1
|
Sluydts M, Curthoys I, Vanspauwen R, Papsin BC, Cushing SL, Ramos A, Ramos de Miguel A, Borkoski Barreiro S, Barbara M, Manrique M, Zarowski A. Electrical Vestibular Stimulation in Humans: A Narrative Review. Audiol Neurootol 2019; 25:6-24. [PMID: 31533097 DOI: 10.1159/000502407] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In patients with bilateral vestibulopathy, the regular treatment options, such as medication, surgery, and/or vestibular rehabilitation, do not always suffice. Therefore, the focus in this field of vestibular research shifted to electrical vestibular stimulation (EVS) and the development of a system capable of artificially restoring the vestibular function. Key Message: Currently, three approaches are being investigated: vestibular co-stimulation with a cochlear implant (CI), EVS with a vestibular implant (VI), and galvanic vestibular stimulation (GVS). All three applications show promising results but due to conceptual differences and the experimental state, a consensus on which application is the most ideal for which type of patient is still missing. SUMMARY Vestibular co-stimulation with a CI is based on "spread of excitation," which is a phenomenon that occurs when the currents from the CI spread to the surrounding structures and stimulate them. It has been shown that CI activation can indeed result in stimulation of the vestibular structures. Therefore, the question was raised whether vestibular co-stimulation can be functionally used in patients with bilateral vestibulopathy. A more direct vestibular stimulation method can be accomplished by implantation and activation of a VI. The concept of the VI is based on the technology and principles of the CI. Different VI prototypes are currently being evaluated regarding feasibility and functionality. So far, all of them were capable of activating different types of vestibular reflexes. A third stimulation method is GVS, which requires the use of surface electrodes instead of an implanted electrode array. However, as the currents are sent through the skull from one mastoid to the other, GVS is rather unspecific. It should be mentioned though, that the reported spread of excitation in both CI and VI use also seems to induce a more unspecific stimulation. Although all three applications of EVS were shown to be effective, it has yet to be defined which option is more desirable based on applicability and efficiency. It is possible and even likely that there is a place for all three approaches, given the diversity of the patient population who serves to gain from such technologies.
Collapse
Affiliation(s)
- Morgana Sluydts
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium,
| | - Ian Curthoys
- Vestibular Research Laboratory, University of Sydney, Sydney, New South Wales, Australia
| | - Robby Vanspauwen
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| | - Blake Croll Papsin
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sharon Lynn Cushing
- Department of Otolaryngology - Head and Neck Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Angel Ramos
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Angel Ramos de Miguel
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | - Silvia Borkoski Barreiro
- Hearing Loss Unit, Otorhinolaryngology, Head and Neck Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas of Gran Canaria, Spain
| | | | - Manuel Manrique
- Otorhinolaryngology Department, Clinica Universidad de Navarra, Pamplona, Spain
| | - Andrzej Zarowski
- European Institute for Otorhinolaryngology, GZA Hospitals Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Yakushin SB, Dai M, Raphan T, Suzuki JI, Arai Y, Cohen B. Spatial orientation of the angular vestibulo-ocular reflex (aVOR) after semicircular canal plugging and canal nerve section. Exp Brain Res 2011; 210:583-94. [PMID: 21340443 DOI: 10.1007/s00221-011-2586-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
Abstract
We investigated spatial responses of the aVOR to small and large accelerations in six canal-plugged and lateral canal nerve-sectioned monkeys. The aim was to determine whether there was spatial adaptation after partial and complete loss of all inputs in a canal plane. Impulses of torques generated head thrusts of ≈ 3,000°/s². Smaller accelerations of ≈ 300°/s² initiated the steps of velocity (60°/s). Animals were rotated about a spatial vertical axis while upright (0°) or statically tilted fore-aft up to ± 90°. Temporal aVOR yaw and roll gains were computed at every head orientation and were fit with a sinusoid to obtain the spatial gains and phases. Spatial gains peaked at ≈ 0° for yaw and ≈ 90° for roll in normal animals. After bilateral lateral canal nerve section, the spatial yaw and roll gains peaked when animals were tilted back ≈ 50°, to bring the intact vertical canals in the plane of rotation. Yaw and roll gains were identical in the lateral canal nerve-sectioned monkeys tested with both low- and high-acceleration stimuli. The responses were close to normal for high-acceleration thrusts in canal-plugged animals, but were significantly reduced when these animals were given step stimuli. Thus, high accelerations adequately activated the plugged canals, whereas yaw and roll spatial aVOR gains were produced only by the intact vertical canals after total loss of lateral canal input. We conclude that there is no spatial adaptation of the aVOR even after complete loss of specific semicircular canal input.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | | | |
Collapse
|
3
|
Jamali M, Sadeghi SG, Cullen KE. Response of vestibular nerve afferents innervating utricle and saccule during passive and active translations. J Neurophysiol 2008; 101:141-9. [PMID: 18971293 DOI: 10.1152/jn.91066.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The distinction between sensory inputs that are a consequence of our own actions from those that result from changes in the external world is essential for perceptual stability and accurate motor control. In this study, we investigated whether linear translations are encoded similarly during active and passive translations by the otolith system. Vestibular nerve afferents innervating the saccule or utricle were recorded in alert macaques. Single unit responses were compared during passive whole body, passive head-on-body, and active head-on-body translations (vertical, fore-aft, or lateral) to assess the relative influence of neck proprioceptive and efference copy-related signals on translational coding. The response dynamics of utricular and saccular afferents were comparable and similarly encoded head translation during passive whole body versus head-on-body translations. Furthermore, when monkeys produced active head-on-body translations with comparable dynamics, the responses of both regular and irregular afferents remained comparable to those recorded during passive movements. Our findings refute the proposal that neck proprioceptive and/or efference copy inputs coded by the efferent system function to modulate the responses of the otolith afferents during active movements. We conclude that the vestibular periphery provides faithful information about linear movements of the head in the space coordinates, regardless of whether they are self- or externally generated.
