1
|
Iwase M, Diba K, Pastalkova E, Mizuseki K. Dynamics of spike transmission and suppression between principal cells and interneurons in the hippocampus and entorhinal cortex. Hippocampus 2024; 34:393-421. [PMID: 38874439 DOI: 10.1002/hipo.23612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/29/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Synaptic excitation and inhibition are essential for neuronal communication. However, the variables that regulate synaptic excitation and inhibition in the intact brain remain largely unknown. Here, we examined how spike transmission and suppression between principal cells (PCs) and interneurons (INTs) are modulated by activity history, brain state, cell type, and somatic distance between presynaptic and postsynaptic neurons by applying cross-correlogram analyses to datasets recorded from the dorsal hippocampus and medial entorhinal cortex (MEC) of 11 male behaving and sleeping Long Evans rats. The strength, temporal delay, and brain-state dependency of the spike transmission and suppression depended on the subregions/layers. The spike transmission probability of PC-INT excitatory pairs that showed short-term depression versus short-term facilitation was higher in CA1 and lower in CA3. Likewise, the intersomatic distance affected the proportion of PC-INT excitatory pairs that showed short-term depression and facilitation in the opposite manner in CA1 compared with CA3. The time constant of depression was longer, while that of facilitation was shorter in MEC than in CA1 and CA3. During sharp-wave ripples, spike transmission showed a larger gain in the MEC than in CA1 and CA3. The intersomatic distance affected the spike transmission gain during sharp-wave ripples differently in CA1 versus CA3. A subgroup of MEC layer 3 (EC3) INTs preferentially received excitatory inputs from and inhibited MEC layer 2 (EC2) PCs. The EC2 PC-EC3 INT excitatory pairs, most of which showed short-term depression, exhibited higher spike transmission probabilities than the EC2 PC-EC2 INT and EC3 PC-EC3 INT excitatory pairs. EC2 putative stellate cells exhibited stronger spike transmission to and received weaker spike suppression from EC3 INTs than EC2 putative pyramidal cells. This study provides detailed comparisons of monosynaptic interaction dynamics in the hippocampal-entorhinal loop, which may help to elucidate circuit operations.
Collapse
Affiliation(s)
- Motosada Iwase
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Kamran Diba
- Department of Anesthesiology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Eva Pastalkova
- The William Alanson White Institute of Psychiatry, Psychoanalysis & Psychology, New York, New York, USA
| | - Kenji Mizuseki
- Department of Physiology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Physiology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
2
|
Herber CS, Pratt KJ, Shea JM, Villeda SA, Giocomo LM. Spatial Coding Dysfunction and Network Instability in the Aging Medial Entorhinal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.12.588890. [PMID: 38659809 PMCID: PMC11042240 DOI: 10.1101/2024.04.12.588890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Across species, spatial memory declines with age, possibly reflecting altered hippocampal and medial entorhinal cortex (MEC) function. However, the integrity of cellular and network-level spatial coding in aged MEC is unknown. Here, we leveraged in vivo electrophysiology to assess MEC function in young, middle-aged, and aged mice navigating virtual environments. In aged grid cells, we observed impaired stabilization of context-specific spatial firing, correlated with spatial memory deficits. Additionally, aged grid networks shifted firing patterns often but with poor alignment to context changes. Aged spatial firing was also unstable in an unchanging environment. In these same mice, we identified 458 genes differentially expressed with age in MEC, 61 of which had expression correlated with spatial firing stability. These genes were enriched among interneurons and related to synaptic transmission. Together, these findings identify coordinated transcriptomic, cellular, and network changes in MEC implicated in impaired spatial memory in aging.
Collapse
Affiliation(s)
- Charlotte S. Herber
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
| | - Karishma J.B. Pratt
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- These authors contributed equally
| | - Jeremy M. Shea
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- These authors contributed equally
| | - Saul A. Villeda
- Department of Anatomy, University of California San Francisco, 513 Parnassus Avenue, Box 0452, San Francisco, CA, 94143, USA
- Bakar Aging Research Institute, San Francisco, CA, 94143, USA
| | - Lisa M. Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, 94305, USA
- Lead contact
| |
Collapse
|
3
|
Qin Y, Sun C, Sun H, Li M, Leng B, Yao R, Li Z, Zhang J. Electroencephalographic slowdowns during sleep are associated with cognitive impairment in patients who have obstructive sleep apnea but no dementia. Sleep Breath 2023; 27:2315-2324. [PMID: 37155126 DOI: 10.1007/s11325-023-02843-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
OBJECTIVES To research the relationship between quantitative electroencephalogram (qEEG) and impaired cognitive function patients who have obstructive sleep apnea (OSA) but no dementia. METHODS Subjects who complained of snoring between March 2020 and April 2021 in the Sleep Medicine Center of Weihai Municipal Hospital were included. All subjects underwent overnight in-laboratory polysomnography (PSG) and were assessed using a neuropsychological scale. Standard fast fourier transform (FFT) was used to obtain the electroencephalogram (EEG) power spectral density curve, and to calculate the delta, theta, alpha, and beta relative power and the ratio between slow and fast frequencies. Binary logistic regression was used to assess the risk factors for cognitive impairment in patients who had OSA but no dementia. Correlation analysis was performed to determine the relationship between qEEG and cognitive impairment. RESULTS A total of 175 participants without dementia who met the inclusion criteria were included in this study. There were 137 patients with OSA, including 76 with mild cognitive impairment (OSA + MCI), 61 without mild cognitive impairment (OSA-MCI), and 38 participants without OSA (non-OSA). The relative theta power in the frontal lobe in stage 2 of non-rapid eye movement sleep (NREM 2) in OSA + MCI was higher than that in OSA-MCI (P = 0.038) and non-OSA (P = 0.018). Pearson correlation analysis showed that the relative theta power in the frontal lobe in NREM 2 was negatively correlated with Mini-Mental State Examination (MMSE) scores, Montreal Cognitive Assessment (MoCA) Beijing version scores, and MoCA subdomains scores (visual executive function, naming, attention, language, abstraction, delayed recall and orientation) outside language. CONCLUSIONS In patients who had OSA but no dementia, the EEG slower frequency power increased. The relative theta power in the frontal lobe in NREM 2 was associated with MCI of patients with OSA. These results suggest that the slowing of theta activity may be one of the neurophysiological changes in the early stage of cognitive impairment in patients with OSA.
