo, MLA significantly prevents MDMA- and METH-induced neurotoxicity at dopaminergic level (mouse striatum), without affecting hyperthermia induced by these amphetamines. Additionally, when neuroprotection was assayed with memantine (MEM), a dual antagonist of NMDA and alpha7 receptors, an effective neuroprotection was obtained also ahead of serotonergic injury induced by MDMA in rats. MEM also prevents MDMA effect on serotonin transporter functionality and METH effect on dopamine transporter (DAT), suggesting that behavioral effects of these psychostimulants can also be modulated by MEM. Finally, we have demonstrated that MEM prevents the impaired memory function induced by MDMA, and also, using binding studies with radioligands, we have characterized the interaction of these substances with nicotinic receptors. Studies at molecular level showed that both MDMA and METH displaced competitively the binding of radioligands with homomeric alpha7 and heteromeric nicotinic acetylcholine receptors (nAChRs), indicating that they can directly interact with them. In all the cases, MDMA displayed higher affinity than METH and it was higher for heteromeric than for alpha7 subtype. Pre-incubation of differentiated PC12 cells with MDMA or METH induces nAChR upregulation in a concentration- and time-dependent manner, as many nicotinic ligands do, supporting their functional interaction with nAChRs. Such interaction expands the pharmacological profile of amphetamines and can account for some of their effects.
Collapse
Affiliation(s)
- E Escubedo
- Unitat de Farmacologia i Farmacognósia, Facultat de Farmácia, Universitat de Barcelona, Barcelona 08028, Spain
| | | | | | | | | |
Collapse
|
13
|
Machado MV, Ravasco P, Jesus L, Marques-Vidal P, Oliveira CR, Proença T, Baldeiras I, Camilo ME, Cortez-Pinto H. Blood oxidative stress markers in non-alcoholic steatohepatitis and how it correlates with diet. Scand J Gastroenterol 2008; 43:95-102. [PMID: 18938777 DOI: 10.1080/00365520701559003] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Non-alcoholic fatty liver disease is a common condition that can progress to endstage liver disease. The steatotic liver seems to be particularly susceptible to oxidative stress damage. The aim of this study was to evaluate the redox state in patients with non-alcoholic steatohepatitis (NASH) and its correlation with dietary intake. MATERIAL AND METHODS Plasma concentrations of 4-hydroxynonenal (4-HNE), 8-hydroxydeoxyguanosine (8-OHdG), reduced and oxidized glutathione (GSH and GSSG), vitamins A and E, total antioxidant status (TAS), glutathione peroxidase (GSH-Px) and reductase (GSH-Red) erythrocyte activities were compared between 43 NASH patients and 33 healthy controls. 4-HNE, GSH-Px, GSH-Red and TAS were evaluated by spectrophotometry, 8-OHdG by ELISA assay, GSH and GSSG by fluorimetric assay and vitamins A and E by high performance liquid chromatography. Dietary habits were also evaluated in these patients. RESULTS GSH levels (21.1 +/- 18.3 versus 33.1 +/- 22.2 microM, p = 0.01) and GSH/GSSG ratio (0.9 +/- 0.7 versus 1.5 +/- 0.8, p = 0.01) were lower and TAS (832 +/- 146 versus 630 +/-140 microM, p < 0.001) and vitamin E (47.1 +/- 14.9 versus 34.5 +/- 7.3 microM, p < 0.001) were higher in NASH patients, although there was no difference in GSH-Px and GSH-Red activities, 8-OHdG and 4-HNE levels between groups. After adjusting for total energy consumption, a negative correlation was found with total and saturated fat intake and GSH/GSSG ratio, and a positive correlation with carbohydrates, fiber, monounsaturated fatty acids (MUFA), polyunsaturated fatty acids (PUFA), specifically N-3 PUFA, and vitamins E, C, selenium and folate. CONCLUSIONS Our data suggest an impaired glutathione metabolism towards an oxidant status in NASH patients, correlating with a higher intake of saturated fat and a lower intake of carbohydrates. Plasmatic concentrations of oxidative stress cellular markers did not translate to hepatic oxidative damage.