Collapse
Affiliation(s)
- Mohsen Jamali
- Department of Physiology, Aerospace Medical Research Unit, McGill University, 3655 Drummond St., Montreal, Quebec H3G 1Y6, Canada
| | | | | |
Collapse
|
4
|
Abstract
The distribution of gravity-sensing, otolith afferent fibers and terminals was studied in the vestibular nuclei of 4-5-day hatchling chicks by using single and double labeling of fibers and terminals with biocytin conjugated to Alexa Fluor and confocal imaging. The vestibular nuclei are represented in a series of five transverse sections of the brainstem immunolabeled with MAP2. Saccular fibers entered the medulla posterior to and at the level of the posterior tangential vestibular nucleus and coursed through ventral parts, producing ascending and descending branches. Small saccular terminals contacted a few dendrites in the tangential nucleus. In contrast, small saccular terminals contacted many dendrites and a few neuron cell bodies in the ventrolateral vestibular nucleus, vestibulocerebellar nucleus, and descending vestibular nuclei. Utricular fibers coursed through ventral parts of the central tangential nucleus before bifurcating into ascending and descending branches. In the tangential nucleus, utricular fibers formed a few large axosomatic terminals (spoon terminals) and a few small terminals on dendrites. In addition, small utricular terminals contacted numerous dendrites and a few neuron cell bodies in the ventrolateral, vestibulocerebellar, and descending vestibular nuclei. Thus, there was negligible overlap in the distribution of the otolith nerves, although each otolith afferent shared common regions with the canal afferents, previously shown, suggesting that some second-order vestibular neurons process convergent inputs from otolith and canal afferents. Taken together with previous results, the present findings identify discrete regions of the chick vestibular nuclei where second-order vestibular neurons likely process directly convergent otolith and canal inputs.
Collapse
Affiliation(s)
- Anastas Popratiloff
- Department of Anatomy and Cell Biology, George Washington University Medical Center, Washington, DC 20037, USA.
| | | |
Collapse
|
5
|
Karino S, Ito K, Ochiai A, Murofushi T. Independent effects of simultaneous inputs from the saccule and lateral semicircular canal. Evaluation using VEMPs. Clin Neurophysiol 2005; 116:1707-15. [PMID: 15907398 DOI: 10.1016/j.clinph.2005.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 03/30/2005] [Accepted: 04/06/2005] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To determine the effects of stimulation of bilateral lateral semicircular canals (LSCCs) by accelerated rotation and caloric stimulation of unilateral LSCC on vestibular evoked myogenic potentials (VEMPs) in healthy volunteers. METHODS In experiment 1, VEMPs were recorded while subjects (n = 11) were seated in a rotational chair and angular acceleration around the earth-vertical axis was provided. Amplitudes of p13-n23 were corrected using background muscle activities. In experiment 2, subjects (n = 8) in the semilateral position kept the LSCC in the vertical position and activated the sternocleidomastoid muscle by twisting the neck. After irrigating the external auditory canal with ice water, VEMPs were recorded on the irrigated side. In experiment 3, the same setting as experiment 2 was applied (n = 6), and hot water of 44 degrees C was used for irrigation. RESULTS There were no significant differences in latencies of p13 or n23, and in corrected amplitudes by either rotatory or caloric stimulation. CONCLUSIONS Simultaneous stimulation of LSCCs has little effect on VEMPs. SIGNIFICANCE No functional interaction between the saccule and LSCC was detected in VEMPs, although convergence of semicircular canal and otolith nerve inputs onto single vestibular nucleus neurons has been demonstrated electrophysiologically in animal experiments.
Collapse
Affiliation(s)
- Shotaro Karino
- Department of Otolaryngology Head and Neck Surgery, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
6
|
Yakushin SB, Raphan T, Büttner-Ennever JA, Suzuki JI, Cohen B. Spatial properties of central vestibular neurons of monkeys after bilateral lateral canal nerve section. J Neurophysiol 2005; 94:3860-71. [PMID: 15987758 DOI: 10.1152/jn.01102.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Thirty-seven neurons were recorded in the superior vestibular nucleus (SVN) of two cynomolgus monkeys 1-2 yr after bilateral lateral canal nerve section to test whether the central neurons had spatially adapted for the loss of lateral canal input. The absence of lateral canal function was verified with eye movement recordings. The relation of unit activity to the vertical canals was determined by oscillating the animals about a horizontal axis with the head in various orientations relative to the axis of rotation. Animals were also oscillated about a vertical axis while upright or tilted in pitch. In the second test, the vertical canals are maximally activated when the animals are tilted back about -50 degrees from the spatial upright and the lateral canals when the animals are tilted forward about 30 degrees . We reasoned that if central compensation occurred, the head orientation at which the response of the vertical canal-related neurons was maximal should be shifted toward the plane of the lateral canals. No lateral canal-related units were found after nerve section, and vertical canal-related units were found only in SVN not in the rostral medial vestibular nucleus. SVN canal-related units were maximally activated when the head was tilted back at -47 +/- 17 and -50 +/- 12 degrees (means +/- SD) in the two animals, close to the predicted orientation of the vertical canals. This indicated that spatial adaptation of vertical canal-related vestibular neurons had not occurred. There were substantial neck and/or otolith-related inputs activating the vertical canal-related neurons in the nerve-sectioned animals, which could have contributed to oculomotor compensation after nerve section.
Collapse
Affiliation(s)
- Sergei B Yakushin
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | | | |
Collapse
|
7
|
Cohen B, Yakushin SB, Holstein GR, Dai M, Tomko DL, Badakva AM, Kozlovskaya IB. Vestibular Experiments in Space. EXPERIMENTATION WITH ANIMAL MODELS IN SPACE 2005; 10:105-64. [PMID: 16101106 DOI: 10.1016/s1569-2574(05)10005-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Mount Sinai School of Medicine, New York, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Newlands SD, Perachio AA. Central projections of the vestibular nerve: a review and single fiber study in the Mongolian gerbil. Brain Res Bull 2003; 60:475-95. [PMID: 12787868 DOI: 10.1016/s0361-9230(03)00051-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The primary purpose of this article is to review the anatomy of central projections of the vestibular nerve in amniotes. We also report primary data regarding the central projections of individual horseradish peroxidase (HRP)-filled afferents innervating the saccular macula, horizontal semicircular canal ampulla, and anterior semicircular canal ampulla of the gerbil. In total, 52 characterized primary vestibular afferent axons were intraaxonally injected with HRP and traced centrally to terminations. Lateral and anterior canal afferents projected most heavily to the medial and superior vestibular nuclei. Saccular afferents projected strongly to the spinal vestibular nucleus, weakly to other vestibular nuclei, to the interstitial nucleus of the eighth nerve, the cochlear nuclei, the external cuneate nucleus, and nucleus y. The current findings reinforce the preponderance of literature. The central distribution of vestibular afferents is not homogeneous. We review the distribution of primary afferent terminations described for a variety of mammalian and avian species. The tremendous overlap of the distributions of terminals from the specific vestibular nerve branches with one another and with other sensory inputs provides a rich environment for sensory integration.