Collapse
Affiliation(s)
- Yibing Qin
- The Second Clinical Medical College, Binzhou Medical University, Yantai, 264000, Shandong, China
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Chao Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Hairong Sun
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Mengfan Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
- Liaocheng People's Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Bing Leng
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Ran Yao
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Zhenguang Li
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China
| | - Jinbiao Zhang
- Department of Neurology, Weihai Municipal Hospital, Cheeloo College of Medicine, Shandong University, Weihai, 264200, Shandong, China.
| |
Collapse
|
4
|
Danieli K, Guyon A, Bethus I. Episodic Memory formation: A review of complex Hippocampus input pathways. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110757. [PMID: 37086812 DOI: 10.1016/j.pnpbp.2023.110757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Memories of everyday experiences involve the encoding of a rich and dynamic representation of present objects and their contextual features. Traditionally, the resulting mnemonic trace is referred to as Episodic Memory, i.e. the "what", "where" and "when" of a lived episode. The journey for such memory trace encoding begins with the perceptual data of an experienced episode handled in sensory brain regions. The information is then streamed to cortical areas located in the ventral Medio Temporal Lobe, which produces multi-modal representations concerning either the objects (in the Perirhinal cortex) or the spatial and contextual features (in the parahippocampal region) of the episode. Then, this high-level data is gated through the Entorhinal Cortex and forwarded to the Hippocampal Formation, where all the pieces get bound together. Eventually, the resulting encoded neural pattern is relayed back to the Neocortex for a stable consolidation. This review will detail these different stages and provide a systematic overview of the major cortical streams toward the Hippocampus relevant for Episodic Memory encoding.
Collapse
Affiliation(s)
| | - Alice Guyon
- Université Cote d'Azur, Neuromod Institute, France; Université Cote d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| | - Ingrid Bethus
- Université Cote d'Azur, Neuromod Institute, France; Université Cote d'Azur, CNRS UMR 7275, IPMC, Valbonne, France
| |
Collapse
|
5
|
Zhou Y, Sheremet A, Kennedy JP, Qin Y, DiCola NM, Lovett SD, Burke SN, Maurer AP. Theta dominates cross-frequency coupling in hippocampal-medial entorhinal circuit during awake-behavior in rats. iScience 2022; 25:105457. [PMID: 36405771 PMCID: PMC9667293 DOI: 10.1016/j.isci.2022.105457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/10/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022] Open
Abstract
Hippocampal theta and gamma rhythms are hypothesized to play a role in the physiology of higher cognition. Prior research has reported that an offset in theta cycles between the entorhinal cortex, CA3, and CA1 regions promotes independence of population activity across the hippocampus. In line with this idea, it has recently been observed that CA1 pyramidal cells can establish and maintain coordinated place cell activity intrinsically, with minimal reliance on afferent input. Counter to these observations is the contemporary hypothesis that CA1 neuron activity is driven by a gamma oscillation arising from the medial entorhinal cortex (MEC) that relays information by providing precisely timed synchrony between MEC and CA1. Reinvestigating this in rats during appetitive track running, we found that theta is the dominant frequency of cross-frequency coupling between the MEC and hippocampus, with hippocampal gamma largely independent of entorhinal gamma. Theta, theta harmonic, and gamma power increase with running speed in the HPC and MEC Intra-regionally, theta-theta harmonic and theta-gamma coupling increases with speed Cross-regionally, theta is the dominant frequency of coupling between HPC and MEC Marginal gamma coupling can be explained by local gamma modulated by coherent theta
Collapse
|
6
|
A Transmissive Theory of Brain Function: Implications for Health, Disease, and Consciousness. NEUROSCI 2022. [DOI: 10.3390/neurosci3030032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Identifying a complete, accurate model of brain function would allow neuroscientists and clinicians to make powerful neuropsychological predictions and diagnoses as well as develop more effective treatments to mitigate or reverse neuropathology. The productive model of brain function, which has been dominant in the field for centuries, cannot easily accommodate some higher-order neural processes associated with consciousness and other neuropsychological phenomena. However, in recent years, it has become increasingly evident that the brain is highly receptive to and readily emits electromagnetic (EM) fields and light. Indeed, brain tissues can generate endogenous, complex EM fields and ultraweak photon emissions (UPEs) within the visible and near-visible EM spectra. EM-based neural mechanisms, such as ephaptic coupling and non-visual optical brain signaling, expand canonical neural signaling modalities and are beginning to disrupt conventional models of brain function. Here, we present an evidence-based argument for the existence of brain processes that are caused by the transmission of extracerebral, EM signals and recommend experimental strategies with which to test the hypothesis. We argue for a synthesis of productive and transmissive models of brain function and discuss implications for the study of consciousness, brain health, and disease.
Collapse
|
7
|
Huang Q, Liao C, Ge F, Ao J, Liu T. Acetylcholine bidirectionally regulates learning and memory. JOURNAL OF NEURORESTORATOLOGY 2022. [DOI: 10.1016/j.jnrt.2022.100002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
8
|
Khalife MR, Scott RC, Hernan AE. Mechanisms for Cognitive Impairment in Epilepsy: Moving Beyond Seizures. Front Neurol 2022; 13:878991. [PMID: 35645970 PMCID: PMC9135108 DOI: 10.3389/fneur.2022.878991] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
There has been a major emphasis on defining the role of seizures in the causation of cognitive impairments like memory deficits in epilepsy. Here we focus on an alternative hypothesis behind these deficits, emphasizing the mechanisms of information processing underlying healthy cognition characterized as rate, temporal and population coding. We discuss the role of the underlying etiology of epilepsy in altering neural networks thereby leading to both the propensity for seizures and the associated cognitive impairments. In addition, we address potential treatments that can recover the network function in the context of a diseased brain, thereby improving both seizure and cognitive outcomes simultaneously. This review shows the importance of moving beyond seizures and approaching the deficits from a system-level perspective with the guidance of network neuroscience.
Collapse
Affiliation(s)
- Mohamed R. Khalife
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Rod C. Scott
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
- Institute of Child Health, Neurosciences Unit University College London, London, United Kingdom
| | - Amanda E. Hernan
- Division of Neuroscience, Nemours Children's Health, Wilmington, DE, United States
- Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
9
|
Signalling pathways contributing to learning and memory deficits in the Ts65Dn mouse model of Down syndrome. Neuronal Signal 2021; 5:NS20200011. [PMID: 33763235 PMCID: PMC7955101 DOI: 10.1042/ns20200011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023] Open
Abstract
Down syndrome (DS) is a genetic trisomic disorder that produces life-long changes in physiology and cognition. Many of the changes in learning and memory seen in DS are reminiscent of disorders involving the hippocampal/entorhinal circuit. Mouse models of DS typically involve trisomy of murine chromosome 16 is homologous for many of the genes triplicated in human trisomy 21, and provide us with good models of changes in, and potential pharmacotherapy for, human DS. Recent careful dissection of the Ts65Dn mouse model of DS has revealed differences in key signalling pathways from the basal forebrain to the hippocampus and associated rhinal cortices, as well as changes in the microstructure of the hippocampus itself. In vivo behavioural and electrophysiological studies have shown that Ts65Dn animals have difficulties in spatial memory that mirror hippocampal deficits, and have changes in hippocampal electrophysiological phenomenology that may explain these differences, and align with expectations generated from in vitro exploration of this model. Finally, given the existing data, we will examine the possibility for pharmacotherapy for DS, and outline the work that remains to be done to fully understand this system.