Collapse
Affiliation(s)
- Maiana Verdelho Machado
- Unidade de Nutrição e Metabolismo, Instituto de Medicina Molecular, Faculdade de Medicina de Lisboa, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A novel method for determination of peroxynitrite based on hemoglobin catalyzed reaction. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.09.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Vatassery GT, Lai JCK, DeMaster EG, Smith WE, Quach HT. Oxidation of vitamin E and vitamin C and inhibition of brain mitochondrial oxidative phosphorylation by peroxynitrite. J Neurosci Res 2004; 75:845-53. [PMID: 14994345 DOI: 10.1002/jnr.20027] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The effects of peroxynitrite (PN; product of the reaction between nitric oxide and superoxide) on mitochondrial respiration as well as oxidation of alpha-tocopherol and ascorbic acid were studied. Mitochondria were isolated from brain hemispheres of 4-month-old male Fisher rats by standard centrifugation procedures utilizing Ficoll gradients. Treatment of brain mitochondria with PN caused a concentration-dependent impairment of oxidative phosphorylation and depletion of the endogenous antioxidants alpha-tocopherol and ascorbic acid. PN-induced mitochondrial dysfunction was characterized by 1) decreases in state 3 respiration and oxidative phosphorylation, 2) loss of respiratory control [ratio of ADP-stimulated (state 3) to basal (state 4) respiration], and 3) uncoupling of oxidative phosphorylation. PN did not function as a pure uncoupler, insofar as the increase in state 4 respiration was accompanied by a larger decrease in state 3 respiration. This contrasts with the uncoupling action of the protonophore carbonyl cyanide m-chlorophenylhydrozone, which increases both state 3 and state 4 respiration. PN-induced reduction in respiratory control and oxidative phosphorylation closely paralleled the oxidation of membrane tocopherol and were preceded by loss of ascorbate. alpha-Tocopherol (the most potent biological lipid antioxidant) may have a unique role in protecting mitochondrial membranes from oxidative stress. The two antioxidant nutrients alpha-tocopherol and ascorbate (which interact with each other and glutathione) may be intimately involved in protecting mitochondria in situations in which excessive release of superoxide and nitric oxide occurs under normal and/or pathological conditions.
Collapse
Affiliation(s)
- Govind T Vatassery
- Research Service and GRECC, V.A. Medical Center, Minneapolis, Minnesota 55417, USA.
| | | | | | | | | |
Collapse
|
16
|
Abstract
Autoxidation pathways and redox reactions of dihydroxytryptamines (5,6- and 5,7-DHT) and of 6-hydroxydopamine (6-OH-DA) are illustrated, and their potential role in aminergic neurotoxicity is discussed. It is proposed that certain aspects of the cytotoxicity of 6-OH-DA and of the DHTs, namely redox cycling of their quinone- and quinoneimine-intermediates as a source of free radicals, may also apply to quinoidal reactive intermediates and to glutathionyl- or cysteinyl conjugates ("thioether adducts") of o-dihydroxylated (catechol-like) metabolites of certain substituted amphetamines (of methylenedioxymethamphetamine (MDMA) and of methylenedioxyamphetamine (MDA)). Despite similarities in their primary interaction with the plasmalemmal (serotonergic transporter/dopamine transporter, SERT/DAT) and vesicular monoamine transporters (VMAT2), MDMA and fenfluramine (N-ethyl-meta-trifluoromethamphetamine, Fen) differ substantially in many aspects of their metabolism, pharmacokinetics, pharmacology, and neurotoxicology profile; the consequences of these differences for neuronal response patterns and long-term survival prospects are not yet fully understood. However, sustained hyperthermia appears to be a critical factor in these differences. Methodological requirements for adequate detection and description of pre- and postsynaptic forms of drug-induced neurotoxicity are exemplified using recently published accounts. The inclusion of microglial markers into research strategies has widened contemporary pathogenetic concepts on methamphetamine (MA)-induced neurotoxicity as an example of inflammatory neurodegeneration, thus complementing the traditional ROS and RNS-dependent stress models. Amphetamine-type neurotoxicity studies may assist in elaborating of preventive strategies for human neurodegenerative disorders.