Collapse
Affiliation(s)
- Shawn D Newlands
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555-0521, USA.
| | | |
Collapse
|
9
|
Broussard DM, Hong JA. The response of vestibulo-ocular reflex pathways to electrical stimulation after canal plugging. Exp Brain Res 2003; 149:237-48. [PMID: 12610692 DOI: 10.1007/s00221-002-1345-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Accepted: 11/06/2002] [Indexed: 12/24/2022]
Abstract
The vestibulo-ocular reflex (VOR) allows clear vision during head movements by generating compensatory eye movements. Its response to horizontal rotation is reduced after one horizontal semicircular canal is plugged, but recovers partially over time. The majority of VOR interneurons contribute to the shortest VOR pathway, the so-called three-neuron arc, which includes only two synapses in the brainstem. After a semicircular canal is plugged, transmission of signals by the three-neuron arc originating from the undamaged side may be altered during recovery. We measured the oculomotor response to single current pulses delivered to the vestibular labyrinth of alert cats between 9 h and 1 month after plugging the contralateral horizontal canal. The same response was also measured after motor learning induced by continuously-worn telescopes (optically induced motor learning). Optically induced learning did not change the peak velocity of the evoked eye movement (PEEV) significantly but, after a canal plug, the PEEV increased significantly, reaching a maximum during the first few post-plug days and then decreasing. VOR gain also showed transient changes during recovery. Because the PEEV occurred early in the eye movement evoked by a current pulse, we think the observed increase in PEEV represented changes in transmission by the three-neuron arc. Sham surgery did not result in significant changes in the response to electrical stimulation or in VOR gain. Our data suggest that different pathways and processes may underlie optically induced motor learning and recovery from plugging of the semicircular canals.
Collapse
Affiliation(s)
- Dianne M Broussard
- Toronto Western Research Institute and Division of Neurology, Department of Medicine, University of Toronto and Toronto Western Hospital, Ontario, M5T 2S8, Canada.
| | | |
Collapse
|
10
|
Dickman JD, Angelaki DE. Vestibular convergence patterns in vestibular nuclei neurons of alert primates. J Neurophysiol 2002; 88:3518-33. [PMID: 12466465 DOI: 10.1152/jn.00518.2002] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sensory signal convergence is a fundamental and important aspect of brain function. Such convergence may often involve complex multidimensional interactions as those proposed for the processing of otolith and semicircular canal (SCC) information for the detection of translational head movements and the effective discrimination from physically congruent gravity signals. In the present study, we have examined the responses of primate rostral vestibular nuclei (VN) neurons that do not exhibit any eye movement-related activity using 0.5-Hz translational and three-dimensional (3D) rotational motion. Three distinct neural populations were identified. Approximately one-fourth of the cells exclusively encoded rotational movements (canal-only neurons) and were unresponsive to translation. The canal-only central neurons encoded head rotation in SCC coordinates, exhibited little orthogonal canal convergence, and were characterized with significantly higher sensitivities to rotation as compared to primary SCC afferents. Another fourth of the neurons modulated their firing rates during translation (otolith-only cells). During rotations, these neurons only responded when the axis of rotation was earth-horizontal and the head was changing orientation relative to gravity. The remaining one-half of VN neurons were sensitive to both rotations and translations (otolith + canal neurons). Unlike primary otolith afferents, however, central neurons often exhibited significant spatiotemporal (noncosine) tuning properties and a wide variety of response dynamics to translation. To characterize the pattern of SCC inputs to otolith + canal neurons, their rotational maximum sensitivity vectors were computed using exclusively responses during earth-vertical axis rotations (EVA). Maximum sensitivity vectors were distributed throughout the 3D space, suggesting strong convergence from multiple SCCs. These neurons were also tested with earth-horizontal axis rotations (EHA), which would activate both vertical canals and otolith organs. However, the recorded responses could not be predicted from a linear combination of EVA rotational and translational responses. In contrast, one-third of the neurons responded similarly during EVA and EHA rotations, although a significant response modulation was present during translation. Thus this subpopulation of otolith + canal cells, which included neurons with either high- or low-pass dynamics to translation, appear to selectively ignore the component of otolith-selective activation that is due to changes in the orientation of the head relative to gravity. Thus contrary to primary otolith afferents and otolith-only central neurons that respond equivalently to tilts relative to gravity and translational movements, approximately one-third of the otolith + canal cells seem to encode a true estimate of the translational component of the imposed passive head and body movement.
Collapse
Affiliation(s)
- J David Dickman
- Department of Research, Central Institute for the Deaf, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
11
|
Cuthbert PC, Gilchrist DP, Hicks SL, MacDougall HG, Curthoys IS. Electrophysiological evidence for vestibular activation of the guinea pig hippocampus. Neuroreport 2000; 11:1443-7. [PMID: 10841354 DOI: 10.1097/00001756-200005150-00018] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Vestibular information modulates hippocampal activity for spatial processing and place cell firing. However, evidence of a purely vestibular stimulus modulating hippocampal activity is confounded as most studies use stimuli containing somatosensory and visual components. In the present study, high-frequency electrical stimulation of specific vestibular sensory regions of the right labyrinth in anaesthetized guinea pigs induced an evoked field potential in the hippocampal formation bilaterally with a latency of about 40 ms following stimulation onset. Field potentials localized in the hippocampal formation occurred with stimulus current parameters that were too small to produce eye movements. This provides direct electrophysiological evidence of vestibular input to the hippocampus.
Collapse
Affiliation(s)
- P C Cuthbert
- Department of Psychology, The University of Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
12
|
Quinn KJ, Baker JF. Processing of spatial information by floccular and non-floccular target neurons in the alert cat. Brain Res 1998; 780:143-9. [PMID: 9473639 DOI: 10.1016/s0006-8993(97)01300-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In five alert chronically-prepared cats we studied the response to sinusoidal 3-D whole body rotation of well-isolated vestibular nucleus neurons which were tested for monosynaptic input from the vestibular labyrinth, direct projection to the oculomotor nucleus and, in some cases, inhibition from cerebellar flocculus stimulation. Neurons directly inhibited by flocculus stimulation had significantly greater horizontal-vertical semicircular canal signal convergence than did neurons not inhibited by flocculus stimulation.