Collapse
|
10
|
Bant JS, Hardcastle K, Ocko SA, Giocomo LM. Topography in the Bursting Dynamics of Entorhinal Neurons. Cell Rep 2021; 30:2349-2359.e7. [PMID: 32075768 DOI: 10.1016/j.celrep.2020.01.057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 11/28/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Medial entorhinal cortex contains neural substrates for representing space. These substrates include grid cells that fire in repeating locations and increase in scale progressively along the dorsal-to-ventral entorhinal axis, with the physical distance between grid firing nodes increasing from tens of centimeters to several meters in rodents. Whether the temporal scale of grid cell spiking dynamics shows a similar dorsal-to-ventral organization remains unknown. Here, we report the presence of a dorsal-to-ventral gradient in the temporal spiking dynamics of grid cells in behaving mice. This gradient in bursting supports the emergence of a dorsal grid cell population with a high signal-to-noise ratio. In vitro recordings combined with a computational model point to a role for gradients in non-inactivating sodium conductances in supporting the bursting gradient in vivo. Taken together, these results reveal a complementary organization in the temporal and intrinsic properties of entorhinal cells.
Collapse
Affiliation(s)
- Jason S Bant
- Department of Neurobiology, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Kiah Hardcastle
- Department of Neurobiology, Stanford University School of Medicine, Stanford CA 94305, USA
| | - Samuel A Ocko
- Department of Applied Physics, Stanford University, Stanford CA 94305, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford CA 94305, USA.
| |
Collapse
|
11
|
Abstract
Neural oscillations play an important role in the integration and segregation of brain regions that are important for brain functions, including pain. Disturbances in oscillatory activity are associated with several disease states, including chronic pain. Studies of neural oscillations related to pain have identified several functional bands, especially alpha, beta, and gamma bands, implicated in nociceptive processing. In this review, we introduce several properties of neural oscillations that are important to understand the role of brain oscillations in nociceptive processing. We also discuss the role of neural oscillations in the maintenance of efficient communication in the brain. Finally, we discuss the role of neural oscillations in healthy and chronic pain nociceptive processing. These data and concepts illustrate the key role of regional and interregional neural oscillations in nociceptive processing underlying acute and chronic pains.
Collapse
Affiliation(s)
- Junseok A. Kim
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen D. Davis
- Division of Brain, Imaging and Behaviour, Krembil Brain Institute, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Hernández-Pérez JJ, Cooper KW, Newman EL. Medial entorhinal cortex activates in a traveling wave in the rat. eLife 2020; 9:52289. [PMID: 32057292 PMCID: PMC7046467 DOI: 10.7554/elife.52289] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Traveling waves are hypothesized to support the long-range coordination of anatomically distributed circuits. Whether separate strongly interacting circuits exhibit traveling waves remains unknown. The hippocampus exhibits traveling ‘theta’ waves and interacts strongly with the medial entorhinal cortex (MEC). To determine whether the MEC also activates in a traveling wave, we performed extracellular recordings of local field potentials (LFP) and multi-unit activity along the MEC. These recordings revealed progressive phase shifts in activity, indicating that the MEC also activates in a traveling wave. Variation in theta waveform along the region, generated by gradients in local physiology, contributed to the observed phase shifts. Removing waveform-related phase shifts left significant residual phase shifts. The residual phase shifts covaried with theta frequency in a manner consistent with those generated by weakly coupled oscillators. These results show that the coordination of anatomically distributed circuits could be enabled by traveling waves but reveal heterogeneity in the mechanisms generating those waves.
Collapse
Affiliation(s)
- J Jesús Hernández-Pérez
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, United States
| | - Keiland W Cooper
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, United States
| | - Ehren L Newman
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, United States
| |
Collapse
|
13
|
Iwase M, Kitanishi T, Mizuseki K. Cell type, sub-region, and layer-specific speed representation in the hippocampal-entorhinal circuit. Sci Rep 2020; 10:1407. [PMID: 31996750 PMCID: PMC6989659 DOI: 10.1038/s41598-020-58194-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
It has been hypothesised that speed information, encoded by ‘speed cells’, is important for updating spatial representation in the hippocampus and entorhinal cortex to reflect ongoing self-movement during locomotion. However, systematic characterisation of speed representation is still lacking. In this study, we compared the speed representation of distinct cell types across sub-regions/layers in the dorsal hippocampus and medial entorhinal cortex of rats during exploration. Our results indicate that the preferred theta phases of individual neurons are correlated with positive/negative speed modulation and a temporal shift of speed representation in a sub-region/layer and cell type-dependent manner. Most speed cells located in entorhinal cortex layer 2 represented speed prospectively, whereas those in the CA1 and entorhinal cortex layers 3 and 5 represented speed retrospectively. In entorhinal cortex layer 2, putative CA1-projecting pyramidal cells, but not putative dentate gyrus/CA3-projecting stellate cells, represented speed prospectively. Among the hippocampal interneurons, approximately one-third of putative dendrite-targeting (somatostatin-expressing) interneurons, but only a negligible fraction of putative soma-targeting (parvalbumin-expressing) interneurons, showed negative speed modulation. Putative parvalbumin-expressing CA1 interneurons and somatostatin-expressing CA3 interneurons represented speed more retrospectively than parvalbumin-expressing CA3 interneurons. These findings indicate that speed representation in the hippocampal-entorhinal circuit is cell-type, pathway, and theta-phase dependent.
Collapse
Affiliation(s)
- Motosada Iwase
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Takuma Kitanishi
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, 332-0012, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka City University Graduate School of Medicine, Osaka, 545-8585, Japan. .,Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, 07102, USA.
| |
Collapse
|
14
|
Musaeus CS, Nielsen MS, Østerbye NN, Høgh P. Decreased Parietal Beta Power as a Sign of Disease Progression in Patients with Mild Cognitive Impairment. J Alzheimers Dis 2019; 65:475-487. [PMID: 30056426 DOI: 10.3233/jad-180384] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Electroencephalography (EEG) power has previously been used to compare mild cognitive impairment (MCI) patients who progress to Alzheimer's disease (pMCI) with patients with MCI who remain stable (sMCI) by using beta power. However, the beta band is very broad and smaller frequency bands may improve accuracy. OBJECTIVE In the present study, we wanted to investigate whether it was possible to find any differences between pMCI and sMCI using relative power and whether these differences were correlated to cognitive function or neuropathology markers. METHODS 17 patients with AD, 27 patients with MCI, and 38 older healthy controls were recruited from two memory clinics and followed for three years. EEGs were recorded at baseline for all participants and relative power was calculated. All participants underwent adjusted batteries of standardized cognitive tests and lumbar puncture. RESULTS We found that pMCI showed decreased baseline relative power in the parietal electrodes in the beta1 band (13-17.99 Hz). At 2-year follow-up, we found changes in all baseline beta bands but most pronounced in the beta1 band. In addition, we found that qEEG parietal power was correlated with amyloid-β42 and anterograde memory. CONCLUSION These findings suggests that relative power in the parietal electrodes in the beta1 band may be a better way to discriminate between pMCI and sMCI at the time of diagnosis than the broad beta band. Similar findings have also been found with resting state fMRI. In addition, we found that anterograde memory was correlated to qEEG parietal beta1 power.
