Kostrzewa RM. Perinatal Lesioning and Lifelong Effects of the Noradrenergic Neurotoxin 6-Hydroxydopa.
Curr Top Behav Neurosci 2015;
29:43-50. [PMID:
26660536 DOI:
10.1007/7854_2015_414]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
6-hydroxydopa (6-OHDOPA) was synthesized with the expectation that it would be able to cross the blood-brain barrier to be enzymatically decarboxylated to 6-hydroxydopamine (6-OHDA), the newly discovered neurotoxin for noradrenergic and dopaminergic neurons. In part, 6-OHDOPA fulfilled these criteria. When administered experimentally to rodents, 6-OHDOPA destroyed peripheral sympathetic noradrenergic nerves and did exert neurotoxicity to noradrenergic nerves in brain-in large part, from its conversion to 6-OHDA. However, the efficacy of 6-OHDOPA was less than that of 6-OHDA; also, 6-OHDOPA was relatively selective for noradrenergic neurons; near-lethal doses of 6-OHDOPA were required to damage dopaminergic nerves; and ultimately, 6-OHDOPA was found to be an agonist at AMPA receptors, thus accounting for more non-specificity. Nevertheless, 6-OHDOPA was found to be a particularly valuable tool in uncovering processes and mechanisms associated with noradrenergic nerve regeneration and sprouting, particularly when administered to perinatal rodents. Also, 6-OHDOPA was a good tool for selective mapping of noradrenergic nerve tracts in brain, since dopaminergic tracts were unaffected and did not interfere with the histofluorescent methodology used for this purpose in the early 1970s. As an experimental research tool, 6-OHDOPA was valuable in a short time-window, but its utility is largely limited because of newer research technologies that provide better means today for nerve tract mapping, and for experimental approaches engaged toward study of processes and mechanisms attending nerve regeneration. AMPA actions of 6-OHDOPA have not been extensively studied, so this avenue may enliven use of 6-OHDOPA in the future.
Collapse