Collapse
Affiliation(s)
- K J Quinn
- Department of Physiology, Northwestern University Medical School and the Northwestern University Institute for Neuroscience, Chicago, IL 60611, USA
| | | |
Collapse
|
13
|
Perlmutter SI, Iwamoto Y, Baker JF, Peterson BW. Interdependence of spatial properties and projection patterns of medial vestibulospinal tract neurons in the cat. J Neurophysiol 1998; 79:270-84. [PMID: 9425197 DOI: 10.1152/jn.1998.79.1.270] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Activity of vestibular nucleus neurons with axons in the ipsi- or contralateral medial vestibulospinal tract was studied in decerebrate cats during sinusoidal, whole-body rotations in many planes in three-dimensional space. Antidromic activation of axon collaterals distinguished between neurons projecting only to neck segments from those with collaterals to C6 and/or oculomotor nucleus. Secondary neurons were identified by monosynaptic activation after labyrinth stimulation. A three-dimensional maximum activation direction vector (MAD) summarized the spatial properties of 151 of 169 neurons. The majority of secondary neurons (71%) terminated above the C6 segment. Of these, 43% had ascending collaterals to the oculomotor nucleus (VOC neurons), and 57% did not (VC neurons). The majority of VOC and VC neurons projected contralaterally and ipsilaterally, respectively. Most C6-projecting neurons could not be activated from oculomotor nucleus (V-C6 neurons) and projected primarily ipsilaterally. All VO-C6 neurons projected contralaterally. The distributions of MADs for secondary neurons with different projection patterns were different. Most VOC (84%) and contralaterally projecting VC (91%) neurons had MADs close to the activation vector of a semicircular canal pair, compared with 54% of ipsilaterally projecting VC (i-VC) and 39% of V-C6 neurons. Many i-VC (44%) and V-C6 (48%) neurons had responses suggesting convergent input from horizontal and vertical canal pairs. Horizontal and vertical gains were comparable for some, making it difficult to assign a primary canal input. MADs consistent with vertical-vertical canal pair convergence were less common. Type II yaw or type II roll responses were seen for 22% of the i-VC neurons, 68% of the V-C6 neurons, and no VOC cells. VO-C6 neurons had spatial properties between those of VOC and V-C6 neurons. These results suggest that secondary VOC neurons convey semicircular canal pair signals to both ocular and neck motor centers, perhaps linking eye and head movements. Secondary VC and V-C6 neurons carry more processed signals, possibly to drive neck and forelimb reflexes more selectively. Two groups of secondary i-VC neurons exhibited vertical-horizontal canal convergence similar to that present on neck muscles. The vertical-vertical canal convergence present on many neck muscles, however, was not present on medial vestibulospinal neurons. Spatial transformations achieved by the vestibulocollic reflex may occur in part on secondary neurons but further combination of canal signals must take place to generate compensatory muscle activity.
Collapse
Affiliation(s)
- S I Perlmutter
- Department of Physiology, Northwestern University School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
14
|
Straka H, Biesdorf S, Dieringer N. Canal-specific excitation and inhibition of frog second-order vestibular neurons. J Neurophysiol 1997; 78:1363-72. [PMID: 9310427 DOI: 10.1152/jn.1997.78.3.1363] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Second-order vestibular neurons (secondary VNs) were identified in the in vitro frog brain by their monosynaptic excitation following electrical stimulation of the ipsilateral VIIIth nerve. Ipsilateral disynaptic inhibitory postsynaptic potentials were revealed by bath application of the glycine antagonist strychnine or of the gamma-aminobutyric acid-A (GABA(A)) antagonist bicuculline. Ipsilateral disynaptic excitatory postsynaptic potentials (EPSPs) were analyzed as well. The functional organization of convergent monosynaptic and disynaptic excitatory and inhibitory inputs onto secondary VNs was studied by separate electrical stimulation of individual semicircular canal nerves on the ipsilateral side. Most secondary VNs (88%) received a monosynaptic EPSP exclusively from one of the three semicircular canal nerves; fewer secondary VNs (10%) were monosynaptically excited from two semicircular canal nerves; and even fewer secondary VNs (2%) were monosynaptically excited from each of the three semicircular canal nerves. Disynaptic EPSPs were present in the majority of secondary VNs (68%) and originated from the same (homonymous) semicircular canal nerve that activated a monosynaptic EPSP in a given neuron (22%), from one or both of the other two (heteronymous) canal nerves (18%), or from all three canal nerves (28%). Homonymous activation of disynaptic EPSPs prevailed (74%) among those secondary VNs that exhibited disynaptic EPSPs. Disynaptic inhibitory postsynaptic potentials (IPSPs) were mediated in 90% of the tested secondary VNs by glycine, in 76% by GABA, and in 62% by GABA as well as by glycine. These IPSPs were activated almost exclusively from the same semicircular canal nerve that evoked the monosynaptic EPSP in a given secondary VN. Our results demonstrate a canal-specific, modular organization of vestibular nerve afferent fiber inputs onto secondary VNs that consists of a monosynaptic excitation from one semicircular canal nerve followed by disynaptic excitatory and inhibitory inputs originating from the homonymous canal nerve. Excitatory and inhibitory second-order (secondary) vestibular interneurons are envisaged to form side loops that mediate spatially similar but dynamically different signals to secondary vestibular projection neurons. These feedforward side loops are suited to adjust the dynamic response properties of secondary vestibular projection neurons by facilitating or disfacilitating phasic and tonic input components.
Collapse
Affiliation(s)
- H Straka
- Physiologisches Institut, Munich, Germany
| | | | | |
Collapse
|
15
|
Petropoulos AE, Wall C, Oman CM. Yaw sensory rearrangement alters pitch vestibulo-ocular reflex responses. Acta Otolaryngol 1997; 117:647-56. [PMID: 9349858 DOI: 10.3109/00016489709113455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ten male subjects underwent two types of adaptation paradigm designed either to enhance or to attenuate the gain of the canal-ocular reflex (COR), before undergoing otolith-ocular reflex (OOR) testing with constant velocity, earth horizontal axis and pitch rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about an earth vertical axis with a 0.2 Hz optokinetic stimulus that was deliberately mismatched in peak velocity or phase and was designed to produce short-term changes in the COR. Preadaptation and postadaptation OOR tests occurred at a constant velocity of 60 degrees/sec in the dark and produced a modulation component of the slow phase velocity with a frequency of 0.16 Hz due to otolithic stimulation by the sinusoidally changing gravity vector. Of the seven subjects who showed enhancement of the COR gain, six also showed enhancement of the OOR modulation component. Of the seven subjects who showed attenuation of the COR gain, five also showed attenuation of the OOR modulation component. The probability that these two cross-axis adaptation effects would occur by chance is less than 0.02. This suggests that visual-vestibular conditioning of the yaw axis COR also induced changes in the pitch axis OOR. We thus postulate that the central nervous system pathways that process horizontal canal yaw stimuli have elements in common with those processing otolithic stimuli about the pitch axis.