Collapse
Affiliation(s)
- H G Baumgarten
- Institut für Anatomie, Charite Universitätsmedizin Berlin, Campus Benjamin Franklin, Königin-Luise-Str. 15, 14195 Berlin, Germany.
| | | |
Collapse
|
17
|
Salvemini D, Cuzzocrea S. Therapeutic potential of superoxide dismutase mimetics as therapeutic agents in critical care medicine. Crit Care Med 2003; 31:S29-38. [PMID: 12544974 DOI: 10.1097/00003246-200301001-00005] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants, or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidative stress and exaggerated production of reactive oxygen species play a major role in several aspects of septic shock and ischemia and reperfusion. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na /K adenosine triphosphatase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of reactive oxygen species. In addition, reactive oxygen species are potent triggers of DNA strand breakage, with subsequent activation of the nuclear enzyme poly-adenosine 5'-diphosphate ribosyl synthetase, and eventual severe energy depletion of the cells. Pharmacologic evidence suggests that the peroxynitrite-poly-adenosine 5'-diphosphate ribosyl polymerase pathway contributes to the cellular injury in shock and endothelial injury. Treatment with superoxide dismutase mimetics, which selectively mimic the catalytic activity of the human superoxide dismutase enzymes, has been shown to prevent the cellular energetic failure associated with shock and ischemia-reperfusion and to prevent tissue damage associated with these conditions. In this article, we will briefly review the role of superoxide in septic shock and ischemia-reperfusion injury. We hope to present evidence to support the potential development of superoxide dismutase mimetics as novel and effective agents in the area of critical care medicine.
Collapse
|
18
|
Abstract
Oxidative stress results from an oxidant/antioxidant imbalance, an excess of oxidants and/or a depletion of antioxidants. A considerable body of recent evidence suggests that oxidant stress plays a major role in several aspects of septic shock and disseminated intravascular coagulation (DIC), and it is the subject of this review. Immunohistochemical and biochemical evidence demonstrate the significant role of reactive oxygen species (ROS) in endotoxic and hemorrhagic shock, and in endothelial injury associated with DIC syndrome. Initiation of lipid peroxidation, direct inhibition of mitochondrial respiratory chain enzymes, inactivation of glyceraldehyde-3-phosphate dehydrogenase, inhibition of membrane Na+/K+ ATP-ase activity, inactivation of membrane sodium channels, and other oxidative protein modifications contribute to the cytotoxic effect of ROS. In addition, reactive oxygen species are potent triggers of DNA strand breakage, with subsequent activation of the nuclear enzyme poly-ADP ribosyl synthetase, with eventual severe energy depletion of the cells. Pharmacological evidence suggests that the peroxynitrite-poly-ADP ribosyl synthetase pathway contributes to the cellular injury in shock and endothelial injury. Treatment with superoxide dismutase mimetics (SODms), which selectively mimic the catalytic activity of the human superoxide dismutase enzymes, have been shown to prevent in vivo shock and the cellular energetic failure associated with shock.
Collapse
|
19
|
Kanski J, Lauderback C, Butterfield DA. 5-Aminosalicylic acid protection against oxidative damage to synaptosomal membranes by alkoxyl radicals in vitro. Neurochem Res 2001; 26:23-9. [PMID: 11358278 DOI: 10.1023/a:1007620330168] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The antioxidant properties of 5-aminosalicylic acid in vitro were evaluated in a synaptosomal membrane system prepared from gerbil cortical synaptosomes using EPR spin labeling and spectroscopic techniques. MAL-6 (2,2,6,6-tetramethyl-4-maleimidopiperidin-1-oxyl) and 5-NS (5-nitroxide stearate) spin labels were used to assess changes in protein oxidation and membrane lipid fluidity, respectively. Synaptosomal membranes were subjected to oxidative stress by incubation with 1 mM azo-bis(isobutyronitrile) (AIBN) or 1 mM 2,2'-azobis(amidino propane) dihydrochloride (AAPH) at 37 degrees C for 30 minutes. The EPR analyses of the samples showed significant oxidation of synaptosomal proteins and a decrease in membrane fluidity. 5-Aminosalicylic acid also was evaluated by means of FRAP (the ferric reducing ability of plasma) test as a potential antioxidant. 5-Aminosalicylic acid also showed protection against the oxidation in gerbil cortical synaptosomes system caused by AIBN and AAPH. These results are consistent with the notion of antioxidant protection against free radical induced oxidative stress in synaptosomal membrane system by this agent.