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Denmark
| | - Malene Schjønning Nielsen
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital, Roskilde, Denmark
| | - Natascha Nellum Østerbye
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital, Roskilde, Denmark
| | - Peter Høgh
- Department of Neurology, Regional Dementia Research Centre, Zealand University Hospital, Roskilde, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Mysin IE, Kitchigina VF, Kazanovich YB. Phase relations of theta oscillations in a computer model of the hippocampal CA1 field: Key role of Schaffer collaterals. Neural Netw 2019; 116:119-138. [DOI: 10.1016/j.neunet.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
|
16
|
Musaeus CS, Engedal K, Høgh P, Jelic V, Mørup M, Naik M, Oeksengaard AR, Snaedal J, Wahlund LO, Waldemar G, Andersen BB. EEG Theta Power Is an Early Marker of Cognitive Decline in Dementia due to Alzheimer's Disease. J Alzheimers Dis 2019; 64:1359-1371. [PMID: 29991135 DOI: 10.3233/jad-180300] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Quantitative EEG (qEEG) power could potentially be used as a diagnostic tool for Alzheimer's disease (AD) and may further our understanding of the pathophysiology. However, the early qEEG power changes of AD are not well understood. OBJECTIVE To investigate the early changes in qEEG power and the possible correlation with memory function and cerebrospinal fluid biomarkers. In addition, whether qEEG power could discriminate between AD, mild cognitive impairment (MCI), and older healthy controls (HC) at the individual level. METHODS Standard EEGs from 138 HC, 117 MCI, and 117 AD patients were included from six Nordic memory clinics. All EEGs were recorded consecutively before the diagnosis and were not used for the consensus diagnosis. Absolute and relative power was calculated for both eyes closed and open condition. RESULTS At group level using relative power, we found significant increases globally in the theta band and decreases in high frequency power in the temporal regions for eyes closed for AD and, to a lesser extent, for MCI compared to HC. Relative theta power was significantly correlated with multiple neuropsychological measures and had the largest correlation coefficient with total tau. At the individual level, the classification rate for AD and HC was 72.9% for relative power with eyes closed. CONCLUSION Our findings suggest that the increase in relative theta power may be the first change in patients with dementia due to AD. At the individual level, we found a moderate classification rate for AD and HC when using EEGs alone.
Collapse
Affiliation(s)
- Christian Sandøe Musaeus
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Knut Engedal
- Norwegian National Advisory Unit on Ageing and Health (Ageing and Health), Vestfold Hospital Trust and Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Peter Høgh
- Regional Dementia Research Center, Department of Neurology, Zealand University Hospital, Roskilde, Denmark and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Vesna Jelic
- Department of Neurobiology, Division of Clinical Geriatrics, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.,Clinic for Cognitive Disorders, Theme Aging, Karolinska University Hospital-Huddinge, Sweden
| | - Morten Mørup
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Lyngby, Denmark
| | - Mala Naik
- Department of Geriatric Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Anne-Rita Oeksengaard
- Department of Neurobiology, Division of Clinical Geriatrics, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Jon Snaedal
- Department of Geriatric Medicine, Landspítali University Hospital, Reykjavik, Iceland
| | - Lars-Olof Wahlund
- Department of Neurobiology, Division of Clinical Geriatrics, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Gunhild Waldemar
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bo Andersen
- Department of Neurology, Danish Dementia Research Centre (DDRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Grid cell co-activity patterns during sleep reflect spatial overlap of grid fields during active behaviors. Nat Neurosci 2019; 22:609-617. [PMID: 30911183 DOI: 10.1038/s41593-019-0359-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 02/08/2019] [Indexed: 01/31/2023]
Abstract
Continuous-attractor network models of grid formation posit that recurrent connectivity between grid cells controls their patterns of co-activation. Grid cells from a common module exhibit stable offsets in their periodic spatial tuning curves across environments, and this may reflect recurrent connectivity or correlated sensory inputs. Here we explore whether cell-cell relationships predicted by attractor models persist during sleep states in which spatially informative sensory inputs are absent. We recorded ensembles of grid cells in superficial layers of medial entorhinal cortex during active exploratory behaviors and overnight sleep. Per grid cell pair and collectively, and across waking, rapid eye movement sleep and non-rapid eye movement sleep, we found preserved patterns of spike-time correlations that reflected the spatial tuning offsets between these grid cells during active exploration. The preservation of cell-cell relationships across waking and sleep states was not explained by theta oscillations or activity in hippocampal subregion CA1. These results indicate that recurrent connectivity within the grid cell network drives grid cell activity across behavioral states.
Collapse
|
18
|
Ulrich K, Spriggs MJ, Abraham WC, Dalrymple-Alford JC, McNaughton N. Environmental enrichment increases prefrontal EEG power and synchrony with the hippocampus in rats with anterior thalamus lesions. Hippocampus 2018; 29:128-140. [PMID: 30153381 DOI: 10.1002/hipo.23022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/11/2018] [Accepted: 08/14/2018] [Indexed: 11/12/2022]
Abstract
The anterior thalamic nuclei (ATN) are a major interface between the hippocampus and prefrontal cortex within an extended Papez circuit. Rat models suggest that the deficits caused by ATN damage, which is associated with "diencephalic amnesia", can be ameliorated by environmental enrichment (EE) through unknown mechanisms. We examined whether changes in theta rhythmicity within and between the hippocampus and prefrontal cortex are influenced by EE in rats with ATN lesions. Here, we show that ATN lesions and EE produced essentially opposed functional effects in terms of changes in rhythmicity between two consecutive trials when rats forage for chocolate hail. On the second trial, standard-housed rats with ATN lesions showed: (a) a clear reduction in prefrontal cortex experience-dependent power change in the theta band and in two adjacent bands; (b) little change in the theta band in hippocampal area CA1; and (c) only a modest overall reduction in experience-dependent power change at lower theta frequencies in the dentate gyrus. EE exposure prevented the decrease in prefrontal theta power in rats with ATN lesions, and in fact caused a clear increase in prefrontal cortex power across all bands. While ATN lesions did not reliably affect prefrontal-CA1 or prefrontal-dentate theta coherence, EE increased the coherence between prefrontal cortex and area CA1 in both the sham and ATN groups. Thus, EE increases functional connectivity between prefrontal cortex and hippocampus via pathways that bypass the ATN, and increases behaviorally dependent prefrontal rhythmicity. These EEG effects may contribute to improved learning and memory in the ATN-lesion model of diencephalic amnesia.