Collapse
Affiliation(s)
- A E Petropoulos
- Department of Otology and Laryngology, Harvard Medical School, Massachusetts Eye & Ear Infirmary, Boston 02114, USA
| | | | | |
Collapse
|
16
|
Naito Y, Newman A, Lee WS, Beykirch K, Honrubia V. Projections of the individual vestibular end-organs in the brain stem of the squirrel monkey. Hear Res 1995; 87:141-55. [PMID: 8567431 DOI: 10.1016/0378-5955(95)00085-i] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The central nervous system (CNS) projections of primary afferent neurons from individual vestibular receptors were studied using horseradish peroxidase (HRP) or biocytin labeling in 14 ears from 7 adult squirrel monkeys using the technique developed in the chinchilla (Lee et al., 1989, 1992). The specificity of labeling was verified by examining the location of the labeled fibers and cell bodies in the vestibular nerve and Scarpa's ganglion. Labeled fibers and cells were restricted to nerves and areas belonging to groups of cells in either the superior or the inferior ganglion of the vestibular nerve. In the vestibular nerve root, labeled primary afferent fibers also exhibited a receptor-dependent segregation at the entrance to the medulla. Fibers from the HSC and the SSC were found rostrally and those from the PSC and the SAC were found in the caudal area. The UTR fibers were situated intermediate between these two groups of fibers. (A bundle of fibers, probably vestibular efferents, was identified immediately rostrally and ventromedially to the UTR fibers.) The primary afferent fibers bifurcated into secondary ascending and descending fibers at the lateral border of the vestibular nuclei, forming a longitudinal rostrocaudal vestibular tract. The secondary fibers from individual end-organs occupied specific locations in the tract: the UTR fibers were dorsal to the SSC and the HSC fibers, PSC fibers were found most medially, and the SAC fibers occupied the lateralmost area. The secondary UTR fibers overlapped considerably with those of the SSC and the HSC. The orderly receptor-dependent segregation of fibers was more prominent in the descending tracts than in the ascending tracts. In the vestibular nuclei complex the location of the tertiary branches of various end-organs exhibited considerable overlap within the major vestibular nuclei (SN, superior nucleus; LN, lateral nucleus; MN, medial nucleus; DN, descending nucleus). There were still differences, however, in the projection pattern. Fibers from the SAC ran primarily in the lateral area, fibers from the SSC and the UTR were found ventromedially to the SAC fibers, and the HSC projected slightly medially to the fibers from the SSC. The PSC fibers projected most medially. The UTR and SAC sent numerous fibers to the cerebellum. Fibers from the semicircular canals projected through the rostrodorsal region of the SN and presumably also projected to the cerebellum. The precise termination of fibers was evaluated by studying the location of labeled boutons, which were identified in all major vestibular nuclei. Labeled boutons from all the receptors were in the rostral and central areas of the SN, and in the MN mainly in the rostral two-thirds. In the LN, boutons from all the receptors were in the rostroventral part, most of which were from the UTR and SAC. No labeled boutons were in the caudodorsal part of this nucleus. Labeled boutons in the DN primarily surrounded the descending tract fibers and were particularly prominent medially. In specimens in which superior vestibular nerve receptor organs were scratched vestibular efferent fibers were also labeled. These fibers traveled in the most ventral part of the vestibular nerve root and projected in the ventral aspect of the LN to labeled soma in the ipsilateral and contralateral brain stem. Specificity the in projection patterns of efferent fibers from different end-organs could not be ascertained.
Collapse
Affiliation(s)
- Y Naito
- Victor Goodhill Ear Center, UCLA School of Medicine 90024, USA
| | | | | | | | | |
Collapse
|
17
|
Perachio AA, Bush GA, Angelaki DE. A model of responses of horizontal-canal-related vestibular nuclei neurons that respond to linear head acceleration. Ann N Y Acad Sci 1992; 656:795-801. [PMID: 1599185 DOI: 10.1111/j.1749-6632.1992.tb25258.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- A A Perachio
- Department of Otolaryngology, University of Texas Medical Branch, Galveston 77550
| | | | | |
Collapse
|
18
|
Abstract
The eye movement response to earth vertical axis rotation in the dark, a semicircular canal stimulus, can be altered by prior exposure to combined visual-vestibular stimuli. Such plasticity of the vestibulo-ocular reflex has not been described for earth horizontal axis rotation, a dynamic otolith stimulus. Twenty normal human subjects underwent one of two types of adaptation paradigms designed either to attenuate or enhance the gain of the semicircular canal-ocular reflex prior to undergoing otolith-ocular reflex testing with horizontal axis rotation. The adaptation paradigm paired a 0.2 Hz sinusoidal rotation about a vertical axis with a 0.2 Hz optokinetic stripe pattern that was deliberately mismatched in peak velocity. Pre- and post-adaptation horizontal axis rotations were at 60 degrees/s in the dark and produced a modulation in the slow component velocity of nystagmus having a frequency of 0.17 Hz due to putative stimulation of the otolith organs. Results showed that the magnitude of this modulation component response was altered in a manner similar to the alteration in semicircular canal-ocular responses. These results suggest that physiologic alteration of the vestibulo-ocular reflex using deliberately mismatched visual and semicircular canal stimuli induces changes in both canal-ocular and otolith-ocular responses. We postulate, therefore, that central nervous system pathways responsible for controlling the gains of canal-ocular and otolith-ocular reflexes are shared.
Collapse
Affiliation(s)
- C Wall
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
19
|
Fukushima K. The interstitial nucleus of Cajal in the midbrain reticular formation and vertical eye movement. Neurosci Res 1991; 10:159-87. [PMID: 1650435 DOI: 10.1016/0168-0102(91)90055-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bilateral lesions of the midbrain reticular formation within, and in the close vicinity of, the interstitial nucleus of Cajal (INC) result in the severe impairment of the ability to hold eccentric vertical eye position after saccades, phase advance and decreased gain of the vestibulo-ocular reflex (VOR) induced by sinusoidal vertical rotation. In addition, the INC region of alert animals contains many burst-tonic and tonic neurons whose activity is closely correlated with vertical eye movement, not only during spontaneous saccades, but also during the VOR, smooth pursuit and optokinetic eye movements. Although their activity is closely related to these conjugate vertical eye movements, it is different from the oculomotor motor neuron activity. These results indicate that the INC region is involved in, and indispensable for, some aspects of eye position generation during vertical eye movement. Further comparison of INC neuron discharge with eye movements during two special conditions indicates that the INC region alone cannot produce eye position signals. First INC neuron discharge shows no response or an 80 degrees phase advance (close to the expected value if there is no integration) in the dark compared to the light during sinusoidal vertical linear acceleration in alert cats. Second, during rapid-eye-movement (REM) sleep, the discharge of INC neurons is no longer correlated with eye position. These results imply that the INC is not the entire velocity-to-position integrator, but that it has to work with other region(s) to perform the integration. A close functional linkage has been described between vertical-eye-movement-related neurons in the INC region and vestibulo-ocular relay neurons related to the vertical semicircular canals in the vestibular nuclei. It has been suggested that both are the major constituents of the common neural integrator circuits for vertical eye movements.