Collapse
Affiliation(s)
- J Kanski
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington 04506, USA
| | | | | |
Collapse
|
20
|
Niwa M, Inao S, Takayasu M, Kawai T, Kajita Y, Nihashi T, Kabeya R, Sugimoto T, Yoshida J. Time course of expression of three nitric oxide synthase isoforms after transient middle cerebral artery occlusion in rats. Neurol Med Chir (Tokyo) 2001; 41:63-72; discussion 72-3. [PMID: 11255630 DOI: 10.2176/nmc.41.63] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The involvement of nitric oxide synthase (NOS) in ischemia was evaluated by detecting the expression of neuronal NOS (nNOS), endothelial NOS (eNOS), and inducible NOS (iNOS) by the immunohistochemical method in the rat model of middle cerebral artery (MCA) occlusion. Transient MCA occlusion (2 hours) was induced in 32 male Wistar rats by extracranial insertion of a 3-0 nylon thread through the internal carotid artery into the MCA. Animals were killed at 0, 6, 24, 72, and 168 hours after MCA occlusion (n = 6, 6, 8, 6, and 6, respectively). The brains were fixed with periodate-lysine-paraformaldehyde, frozen, and sectioned. Sections were stained with polyclonal antibody against nNOS, eNOS, and iNOS. Each section was evaluated by microscopic observation (x100). The number of nNOS-positive neurons was 41.6 +/- 5.8 (mean +/- SD) in the control hemisphere. nNOS was upregulated in the ischemic hemisphere (88.3 +/- 18.9), especially in the border zone at 6 hours after MCA occlusion. However, the number decreased to 36.4 +/- 3.6 and 26.3 +/- 7.3 in the ischemic hemisphere after 72 and 168 hours, respectively. eNOS immunoreactivity was present in the endothelium of major vessels at each time point. eNOS was not detected in the microvessels before ischemia, but faint staining was found in the endothelium at 6 hours after MCA occlusion. Immunostaining became more intense thereafter. Faint iNOS immunoreactivity was seen in the microvessels at 6 hours after MCA occlusion. Macrophages in the ischemic core and astrocytes in the border zone showed immunoreactivity to iNOS at 72 and 168 hours after MCA occlusion. Three types of NOS must be related to different stages of ischemic brain damage. nNOS may be neurotoxic in ischemia in the early phase, like iNOS in the late phase. On the other hand, eNOS seemed to be neuroprotective in all stages. These observations suggest the necessity for tailored therapeutic intervention against NOS isoforms at each stage in patients with ischemic stroke.
Collapse
Affiliation(s)
- M Niwa
- Department of Neurosurgery, Nagoya University School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Goti D, Hammer A, Galla HJ, Malle E, Sattler W. Uptake of lipoprotein-associated alpha-tocopherol by primary porcine brain capillary endothelial cells. J Neurochem 2000; 74:1374-83. [PMID: 10737592 DOI: 10.1046/j.1471-4159.2000.0741374.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
From the severe neurological syndromes resulting from vitamin E deficiency, it is evident that an adequate supply of the brain with alpha-tocopherol (alphaTocH), the biologically most active member of the vitamin E family, is of utmost importance. However, uptake mechanisms of alphaTocH in cells constituting the blood-brain barrier are obscure. Therefore, we studied the interaction of low (LDL) and high (HDL) density lipoproteins (the major carriers of alphaTocH in the circulation) with monolayers of primary porcine brain capillary endothelial cells (pBCECs) and compared the ability of these two lipoprotein classes to transfer lipoprotein-associated alphaTocH to pBCECs. With regard to potential binding proteins, we could identify the presence of the LDL receptor and a putative HDL3 binding protein with an apparent molecular mass of 100 kDa. At 4 degrees C, pBCECs bound LDL with high affinity (K(D) = 6 nM) and apolipoprotein E-free HDL3 with low affinity (98 nM). The binding capacity was 20,000 (LDL) and 200,000 (HDL3) lipoprotein particles per cell. alphaTocH uptake was approximately threefold higher from HDL3 than from LDL when [14C]alphaTocH-labeled lipoprotein preparations were used. The majority of HDL3-associated alphaTocH was taken up in a lipoprotein particle-independent manner, exceeding HDL3 holoparticle uptake 8- to 20-fold. This uptake route is less important for LDL-associated alphaTocH (alphaTocH uptake approximately 1.5-fold higher than holoparticle uptake). In line with tracer experiments, mass transfer studies with unlabeled lipoproteins revealed that alphaTocH uptake from HDL3 was almost fivefold more efficient than from LDL. Biodiscrimination studies indicated that uptake efficacy for the eight different stereoisomers of synthetic alphaTocH is nearly identical. Our findings indicate that HDL could play a major role in supplying the central nervous system with alphaTocH in vivo.