Collapse
Affiliation(s)
- Katharina Ulrich
- Department of Psychology and Brain Health Research Center, University of Otago, Dunedin, New Zealand
| | - Megg J Spriggs
- Department of Psychology, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand.,School of Psychology, and Brain Research New Zealand, University of Auckland, Auckland, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Center, and Brain Research New Zealand, University of Otago, Dunedin, New Zealand
| | - John C Dalrymple-Alford
- Department of Psychology, New Zealand Brain Research Institute and Brain Research New Zealand, University of Canterbury, Ilam, Christchurch, New Zealand
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Center, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Sakimoto Y, Sakata S. The role of the hippocampal theta rhythm in non-spatial discrimination and associative learning task. Neurosci Biobehav Rev 2018; 110:92-99. [PMID: 30261198 DOI: 10.1016/j.neubiorev.2018.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/24/2018] [Accepted: 09/22/2018] [Indexed: 01/18/2023]
Abstract
The configural association theory and the conflict resolution model propose that hippocampal function is involved in learning negative patterning tasks (A+, B+, AB-). The first theory suggests a critical role of the hippocampus in the formation of configural representations of compound stimuli, in which stimuli A and B are presented simultaneously. The second theory hypothesizes that the hippocampus is important for inhibiting the response to a stimulus that is in conflict with response tendencies. Although these theories propose different interpretations of the link between hippocampal function and non-spatial discrimination tasks, they both predict that the hippocampus is involved in the information processing of compound stimuli in negative patterning tasks. Recently, our electrophysiological approach has shown that the hippocampal theta power correlate with response inhibition in a negative patterning task, positive patterning, simultaneous/serial feature negative task. These findings provide strong support for the assumption of the conflict resolution model that the role of the hippocampus in learning is to inhibit responses to conflicting stimuli during non-spatial stimulus discrimination tasks.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Department of Physiology, Graduate School of Medicine, Yamaguchi University, Ube, 755-8505, Japan.
| | - Shogo Sakata
- Department of Behavioral Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan.
| |
Collapse
|
20
|
Target selectivity of septal cholinergic neurons in the medial and lateral entorhinal cortex. Proc Natl Acad Sci U S A 2018; 115:E2644-E2652. [PMID: 29487212 PMCID: PMC5856533 DOI: 10.1073/pnas.1716531115] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Acetylcholine is a key modulator of hippocampal and entorhinal cortex (EC) function. The majority of cholinergic projections targeting these structures originate in the basal forebrain complex, specifically the medial septum. Many studies focused on the behavioral effects involving these projections, but there still is a paucity regarding their connectivity in the target area. Here we provide this missing link. By combining optogenetics with whole-cell recordings in superficial EC layers, we identified the synaptic target cells of septal cholinergic neurons. This level of analysis is an important step toward a better understanding of the modulatory action of acetylcholine in EC in vivo. The entorhinal cortex (EC) plays a pivotal role in processing and conveying spatial information to the hippocampus. It has long been known that EC neurons are modulated by cholinergic input from the medial septum. However, little is known as to how synaptic release of acetylcholine affects the different cell types in EC. Here we combined optogenetics and patch-clamp recordings to study the effect of cholinergic axon stimulation on distinct neurons in EC. We found dense cholinergic innervations that terminate in layer I and II (LI and LII). Light-activated stimulation of septal cholinergic projections revealed differential responses in excitatory and inhibitory neurons in LI and LII of both medial and lateral EC. We observed depolarizing responses mediated by nicotinic and muscarinic receptors primarily in putative serotonin receptor (p5HT3R)-expressing interneurons. Hyperpolarizing muscarinic receptor-mediated responses were found predominantly in excitatory cells. Additionally, some excitatory as well as a higher fraction of inhibitory neurons received mono- and/or polysynaptic GABAergic inputs, revealing that medial septum cholinergic neurons have the capacity to corelease GABA alongside acetylcholine. Notably, the synaptic effects of acetylcholine were similar in neurons of both medial and lateral EC. Taken together, our findings demonstrate that EC activity may be differentially modulated via the activation or the suppression of distinct subsets of LI and LII neurons by the septal cholinergic system.
Collapse
|
21
|
Korotkova T, Ponomarenko A, Monaghan CK, Poulter SL, Cacucci F, Wills T, Hasselmo ME, Lever C. Reconciling the different faces of hippocampal theta: The role of theta oscillations in cognitive, emotional and innate behaviors. Neurosci Biobehav Rev 2018; 85:65-80. [DOI: 10.1016/j.neubiorev.2017.09.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 08/22/2017] [Accepted: 09/02/2017] [Indexed: 12/30/2022]
|
22
|
Entorhinal-CA3 Dual-Input Control of Spike Timing in the Hippocampus by Theta-Gamma Coupling. Neuron 2017; 93:1213-1226.e5. [PMID: 28279355 DOI: 10.1016/j.neuron.2017.02.017] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/07/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023]
Abstract
Theta-gamma phase coupling and spike timing within theta oscillations are prominent features of the hippocampus and are often related to navigation and memory. However, the mechanisms that give rise to these relationships are not well understood. Using high spatial resolution electrophysiology, we investigated the influence of CA3 and entorhinal inputs on the timing of CA1 neurons. The theta-phase preference and excitatory strength of the afferent CA3 and entorhinal inputs effectively timed the principal neuron activity, as well as regulated distinct CA1 interneuron populations in multiple tasks and behavioral states. Feedback potentiation of distal dendritic inhibition by CA1 place cells attenuated the excitatory entorhinal input at place field entry, coupled with feedback depression of proximal dendritic and perisomatic inhibition, allowing the CA3 input to gain control toward the exit. Thus, upstream inputs interact with local mechanisms to determine theta-phase timing of hippocampal neurons to support memory and spatial navigation.
Collapse
|
23
|
Systemic administration of two different anxiolytic drugs decreases local field potential theta frequency in the medial entorhinal cortex without affecting grid cell firing fields. Neuroscience 2017; 364:60-70. [PMID: 28890051 DOI: 10.1016/j.neuroscience.2017.08.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/17/2017] [Accepted: 08/30/2017] [Indexed: 01/19/2023]
Abstract
Neurons coding spatial location (grid cells) are found in medial entorhinal cortex (MEC) and demonstrate increasing size of firing fields and spacing between fields (grid scale) along the dorsoventral axis. This change in grid scale correlates with differences in theta frequency, a 6-10Hz rhythm in the local field potential (LFP) and rhythmic firing of cells. A relationship between theta frequency and grid scale can be found when examining grid cells recorded in different locations along the dorsoventral axis of MEC. When describing the relationship between theta frequency and grid scale, it is important to account for the strong positive correlation between theta frequency and running speed. Plotting LFP theta frequency across running speeds dissociates two components of this relationship: slope and intercept of the linear fit. Change in theta frequency through a change in the slope component has been modeled and shown experimentally to affect grid scale, but the prediction that change in the intercept component would not affect grid scale has not been tested experimentally. This prediction about the relationship of intercept to grid scale is the primary hypothesis tested in the experiments presented here. All known anxiolytic drugs decrease hippocampal theta frequency despite their differing mechanisms of action. Specifically, anxiolytics decrease the intercept of the theta frequency-running speed relationship in the hippocampus. Here we demonstrate that anxiolytics decrease the intercept of the theta frequency-running speed relationship in the MEC, similar to hippocampus, and the decrease in frequency through this change in intercept does not affect grid scale.
Collapse
|
24
|
Manseau F, Williams S. Tuning in the Hippocampal Theta Band In Vitro: Methodologies for Recording from the Isolated Rodent Septohippocampal Circuit. J Vis Exp 2017. [PMID: 28809843 DOI: 10.3791/55851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This protocol outlines the procedures for preparing and recording from the isolated whole hippocampus, of WT and transgenic mice, along with recent improvements in methodologies and applications for the study of theta oscillations. A simple characterization of the isolated hippocampal preparation is presented whereby the relationship between internal hippocampal theta oscillators is examined together with the activity of pyramidal cells, and GABAergic interneurons, of the cornu ammonis-1 (CA1) and subiculum (SUB) areas. Overall, we show that the isolated hippocampus is capable of generating intrinsic theta oscillations in vitro and that rhythmicity generated within the hippocampus can be precisely manipulated by optogenetic stimulation of parvalbumin-positive (PV) interneurons. The in vitro isolated hippocampal preparation offers a unique opportunity to use simultaneous field and intracellular patch-clamp recordings from visually-identified neurons to better understand the mechanisms underlying theta rhythm generation.