Collapse
Affiliation(s)
- K Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| |
Collapse
|
20
|
Newlands SD, Perachio AA. Compensation of horizontal canal related activity in the medial vestibular nucleus following unilateral labyrinth ablation in the decerebrate gerbil. II. Type II neurons. Exp Brain Res 1990; 82:373-83. [PMID: 2286239 DOI: 10.1007/bf00231256] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The spontaneous activity and dynamic responses to sinusoidal horizontal head angular acceleration of type II horizontal semicircular canal related neurons in the medial vestibular nucleus (MVN) were recorded bilaterally in decerebrate Mongolian gerbils (Meriones unguiculatus) under three experimental conditions: normal labyrinths intact, acutely following unilateral labyrinthine lesion, and four to seven weeks following labyrinthine lesion. The number of type II neurons detected contralateral to the lesion was greatly reduced both in the acutely hemilabyrinthectomized animals and following compensation. The gain of the responses was depressed bilaterally acutely following the lesion. A greater reduction in response gain was noted in cells contralateral to the lesion. The gain of the contralateral type II responses increased with time such that in the compensated animal bilaterally symmetric gains were recorded. While the significant changes which occur in the gain of type II neurons with recovery from peripheral vestibular lesions can largely be attributed to type I neurons on the other side of the midline, changes in type I neurons were not entirely reflected in the type II population. The spontaneous activity of type II neurons did not undergo any significant changes following the labyrinthine lesion. We present a model utilizing the dynamic responses to estimate the functional recovery of commissural connections in compensated animals. The overall gain of the contralateral type I to ipsilateral type I commissural polysynaptic pathway appears to improve, while the efficacy in the reverse direction remains depressed, suggesting that modifications in commissural connections, particularly involving the type II to type I connections within the MVN on the injured side, mediate aspects of behavioral recovery.
Collapse
Affiliation(s)
- S D Newlands
- Department of Otolaryngology, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
21
|
Fukushima K, Perlmutter SI, Baker JF, Peterson BW. Spatial properties of second-order vestibulo-ocular relay neurons in the alert cat. Exp Brain Res 1990; 81:462-78. [PMID: 2226682 DOI: 10.1007/bf02423495] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Second-order vestibular nucleus neurons which were antidromically activated from the region of the oculomotor nucleus (second-order vestibuloocular relay neurons) were studied in alert cats during whole-body rotations in many horizontal and vertical planes. Sinusoidal rotation elicited sinusoidal modulation of firing rates except during rotation in a clearly defined null plane. Response gain (spike/s/deg/s) varied as a cosine function of the orientation of the cat with respect to a horizontal rotation axis, and phases were near that of head velocity, suggesting linear summation of canal inputs. A maximum activation direction (MAD) was calculated for each cell to represent the axis of rotation in three-dimensional space for which the cell responded maximally. Second-order vestibuloocular neurons divided into 3 non-overlapping populations of MADs, indicating primary canal input from either anterior, posterior or horizontal semicircular canal (AC, PC, HC cells). 80/84 neurons received primary canal input from ipsilateral vertical canals. Of these, at least 6 received input from more than one vertical canal, suggested by MAD azimuths which were sufficiently misaligned with their primary canal. In addition, 21/80 received convergent input from a horizontal canal, with about equal number of type I and type II yaw responses. 4/84 neurons were HC cells; all of them received convergent input from at least one vertical canal. Activity of many vertical second-order vestibuloocular neurons was also related to vertical and/or horizontal eye position. All AC and PC cells that had vertical eye position sensitivity had upward and downward on-directions, respectively. A number of PC cells had MADs centered around the MAD of the superior oblique muscle, and 2/3 AC cells recorded in the superior vestibular nucleus had MADs near that of the inferior oblique. Thus, signals with spatial properties appropriate to activate oblique eye muscles are present at the second-order vestibular neuron level. In contrast, none of the second-order vestibuloocular neurons had MADs near those of the superior or inferior rectus muscles. Signals appropriate to activate these eye muscles might be produced by combining signals from ipsilateral and contralateral AC neurons (for superior rectus) or PC neurons (for inferior rectus). Alternatively, less direct pathways such as those involving third or higher order vestibular or interstitial nucleus of Cajal neurons might play a crucial role in the spatial transformations between semicircular canals and vertical rectus eye muscles.
Collapse
Affiliation(s)
- K Fukushima
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, Japan
| | | | | | | |
Collapse
|
22
|
Isu N, Uchino Y, Nakashima H, Satoh S, Ichikawa T, Watanabe S. Axonal trajectories of posterior canal-activated secondary vestibular neurons and their coactivation of extraocular and neck flexor motoneurons in the cat. Exp Brain Res 1988; 70:181-91. [PMID: 3402563 DOI: 10.1007/bf00271859] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Unit activities of 148 secondary vestibular neurons related to the posterior semicircular canal were recorded extracellularly in anesthetized cats. Axonal projections of these neurons were examined by their antidromic responses to stimulation of the excitatory target motoneurons of the contralateral (c-) inferior rectus muscle (IR) and bilateral (bi-) motoneuron pools of longus capitis muscles, neck flexors, in the C1 segment (C1LC). The neurons were classified into 4 groups according to their axonal projections. The first group of neurons, termed vestibulo-oculo-collic (VOC) neurons, sent axon collaterals both to the c-IR motoneuron pool and to the c-C1LC motoneuron pool. The majority of them (72%) were located in the descending nucleus. The second group of neurons were termed vestibuloocular (VO) neurons and sent their axons to the c-IR motoneuron pool but not to the cervical cord. Most of them (86%) were located in the medial nucleus. The third group of neurons, termed vestibulo-collic (contralateral) (VCc) neurons, sent axons to the c-C1LC motoneuron pool via the contralateral ventral funiculus but not to the oculomotor nuclei. They were mostly (75%) found in the descending nucleus. The last group of neurons were vestibulo-collic (ipsilateral) (VCi) neurons, which gave off axons to the ipsilateral (i-) C1LC motoneuron pool via the ipsilateral ventral funiculus but not to the oculomotor nuclei. One of them also sent an axon collateral to the c-C1LC motoneuron pool. The majority of them (74%) were located in the ventral part of the lateral nucleus. It was also observed in some of the VOC and VCi neurons that they produced unitary EPSPs in the c-C1LC and i-C1LC motoneurons, respectively. Their synaptic sites were estimated to be on the cell somata and/or proximal dendrites of the motoneurons.