Collapse
Affiliation(s)
- D Goti
- Institute of Medical Biochemistry, University of Graza, Austria
| | | | | | | | | |
Collapse
|
22
|
Ramassamy C, Averill D, Beffert U, Theroux L, Lussier-Cacan S, Cohn JS, Christen Y, Schoofs A, Davignon J, Poirier J. Oxidative insults are associated with apolipoprotein E genotype in Alzheimer's disease brain. Neurobiol Dis 2000; 7:23-37. [PMID: 10671320 DOI: 10.1006/nbdi.1999.0273] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The epsilon4 allele of the apolipoprotein E gene (APOE) is associated with sporadic and familial late-onset Alzheimer's disease (AD). Oxidative stress is believed to play an important role in neuronal dysfunction and cell death in AD. We now provide evidence that in the hippocampus of AD, the level of thiobarbituric acid-reactive substances (TBARS) and the APOE genotype are linked. Within AD cases, the levels of TBARS were found to be higher among epsilon4 carriers while the apoE protein concentrations were lower. The relationship between the levels of TBARS and apoE proteins was corroborated by the results from the APOE-deficient mice, in which the levels of TBARS were higher than those in wild-type mice. Among AD cases, tissues from patients with the epsilon4 allele of APOE displayed lower activities of catalase and glutathione peroxidase and lower concentration of glutathione than tissues from patients homozygous for the epsilon3 allele of APOE. Together these data demonstrate that, in AD, the epsilon4 allele of APOE is associated with higher oxidative insults.
Collapse
Affiliation(s)
- C Ramassamy
- Neuroscience Division, Douglas Hospital Research Center, Verdun, Quebec, H4H 1R3, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Liu GY, Chen KJ, Lin-Shiau SY, Lin JK. Peroxyacetyl nitrate-induced apoptosis through generation of reactive oxygen species in HL-60 cells. Mol Carcinog 1999; 25:196-206. [PMID: 10411146 DOI: 10.1002/(sici)1098-2744(199907)25:3<196::aid-mc6>3.0.co;2-j] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Peroxyacetyl nitrate (PAN), an ubiquitous air pollutant, induced apoptosis in human leukemia HL-60, human chronic myelogenous leukemia K-562, and mouse monocyte-macrophage RAW 264.7 cell lines. In the HL 60 cells, characteristic apoptosis morphology could be observed 4 h after the cells were treated with 50 microM PAN. Exposure of HL-60 cells to increasing concentrations of PAN (from 1 microM to 100 microM) confirmed the concentration dependence of apoptosis as evidenced by DNA fragmentation in HL-60 cells, chromatin condensation by acridine-orange staining, and the appearance of the DNA apoptotic peak in flow cytometry. During apoptosis in HL-60 cells, 3-nitrotyrosine and 3,5-dinitrotyrosine were detected by high-performance liquid chromatography and liquid chromatography-mass spectrometry-mass spectrometry. We hypothesized that PAN might induce cell death in human leukemia cells by releasing peroxynitrite and other reactive oxygen species (ROS) such as superoxide and hydrogen peroxide. Moreover, exogenous superoxide dismutase promoted PAN-induced apoptosis, and in contrast, a combination of superoxide dismutase and catalase suppressed this apoptosis. We also hypothesize that the generation of ROS during PAN-induced apoptosis in HL-60 cells could activate stress-activated protein kinase/jun N-terminal kinase activity. The formation of H2O2 produced from the dismutation of PAN-elicited superoxide anion contributed to the apoptotic mechanism in HL-60 cells through ROS pathways. These findings suggested that induction of apoptosis by the air pollutant PAN might occur as a result of the release of ROS.