Collapse
Affiliation(s)
- Frédéric Manseau
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University;
| | - Sylvain Williams
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University
| |
Collapse
|
25
|
Carbachol-induced network oscillations in an in vitro limbic system brain slice. Neuroscience 2017; 348:153-164. [DOI: 10.1016/j.neuroscience.2017.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/25/2023]
|
26
|
Martínez-Bellver S, Cervera-Ferri A, Luque-García A, Martínez-Ricós J, Valverde-Navarro A, Bataller M, Guerrero J, Teruel-Marti V. Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat. J Physiol 2017; 595:1775-1792. [PMID: 27880004 DOI: 10.1113/jp272841] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/12/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The nucleus incertus is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Synchronisation exists between the nucleus incertus and hippocampal activities during theta periods. By the Granger causality analysis, we demonstrated a directional information flow between theta rhythmical neurons in the nucleus incertus and the hippocampus in theta-on states. The electrical stimulation of the nucleus incertus is also able to evoke a phase reset of the hippocampal theta wave. Our data suggest that the nucleus incertus is a key node of theta generation and the modulation network. ABSTRACT In recent years, a body of evidence has shown that the nucleus incertus (NI), in the dorsal tegmental pons, is a key node of the brainstem circuitry involved in hippocampal theta rhythmicity. Ascending reticular brainstem system activation evokes hippocampal theta rhythm with coupled neuronal activity in the NI. In a recent paper, we showed three populations of neurons in the NI with differential firing during hippocampal theta activation. The objective of this work was to better evaluate the causal relationship between the activity of NI neurons and the hippocampus during theta activation in order to further understand the role of the NI in the theta network. A Granger causality analysis was run to determine whether hippocampal theta activity with sensory-evoked theta depends on the neuronal activity of the NI, or vice versa. The analysis showed causal interdependence between the NI and the hippocampus during theta activity, whose directional flow depended on the different neuronal assemblies of the NI. Whereas type I and II NI neurons mainly acted as receptors of hippocampal information, type III neuronal activity was the predominant source of flow between the NI and the hippocampus in theta states. We further determined that the electrical activation of the NI was able to reset hippocampal waves with enhanced theta-band power, depending on the septal area. Collectively, these data suggest that hippocampal theta oscillations after sensory activation show dependence on NI neuron activity, which could play a key role in establishing optimal conditions for memory encoding.
Collapse
Affiliation(s)
- Sergio Martínez-Bellver
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Aina Luque-García
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Alfonso Valverde-Navarro
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| | - Manuel Bataller
- Digital Signal Processing Group, Department of Electronics and Engineering, University of Valencia, Burjassot (Valencia), Spain
| | - Juan Guerrero
- Digital Signal Processing Group, Department of Electronics and Engineering, University of Valencia, Burjassot (Valencia), Spain
| | - Vicent Teruel-Marti
- Neuronal Circuits Laboratory, Department of Anatomy and Human Embryology, University of Valencia, Valencia, Spain
| |
Collapse
|
27
|
Raudies F, Hinman JR, Hasselmo ME. Modelling effects on grid cells of sensory input during self-motion. J Physiol 2016; 594:6513-6526. [PMID: 27094096 DOI: 10.1113/jp270649] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/29/2016] [Indexed: 01/07/2023] Open
Abstract
The neural coding of spatial location for memory function may involve grid cells in the medial entorhinal cortex, but the mechanism of generating the spatial responses of grid cells remains unclear. This review describes some current theories and experimental data concerning the role of sensory input in generating the regular spatial firing patterns of grid cells, and changes in grid cell firing fields with movement of environmental barriers. As described here, the influence of visual features on spatial firing could involve either computations of self-motion based on optic flow, or computations of absolute position based on the angle and distance of static visual cues. Due to anatomical selectivity of retinotopic processing, the sensory features on the walls of an environment may have a stronger effect on ventral grid cells that have wider spaced firing fields, whereas the sensory features on the ground plane may influence the firing of dorsal grid cells with narrower spacing between firing fields. These sensory influences could contribute to the potential functional role of grid cells in guiding goal-directed navigation.
Collapse
Affiliation(s)
- Florian Raudies
- Center for Systems Neuroscience, Centre for Memory and Brain, Department of Psychological and Brain Sciences and Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA, 02215, USA
| | - James R Hinman
- Center for Systems Neuroscience, Centre for Memory and Brain, Department of Psychological and Brain Sciences and Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA, 02215, USA
| | - Michael E Hasselmo
- Center for Systems Neuroscience, Centre for Memory and Brain, Department of Psychological and Brain Sciences and Graduate Program for Neuroscience, Boston University, 2 Cummington Mall, Boston, MA, 02215, USA
| |
Collapse
|
28
|
Gu Z, Yakel JL. Inducing theta oscillations in the entorhinal hippocampal network in vitro. Brain Struct Funct 2016; 222:943-955. [PMID: 27369465 DOI: 10.1007/s00429-016-1256-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
The hippocampal theta rhythm emerges as rhythmic and synchronized activities among the hippocampus and hippocampus-associated brain regions during active exploration, providing a potential means for inter-regional communication. However, after decades of research, the origins of the theta rhythm remain elusive, at least partly due to the difficulty in recording from all three essential regions for theta generation, namely the hippocampus itself, the septum, and the entorhinal cortex. For this reason, we established an in vitro theta model in a septo-entorhinal-hippocampal brain slice tri-culture system by pairing septal cholinergic inputs with hippocampal local activities. Our study shows that the local entorhinal cortical circuit may play an active and critical role in hippocampal theta rhythm generation. Our study also reveals a potential mechanism for theta rhythms to emerge as the functional results of dynamic interactions among the septum, hippocampus, and the entorhinal cortex, in the absence of clear pace makers.
Collapse
Affiliation(s)
- Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environment Health Sciences, National Institutes of Health, Department of Health and Human Services, P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC, 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environment Health Sciences, National Institutes of Health, Department of Health and Human Services, P.O. Box 12233, Mail Drop F2-08, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
29
|
The transient decline in hippocampal theta power during response inhibition in a positive patterning task. Neuroreport 2016; 26:833-7. [PMID: 26302159 DOI: 10.1097/wnr.0000000000000432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It is believed that a transient decline in hippocampal theta power is induced by behavioral inhibition during a go/no-go stimulus discrimination task. In a previously reported positive patterning (PP) task, rats learn to lever press when a compound stimulus, both tone and light, is presented and inhibit their lever press when a single stimulus, tone or light, is presented. In this task, rats were required to inhibit their response to the single stimulus in a task where both compound and single stimuli were presented with an overlapping element. Thus, we hypothesized that there would be a transient decline in hippocampal theta power induced by behavioral inhibition to the presence of a single stimuli in the PP task. The result of this study showed that a decline in hippocampal theta power occurred during response inhibition to the presence of a single tone stimulus in the PP task, supporting our hypothesis. However, we did not observe any decline in hippocampal theta power during response inhibition to the presence of a single light stimulus. We found that the error response rate for the tone stimulus was slightly lower than that for light stimulus in the PP task. Thus, we proposed that the decline in hippocampal theta power related to more accurate response inhibition to the stimulus that had an overlapping element.