Collapse
Affiliation(s)
- N Isu
- Department of Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Pellionisz A. Tensorial aspects of the multidimensional massively parallel sensorimotor function of neuronal networks. PROGRESS IN BRAIN RESEARCH 1988; 76:341-54. [PMID: 3064155 DOI: 10.1016/s0079-6123(08)64521-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Ostriker G, Pellionisz A, Llinás R. Tensorial computer model of gaze--I. Oculomotor activity is expressed in non-orthogonal natural coordinates. Neuroscience 1985; 14:483-500. [PMID: 3873020 DOI: 10.1016/0306-4522(85)90304-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The central nervous system expresses its function in natural frames of reference. A most conspicuous feature of such frames is their non-orthogonality. Gaze stabilization and, in particular, the sensorimotor transformations performed by the vestibulo-ocular reflex, are prime examples of such general coordinate transformations between and within multidimensional non-orthogonal frames. Since such operations can be described by tensor formalisms in an abstract manner, this methodology is applied here to develop a tensorial computer model of gaze stabilization. The representation of sensorimotor transformations by a reference-frame independent method obviates the necessity to simplify the intrinsic coordinate systems either by a reduction of the dimensionality or by a presumption of orthogonality. The frames of reference intrinsic to vestibulo-ocular reflex transformation (the vestibular semicircular canals and extraocular muscles) as well as the covariant character of the sensory input and the contravariant character of the motor output are physically obvious. A model built on these intrinsic systems of coordinates first serves to quantitate the degree of non-orthogonality in the extraocular muscle system, and thus to demonstrate both the necessity and the applicability of representing them by a formalism suitable for non-orthogonal systems, such as tensor network theory. The actual non-orthogonality of the gaze-stabilization system can be quantitated on the basis of the difference of covariant and contravariant expressions as follows. Tensor network theory describes sensorimotor transformations by employing a covariant embedding procedure. This, however, yields a covariant intention-type motor vector. If the central nervous system were to transmit these sensory-type components directly to the extraocular muscle motor mechanism, an error-angle would occur since covariants do not physically compose the intended movement. The error in every direction of gaze would be zero only if the extraocular muscle system would constitute an orthogonal set of rotation axes. Otherwise, the error, called refraction angle, is a measure of non-orthogonality. The complexity of the quantitation of non-orthogonality is compounded by the fact that these rotation axes change with the moving eye. Calculation of eye movements, executed both by covariant and contravariant vectors from primary and secondary eye positions, is based on the simplest assumption that the central nervous system establishes the covariant-contravariant transformation in the retinal tangent plane.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
25
|
Baker J, Goldberg J, Hermann G, Peterson B. Optimal response planes and canal convergence in secondary neurons in vestibular nuclei of alert cats. Brain Res 1984; 294:133-7. [PMID: 6697229 DOI: 10.1016/0006-8993(84)91317-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Responses to natural stimulation were studied in electrically identified secondary vestibular neurons of awake cats. A class of neurons was identified whose response dynamics and responses to rotations in several vertical and horizontal planes indicated that they received semicircular canal input. Each canal neuron had clearly defined planes of maximal and null sensitivity to rotation. The orientation of these planes indicated that 44% of the neurons received input from one pair of canals, 40% from two, and 16% from all 3 canal pairs. Many cells also had oculomotor-related discharges and/or responded weakly to neck rotation.
Collapse
|
26
|
Amat J. Input to the vestibulo cerebellum and triceps brachii motoneurons during natural vestibular stimulation in frog. Neuroscience 1982; 7:1665-71. [PMID: 6981782 DOI: 10.1016/0306-4522(82)90025-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The response of cerebellar Purkinje cells and nerve triceps brachii was recorded in paralyzed frogs during natural vestibular stimulation. The response from about 63% of the Purkinje cells (mossy fiber input) recorded in the vestibulo cerebellum and of the triceps nerve during triangular wave roll oscillation consisted of activity increase during the ipsilateral side-down half of the cycle and decrease during the contralateral side-down half. It was shown that this activity, which originates partially from ipsilateral vertical canals, can be added to, or suppressed by, otolithic activity, depending on head position and direction rotation. The fact that the response of Purkinje cells was similar to that of triceps nerve implies that the vestibulo-cerebellum receives information of vestibular signals passing to the motor system. The characteristics of otolithic-canal interaction recorded in triceps nerve may explain the motor disturbances that result from lesions of otolithic receptors.
Collapse
|
27
|
|
28
|
Uchino Y, Hirai N, Suzuki S, Watanabe S. Properties of secondary vestibular neurons fired by stimulation of ampullary nerve of the vertical, anterior or posterior, semicircular canals in the cat. Brain Res 1981; 223:273-86. [PMID: 7284812 DOI: 10.1016/0006-8993(81)91141-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Experiments on cats were performed to study the pathway and location of the secondary vestibulo-ocular neurons in response to stimulation of the ampullary nerves of the vertical, anterior or posterior, semicircular canals. Experiments on the medial longitudinal fasciculus transection disclosed that vertical canal-evoked, disynaptic excitation and inhibition were transmitted to the extraocular motoneurons through the contra- and ipsilateral medial longitudinal fasciculus respectively. Secondary vestibular neurons, which receive input from the ampullary nerve of the vertical semicircular canals and send their axons to contralateral medial longitudinal fasciculus, were intermingled in the rostral half of the descending and lateral part of the medial vestibular nuclei. A direct excitatory connection of some of these neurons to the target extraocular motoneurons was confirmed by means of a spike-triggered signal averaging technique. It was also found that neurons activated by antidromic stimulation of ipsilateral medial longitudinal fasciculus were located in the superior vestibular nucleus, some of which made direct inhibitory connections to the target extraocular motoneurons. Both excitatory and inhibitory vestibuloocular neurons made synaptic contact in about half of the impaled target motoneurons.
Collapse
|
29
|
Lannou J, Cazin L, Hamann KF. Response of central vestibular neurons to horizontal linear acceleration in the rat. Pflugers Arch 1980; 385:123-9. [PMID: 6248837 DOI: 10.1007/bf00588691] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Responses of central vestibular neurons to horizontal sinusoidal translation (F:0.25Hz) were recorded in albino rat. 57.5% of vestibular neurons were responding to this stimulation by a modulation of their firing rate, the mean phase angle of the response, averaged from the whole population being 22 +/- 79 deg. lag, relative to the peak of contralateral acceleration. Dynamic characteristics of phase and gain were studied and appeared to be different from previous reports on primary afferents: the gain decreased or was flat with increasing acceleration at one frequency, and the phase lag which was flat in the same conditions increased with increasing frequency. A phase lead of some units has been observed at low frequency (0.1 Hz). Regarding the convergence between otolith and canal inputs on nuclear vestibular neurons, it was shown that the major pattern of convergence is between canal and otolith inputs of same polarity.