Collapse
Affiliation(s)
- G Y Liu
- Institute of Biochemistry, College of Medicine, National Taiwan University, Taipei, Republic of China
| | | | | | | |
Collapse
|
24
|
Shi H, Noguchi N, Xu Y, Niki E. Formation of phospholipid hydroperoxides and its inhibition by alpha-tocopherol in rat brain synaptosomes induced by peroxynitrite. Biochem Biophys Res Commun 1999; 257:651-6. [PMID: 10208838 DOI: 10.1006/bbrc.1999.0434] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Peroxynitrite resulted from the reaction of nitric oxide and superoxide anion has been implicated in the genesis of neurotoxicity. In this study, the oxidation of phospholipids in rat brain synaptosomes induced by peroxynitrite generated from 3-morpholinosydnonimine (SIN-1) was studied in vitro. The formation and accumulation of phospholipid hydroperoxides, including phosphatidylcholine hydroperoxide (PCOOH) and phosphatidyl-ethanolamine hydroperoxide (PEOOH) in rat brain synaptosomes induced by peroxynitrite, were observed. PEOOH and PCOOH were formed rapidly and SIN-1 concentration-dependently. The hydroperoxides formed in synaptosomes were unstable and it was suggested that phospholipase A2 played a role in degradation of the hydroperoxides. The endogenous alpha-tocopherol acted as a potent antioxidant. It was oxidized very rapidly and concentration-dependently by SIN-1 to alpha-tocopheryl quinone. Furthermore, uric acid was found to be an effective antioxidant in inhibiting oxidative damage to synaptosomal lipids induced by SIN-1. The results provide direct evidence to show that peroxynitrite can not only deplete alpha-tocopherol, but also cause production of phospholipid hydroperoxides resulting in disrupted brain tissue.
Collapse
Affiliation(s)
- H Shi
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, 4-6-1 Komaba, 153-8904, Japan
| | | | | | | |
Collapse
|
25
|
Vatassery GT, Smith WE, Quach HT. Alpha-tocopherol in rat brain subcellular fractions is oxidized rapidly during incubations with low concentrations of peroxynitrite. J Nutr 1998; 128:152-7. [PMID: 9446836 DOI: 10.1093/jn/128.2.152] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The reaction of superoxide (a reactive oxygen species) and nitric oxide (one of the nitrogen oxides with numerous biological functions) results in the production of peroxynitrite. The characteristics of oxidation of alpha-tocopherol (vitamin E) in synaptosomes (nerve ending particles) and mitochondria by peroxynitrite were studied. The subcellular fractions were isolated from brain hemispheres of 4-month-old male Fischer 344 rats by standard centrifugation procedures involving Ficoll gradients. Peroxynitrite treatment oxidized alpha-tocopherol in <5 s. This reaction was selective because another membrane component, cholesterol, was not oxidized at the same time, as observed in our previous studies. Mitochondrial alpha-tocopherol was more susceptible to peroxynitrite-induced oxidation than synaptosomal tocopherol. Measurable and significant (P < 0.05) oxidation of tocopherol occurred when mitochondria or synaptosomes were incubated with peroxynitrite in concentrations as low as 5 or 10 micromol/L, respectively. The oxidation could be readily monitored by estimating the production of tocopherolquinone. Oxidation of tocopherol induced by ferrous iron and ascorbate was much slower and the yield of tocopherolquinone lower than by peroxynitrite. The fast and selective oxidation of alpha-tocopherol by peroxynitrite suggests that vitamin E may play an important role in preventing membrane oxidation induced by peroxynitrite. Literature reports indicate the existence of threshold concentrations of tocopherol below which functional alterations occur. Tocopherol oxidation by peroxynitrite could reduce tocopherol concentrations in tissues and subcellular structures to these threshold levels by different concentrations of peroxynitrite. Hence the sensitivity of tissues to peroxynitrite could vary over a wide range.