Collapse
|
30
|
Sparks DW, Chapman CA. Heterosynaptic modulation of evoked synaptic potentials in layer II of the entorhinal cortex by activation of the parasubiculum. J Neurophysiol 2016; 116:658-70. [PMID: 27146979 DOI: 10.1152/jn.00095.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 11/22/2022] Open
Abstract
The superficial layers of the entorhinal cortex receive sensory and associational cortical inputs and provide the hippocampus with the majority of its cortical sensory input. The parasubiculum, which receives input from multiple hippocampal subfields, sends its single major output projection to layer II of the entorhinal cortex, suggesting that it may modulate processing of synaptic inputs to the entorhinal cortex. Indeed, stimulation of the parasubiculum can enhance entorhinal responses to synaptic input from the piriform cortex in vivo. Theta EEG activity contributes to spatial and mnemonic processes in this region, and the current study assessed how stimulation of the parasubiculum with either single pulses or short, five-pulse, theta-frequency trains may modulate synaptic responses in layer II entorhinal stellate neurons evoked by stimulation of layer I afferents in vitro. Parasubicular stimulation pulses or trains suppressed responses to layer I stimulation at intervals of 5 ms, and parasubicular stimulation trains facilitated layer I responses at a train-pulse interval of 25 ms. This suggests that firing of parasubicular neurons during theta activity may heterosynaptically enhance incoming sensory inputs to the entorhinal cortex. Bath application of the hyperpolarization-activated cation current (Ih) blocker ZD7288 enhanced the facilitation effect, suggesting that cholinergic inhibition of Ih may contribute. In addition, repetitive pairing of parasubicular trains and layer I stimulation induced a lasting depression of entorhinal responses to layer I stimulation. These findings provide evidence that theta activity in the parasubiculum may promote heterosynaptic modulation effects that may alter sensory processing in the entorhinal cortex.
Collapse
Affiliation(s)
- Daniel W Sparks
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| | - C Andrew Chapman
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
31
|
|
32
|
Abstract
The hippocampal local field potential (LFP) shows three major types of rhythms: theta, sharp wave-ripples and gamma. These rhythms are defined by their frequencies, they have behavioural correlates in several species including rats and humans, and they have been proposed to carry out distinct functions in hippocampal memory processing. However, recent findings have challenged traditional views on these behavioural functions. In this Review, I discuss our current understanding of the origins and the mnemonic functions of hippocampal theta, sharp wave-ripples and gamma rhythms on the basis of findings from rodent studies. In addition, I present an updated synthesis of their roles and interactions within the hippocampal network.
Collapse
Affiliation(s)
- Laura Lee Colgin
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
33
|
Rabiller G, He JW, Nishijima Y, Wong A, Liu J. Perturbation of Brain Oscillations after Ischemic Stroke: A Potential Biomarker for Post-Stroke Function and Therapy. Int J Mol Sci 2015; 16:25605-40. [PMID: 26516838 PMCID: PMC4632818 DOI: 10.3390/ijms161025605] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/08/2023] Open
Abstract
Brain waves resonate from the generators of electrical current and propagate across brain regions with oscillation frequencies ranging from 0.05 to 500 Hz. The commonly observed oscillatory waves recorded by an electroencephalogram (EEG) in normal adult humans can be grouped into five main categories according to the frequency and amplitude, namely δ (1-4 Hz, 20-200 μV), θ (4-8 Hz, 10 μV), α (8-12 Hz, 20-200 μV), β (12-30 Hz, 5-10 μV), and γ (30-80 Hz, low amplitude). Emerging evidence from experimental and human studies suggests that groups of function and behavior seem to be specifically associated with the presence of each oscillation band, although the complex relationship between oscillation frequency and function, as well as the interaction between brain oscillations, are far from clear. Changes of brain oscillation patterns have long been implicated in the diseases of the central nervous system including ischemic stroke, in which the reduction of cerebral blood flow as well as the progression of tissue damage have direct spatiotemporal effects on the power of several oscillatory bands and their interactions. This review summarizes the current knowledge in behavior and function associated with each brain oscillation, and also in the specific changes in brain electrical activities that correspond to the molecular events and functional alterations observed after experimental and human stroke. We provide the basis of the generations of brain oscillations and potential cellular and molecular mechanisms underlying stroke-induced perturbation. We will also discuss the implications of using brain oscillation patterns as biomarkers for the prediction of stroke outcome and therapeutic efficacy.
Collapse
Affiliation(s)
- Gratianne Rabiller
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux 33000, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux 33000, France.
| | - Ji-Wei He
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Aaron Wong
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Rice University, 6100 Main St, Houston, TX 77005, USA.
| | - Jialing Liu
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
| |
Collapse
|
34
|
Unit Activity of Hippocampal Interneurons before Spontaneous Seizures in an Animal Model of Temporal Lobe Epilepsy. J Neurosci 2015; 35:6600-18. [PMID: 25904809 DOI: 10.1523/jneurosci.4786-14.2015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanisms of seizure initiation are unclear. To evaluate the possible roles of inhibitory neurons, unit recordings were obtained in the dentate gyrus, CA3, CA1, and subiculum of epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Most interneurons in the dentate gyrus, CA1, and subiculum increased their firing rate before seizures, and did so with significant consistency from seizure to seizure. Identification of CA1 interneuron subtypes based on firing characteristics during theta and sharp waves suggested that a parvalbumin-positive basket cell and putative bistratified cells, but not oriens lacunosum moleculare cells, were activated preictally. Preictal changes occurred much earlier than those described by most previous in vitro studies. Preictal activation of interneurons began earliest (>4 min before seizure onset), increased most, was most prevalent in the subiculum, and was minimal in CA3. Preictal inactivation of interneurons was most common in CA1 (27% of interneurons) and included a putative ivy cell and parvalbumin-positive basket cell. Increased or decreased preictal activity correlated with whether interneurons fired faster or slower, respectively, during theta activity. Theta waves were more likely to occur before seizure onset, and increased preictal firing of subicular interneurons correlated with theta activity. Preictal changes by other hippocampal interneurons were largely independent of theta waves. Within seconds of seizure onset, many interneurons displayed a brief pause in firing and a later, longer drop that was associated with reduced action potential amplitude. These findings suggest that many interneurons inactivate during seizures, most increase their activity preictally, but some fail to do so at the critical time before seizure onset.