Collapse
|
30
|
Ishikawa T, Miyazawa T. Sympathetic responses evoked by vestibular stimulation and their interactions with somato-sympathetic reflexes. JOURNAL OF THE AUTONOMIC NERVOUS SYSTEM 1980; 1:243-54. [PMID: 7440896 DOI: 10.1016/0165-1838(80)90020-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In chloralose anesthetized cats mass reflex discharges of the renal sympathetic nerve were recorded following stimulations of low threshold, large myelinated afferents in vestibular and superficial peroneal nerves. Reflex responses caused by stimuli applied to both nerves were quite similar; a brief excitatory phase was followed by a long inhibitory phase or "silent-period'. Decerebration did not have any appreciable effects on either reflex but decerebellation (in addition to decerebration) greatly increased the excitatory response and shortened the inhibitory phase or "silent period' of the vestibulo-sympathetic reflex. The somato-sympathetic reflex response however, was not much altered by this procedure. When a vestibular nerve stimulus, given as a conditioning shock, preceded a testing stimulus applied to the cutaneous nerve by less than 300 msec, the test response was completely inhibited. The "recovery curve' of this conditioning--testing response showed that after decerebellation the inhibitory effect of vestibular conditioning stimulus on testing response was much reduced. The autonomic effector responses, blood pressure, heart rate and galvanic skin reflex (GSR) following low intensity stimulation of vestibular and cutaneous nerves were also studied. Repetitive stimulations applied to either nerves evoked a depressor response kand augmented GSRs but caused no significant changes in heart rate. Decerebellation reduced the depressor response produced by repetitive stimulation of vestibular nerves. The study indicates that vestibular nerves, as well as cutaneous afferents, which are powerful imputs for evoking somatic reactions, also elicit autonomic reflexes and that similarity and interactions between sympathetic reactions evoked by these two inputs suggest a common central mechanism.
Collapse
|
31
|
Korte GE, Friedrich VL. The fine structure of the feline superior vestibular nucleus: identification and synaptology of the primary vestibular afferents. Brain Res 1979; 176:3-32. [PMID: 487181 DOI: 10.1016/0006-8993(79)90867-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The superior vestibular nucleus of the cat and its primary vestibular efferents were examined by light and electron microscopy. The primary vestibular afferents branch within the nucleus in a sheet-like pattern, in the transverse plane. The dendritic fields of many secondary neurons are shaped like discs and are also oriented in the transverse plane. This relation between the primary afferents and dendritic fields may be relevant to the convergence of primary afferents innervating particular endorgans onto secondary neurons. Synaptic boutons in the SV were divided into 3 putative types on the basis of the size and shape of their synaptic vesicles. The primary afferent bouton was identified by comparing the SV of the two sides after unilateral lesions of the vestibular ganglion. Its boutons contain round vesicles of 40 nm average diameter and are associated with prominent postsynaptic densities; the two other putative bouton types contain smaller, round vesicles, and pleomorphic vesicles. The primary afferent boutons largely contact proximal dendrites, their appendages, and cell somata of the secondary neurons. In animals receiving unilateral lesions of the vestibular ganglion and allowed to survive long enough for the primary afferent boutons to disappear (5--6 days), there occurs in the denervated as compared to normal SV: (1) a decrease in the fraction of the somal surface of the secondary neurons covered by boutons with small round vesicles; and (2) a decrease in the ratio: number of boutons with small round vesicles to number of boutons with pleomorphic vesicles. In addition, there appears on the lesioned side a new group of boutons with pleomorphic vesicles smaller than those in boutons from the control side. These observations suggest plastic changes in response to deafferentation, and may be related to the marked behavioral recovery which occurs within a few days after lesion of the vestibular ganglion.
Collapse
|
32
|
Lannou J, Precht W, Cazin L. The postnatal development of functional properties of central vestibular neurons in the rat. Brain Res 1979; 175:219-32. [PMID: 487153 DOI: 10.1016/0006-8993(79)91002-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The postnatal development of the responses of rat central vestibular neurons to horizontal angular acceleration was studied in the time and frequency domain. The resting discharge was very low and irregular during the first postnatal days, increased gradually and became more regular throughout the first month and reached adult values approximately by the end of the first month. The relative distribution of type I and type II units was the same in all age groups. Threshold for frequency increase to angular acceleration and sensitivity of unit responses became lower and higher, respectively, as time elapsed after birth. Adult values were reached approximately by the end of the first month. There was a slight tendency towards shorter time constants and smaller phase lags in one-month-old animals when compared with the younger animals. The results are discussed in conjunction with similar work performed in vestibular afferents and correlated with known morphological and behavioral studies.
Collapse
|
33
|
|
34
|
Abstract
The response to angular acceleration of units in the superior vestibular nucleus (SVN) of barbiturate-anesthetized, cerebellectomized squirrel monkeys was used to study the distribution of semicircualr-canal inputs to the nucleus. Some so-called intact animals had 6 active semicircular canals. In other animals, the 3 canals on one side were rendered nonresponsive by plugging. In plugged animals, superior, posterior, and horizontal-canal units were encountered on both the plugged and unplugged sides, showing that all 6 canals influence the nucleus. Most units responded bilaterally to labyrinthine polarization; 92.5% of units in intact animals responded to angular acceleration, and this incidence was not decreased in plugged animals. These results suggest that most units in the superior nucleus receive bilateral canal inputs. Convergence of influences arising in orthogonally related canals was detected in less than 10% of units, so the bilateral ampullary influences must arise in parallel canals. Most SVN canal units on the plugged and unplugged sides gave type I responses, indicating that the contralateral canal influence is carried by a crossed inhibitory pathway. Most units influenced by the ipsilateral superior canal were located in the lateral half of the SVN. Posterior-canal units were in the medial half. There was no clear localization of the relatively few horizontal-canal units which were encountered.
Collapse
|
35
|
Hassen AH, Barnes CD. Bilateral effects of vestibular nerve stimulation on activity in the lumbar spinal cord. Brain Res 1975; 90:221-33. [PMID: 1139305 DOI: 10.1016/0006-8993(75)90303-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
These experiments were designed to study the effects of vestibular nerve stimulation on the activity of hindlimb motoneuron pools. Two techniques were used to stimulate the vestibular nerves of precollicularly decerebrated cats. In one set of experiments the individual semicircular canals were stimulated via bipolar electrodes placed near the canal nerves. In the second series of experiments the whole vestibular nerve was stimulated with an electrode placed on the intradural nerve. Activity in the hindlimb motoneuron pools was ascertained by evoking monosynaptic reflexes in the various hindlimb nerves. Stimulation of the individual semicircular canals produced response patterns that varied with both the vestibular branch being stimulated and the hindlimb nerve being conditioned. Intradural stimulation of the vestibular nerve, on the other hand, evoked similar response patterns in the antagonist ankle flexor and extensor nerves. The most common pattern consisted of facilitation followed by a period of inhibition. Lesions of descending fiber tracts produced results which suggest the presence of a diffuse pathway, involving the recitular formation, which mediates the observed responses. It is suggested that the biphasic response pattern is analogous to the startle response and the function of the responses is discussed in that context.
Collapse
|