Collapse
Affiliation(s)
- G T Vatassery
- Research Service, VA Medical Center, Minneapolis, MN 55417, USA
| | | | | |
Collapse
|
26
|
Cuzzocrea S, Zingarelli B, O'Connor M, Salzman AL, Szabó C. Effect of L-buthionine-(S,R)-sulphoximine, an inhibitor of gamma-glutamylcysteine synthetase on peroxynitrite- and endotoxic shock-induced vascular failure. Br J Pharmacol 1998; 123:525-37. [PMID: 9504394 PMCID: PMC1565175 DOI: 10.1038/sj.bjp.0701612] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. Peroxynitrite, a cytotoxic oxidant formed from the reaction of nitric oxide (NO) and superoxide is a mediator of cellular injury in ischaemia/reperfusion injury, shock and inflammation. Here we investigated whether L-buthionine-(S,R)-sulphoximine (BSO), an inhibitor of gamma-glutamylcysteine synthetase, alters endothelial and vascular smooth muscle injury in response to peroxynitrite in vitro and during endotoxic shock in vivo. 2. In human umbilical vein endothelial cells and in rat aortic smooth muscle cells, BSO (1 mM, for 24 h) enhanced, whereas glutathione (3 mM) or glutathione ethyl ester (3 mM) attenuated the peroxynitrite (100-1000 microM)-induced suppression of mitochondrial respiration (measured by the conversion of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to formazan), formation of nitrotyrosine (detected by Western blotting), protein oxidation (measured by detection of 2,4 dinitrophenylhydrazine-reactive carbonyls), and DNA single strand breakage and activation of the nuclear enzyme poly (ADP-ribose) synthetase (PARS) (measured by the incorporation of radiolabelled NAD+ into nuclear proteins and by the alkaline unwinding assay, respectively). Glutathione ethyl ester treatment reduced the BSO-induced enhancement of peroxynitrite-induced cytotoxicity. 3. In rat isolated thoracic aortic rings, BSO treatment (in vivo, at 1 g kg(-1) intraperitoneally (i.p.) for 24 h) enhanced, whereas pretreatment with glutathione (in vitro, 3 mM) attenuated the peroxynitrite-induced reduction of the contractions to noradrenaline, and the peroxynitrite-induced impairment of the endothelium-dependent relaxations to acetylcholine. 4. In BSO-pretreated rats, treatment with bacterial lipopolysaccharide (LPS, 15 mg kg(-1), i.p., for 6 h) caused a more pronounced vascular hyporeactivity and endothelial dysfunction ex vivo. BSO pretreatment also increased the degree of nitrotyrosine staining (detected by imunohistochemistry) in the aorta after LPS treatment. 5. In conclusion, our results demonstrate that L-buthionine-(S,R)-sulphoximine, an inhibitor of gamma-glutamylcysteine synthetase enhances peroxynitrite- and endotoxic shock-induced vascular failure. Based on these findings, we suggest that endogenous glutathione plays an important protective role against peroxynitrite- and LPS-induced vascular injury.
Collapse
Affiliation(s)
- S Cuzzocrea
- Children's Hospital Medical Center, Division of Critical Care, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
27
|
Bidmon HJ, Wu J, Buchkremer-Ratzmann I, Mayer B, Witte OW, Zilles K. Transient changes in the presence of nitric oxide synthases and nitrotyrosine immunoreactivity after focal cortical lesions. Neuroscience 1998; 82:377-95. [PMID: 9466449 DOI: 10.1016/s0306-4522(97)00275-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since ischemic insults lead to a deregulation of nitric oxide production which contributes to delayed neuronal death, we investigated changes in the distribution and amount of nitric oxide synthases I and II and in the appearance of nitrotyrosine caused by small, well-defined photothrombic lesions (2 mm in diameter) in the somatosensory cortex of rats. Four hours after lesioning, cell loss was evident in the core of the lesion and no nitric oxide synthase was present within this area, indicating that neurons expressing nitric oxide synthase I were lost or that nitric oxide synthase I was degraded. No increase in the number of neurons expressing nitric oxide synthase I was visible in the area surrounding the lesion, nor in other parts of the brain. One day after lesioning, NADPH-diaphorase- and nitric oxide synthase II-positive leucocytes had invaded the perilesional cortex and were accumulated in injured blood vessels. By two to three days post-lesion, layer V and VI pyramidal neurons, microglia, astrocytes and invading leucocytes had become strongly immunoreactive for nitric oxide synthase II within a perilesional rim. The number of cells expressing nitric oxide synthase I remained stable. Nitric oxide synthase II immunoreactivity and related NADPH-diaphorase had decreased by seven days post-lesion in most animals. However, the number of activated microglia or macrophages and astrocytes, as revealed by other markers, remained elevated. In addition, nitrotyrosine immunoreactivity was evident in the blood vessels close to the lesion, as well as in the ipsilateral hippocampus and thalamus. These findings indicate that no perilesional changes in the number of neurons expressing nitric oxide synthase I occur, but that a transient increase in nitric oxide synthase II does take place in the aftermath of small cortical lesions. The results suggest that increased nitric oxide production is limited to certain post-lesional intervals in this experimental model. It is also obvious that the vast majority of nitric oxide synthase-positive cells are nitric oxide synthase II-containing astrocytes three days after lesioning, suggesting that astrocyte-derived nitric oxide plays a significant role in delayed neuronal death. Such a condition points to an important aspect of post-lesional astrocytosis.
Collapse
Affiliation(s)
- H J Bidmon
- Department of Neuroanatomy, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Sequeira SM, Ambrósio AF, Malva JO, Carvalho AP, Carvalho CM. Modulation of glutamate release from rat hippocampal synaptosomes by nitric oxide. Nitric Oxide 1997; 1:315-29. [PMID: 9441904 DOI: 10.1006/niox.1997.0144] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We used hippocampal synaptosomes to study the effect of NO originating from NO donors and from the activation of the NO synthase on the Ca2+-dependent release of glutamate due to 4-aminopyridine (4-AP) depolarization. We distinguished between the effects of NO on the exocytotic and on the carrier-mediated release of glutamate, which we found to be related to an increase in cGMP content and to a reduction of the ATP/ADP ratio, respectively. The NO donor hydroxylamine, at concentrations < or = 0.3 mM, inhibited the Ca2+-dependent glutamate release evoked by 4-AP, and addition of the NO donor, NOC-7, had a similar effect, which was reversed by the NO scavenger, carboxy-PTIO. Increasing the activity of NO synthase by addition of L-arginine also led to a decrease in the Ca2+-dependent release of glutamate induced by 4-AP, and this effect was reversed by inhibiting NO synthase with NG-nitro-L-arginine. This depression of the exocytotic release of glutamate was accompanied by an increase in cGMP levels due to the stimulation of soluble guanylyl cyclase by NO, produced either by the NO donors (hydroxylamine <0.3 mM) or by the endogenous NO synthase, but no significant decrease in ATP/ADP ratio was observed. However, at concentrations > or = 0.3 mM, hydroxylamine drastically increased the basal release and completely inhibited the Ca2+-dependent release of glutamate (IC50 = 168 microM). At these higher levels of NO, cGMP levels dropped to about 40% of the maximal values obtained at lower concentrations, and the ATP/ADP ratio decreased to about 50% (at 0.3 mM hydroxylamine). The large increase in the basal release could be partially inhibited by L-trans-2,4-PDC, previously loaded into the synaptosomes, suggesting that the nonexocytotic basal release occurred by reversal of the glutamate carrier. Therefore, the increase in cGMP induced by NO stimulation of the guanylyl cyclase decreases the exocytotic release of glutamate, but higher NO levels reduce the ATP/ADP ratio by inhibiting mitochondrial function, which therefore causes the massive release of cytosolic glutamate through the glutamate carrier.
Collapse
Affiliation(s)
- S M Sequeira
- Center for Neuroscience of Coimbra, Department of Zoology and Faculty of Medicine, University of Coimbra, Portugal
| | | | | | | | | |
Collapse
|