Collapse
|
35
|
Sakimoto Y, Sakata S. Behavioral inhibition during a conflict state elicits a transient decline in hippocampal theta power. Behav Brain Res 2015; 290:70-6. [PMID: 25930218 DOI: 10.1016/j.bbr.2015.03.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 03/22/2015] [Accepted: 03/26/2015] [Indexed: 11/26/2022]
Abstract
Although it has been shown that hippocampal theta power transiently declines during response inhibition in a simultaneous feature negative (FN: A+, AB-) task, observations of additional changes after this initial decline have been inconsistent across subjects. We hypothesized that the cause of these inconsistencies might be that variations in the learning speed for the FN task differentially affect the changes in hippocampal theta activity observed during the task. In this study, we classified rats into three groups (fast, intermediate, and slow FN-learning groups) based on the number of sessions required to complete learning of the FN task. We then examined whether there was a difference in hippocampal theta power among the fast, intermediate, and slow FN-learning groups, and rats that learned a simple discrimination task (SD group). We observed that compared to the SD group, the slow FN-learning group, but not the fast FN-learning group, showed an increase in hippocampal theta power. In addition, a transient decline of hippocampal theta power occurred in the fast FN-learning group, but not in the slow FN-learning group. These results indicate that the hippocampal theta activity during response inhibition in the FN task differed between fast- and slow-learning rats. Thus, we propose that a difference in learning speed affected hippocampal theta activity during response inhibition under a conflict state.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| | - Shogo Sakata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
36
|
Hasselmo ME, Stern CE. Current questions on space and time encoding. Hippocampus 2015; 25:744-52. [PMID: 25786389 DOI: 10.1002/hipo.22454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 01/18/2023]
Abstract
The Nobel Prize in Physiology or Medicine 2014 celebrated the groundbreaking findings on place cells and grid cells by John O'Keefe and May-Britt Moser and Edvard Moser. These findings provided an essential foothold for understanding the cognitive encoding of space and time in episodic memory function. This foothold provides a closer view of a broad new world of important research questions raised by the phenomena of place cells and grid cells. These questions concern the mechanisms of generation of place and grid cell firing, including sensory influences, circuit dynamics and intrinsic properties. Similar questions concern the generation of time cells. In addition, questions concern the functional role of place cells, grid cells and time cells in mediating goal-directed behavior and episodic memory function.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Systems Neuroscience, Center for Memory and Brain, Department of Psychological and Brain Sciences and Graduate Program for Neuroscience, Boston University, Boston, Massachusetts
| | - Chantal E Stern
- Center for Systems Neuroscience, Center for Memory and Brain, Department of Psychological and Brain Sciences and Graduate Program for Neuroscience, Boston University, Boston, Massachusetts
| |
Collapse
|
37
|
Craig MT, McBain CJ. Navigating the circuitry of the brain's GPS system: Future challenges for neurophysiologists. Hippocampus 2015; 25:736-43. [PMID: 25786788 DOI: 10.1002/hipo.22456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 01/08/2023]
Abstract
The discovery of the brain's navigation system creates a compelling challenge for neurophysiologists: how do we map the circuitry of a system that can only be definitively identified in awake, behaving animals? Do grid and border cells in the entorhinal cortex correspond to the two classes of principal cell found there, stellate and pyramidal cells? In the hippocampus, does the diversity seen in pyramidal cell subtypes have functional correlates in the place cell system? How do interneurons regulate the activity of spatially tuned principal cells in the hippocampal and entorhinal circuits? Here, we discuss recent literature relating the cellular circuitry of these circuits to in vivo studies of the brain's navigation system, and the role that interneurons have in regulating the activity of principal cells in these circuits. We propose that studying in vitro models of neuronal oscillations in the entorhinal cortex and hippocampus can provide useful insights for bridging the gap in understanding that exists in relating in vivo and behavioral studies to circuit function at the cellular level.
Collapse
Affiliation(s)
- Michael T Craig
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Chris J McBain
- Program in Developmental Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
38
|
Martínez-Bellver S, Cervera-Ferri A, Martínez-Ricós J, Ruiz-Torner A, Luque-Garcia A, Luque-Martinez A, Blasco-Serra A, Guerrero-Martínez J, Bataller-Mompeán M, Teruel-Martí V. Regular theta-firing neurons in the nucleus incertus during sustained hippocampal activation. Eur J Neurosci 2015; 41:1049-67. [PMID: 25817317 DOI: 10.1111/ejn.12884] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/03/2015] [Accepted: 02/26/2015] [Indexed: 11/28/2022]
Abstract
This paper describes the existence of theta-coupled neuronal activity in the nucleus incertus (NI). Theta rhythm is relevant for cognitive processes such as spatial navigation and memory processing, and can be recorded in a number of structures related to the hippocampal activation including the NI. Strong evidence supports the role of this tegmental nucleus in neural circuits integrating behavioural activation with the hippocampal theta rhythm. Theta oscillations have been recorded in the local field potential of the NI, highly coupled to the hippocampal waves, although no rhythmical activity has been reported in neurons of this nucleus. The present work analyses the neuronal activity in the NI in conditions leading to sustained hippocampal theta in the urethane-anaesthetised rat, in order to test whether such activation elicits a differential firing pattern. Wavelet analysis has been used to better define the neuronal activity already described in the nucleus, i.e., non-rhythmical neurons firing at theta frequency (type I neurons) and fast-firing rhythmical neurons (type II). However, the most remarkable finding was that sustained stimulation activated regular-theta neurons (type III), which were almost silent in baseline conditions and have not previously been reported. Thus, we describe the electrophysiological properties of type III neurons, focusing on their coupling to the hippocampal theta. Their spike rate, regularity and phase locking to the oscillations increased at the beginning of the stimulation, suggesting a role in the activation or reset of the oscillation. Further research is needed to address the specific contribution of these neurons to the entire circuit.
Collapse
Affiliation(s)
- Sergio Martínez-Bellver
- Departamento de Anatomia y Embriología Humana, Facultad de Medicina, Universitat de València, Avd. Blasco Ibañez, 15, 46010, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy. J Neurosci 2015; 34:16671-87. [PMID: 25505320 DOI: 10.1523/jneurosci.0584-14.2014] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Previous studies suggest that spontaneous seizures in patients with temporal lobe epilepsy might be preceded by increased action potential firing of hippocampal neurons. Preictal activity is potentially important because it might provide new opportunities for predicting when a seizure is about to occur and insight into how spontaneous seizures are generated. We evaluated local field potentials and unit activity of single, putative excitatory neurons in the subiculum, CA1, CA3, and dentate gyrus of the dorsal hippocampus in epileptic pilocarpine-treated rats as they experienced spontaneous seizures. Average action potential firing rates of neurons in the subiculum, CA1, and dentate gyrus, but not CA3, increased significantly and progressively beginning 2-4 min before locally recorded spontaneous seizures. In the subiculum, CA1, and dentate gyrus, but not CA3, 41-57% of neurons displayed increased preictal activity with significant consistency across multiple seizures. Much of the increased preictal firing of neurons in the subiculum and CA1 correlated with preictal theta activity, whereas preictal firing of neurons in the dentate gyrus was independent of theta. In addition, some CA1 and dentate gyrus neurons displayed reduced firing rates preictally. These results reveal that different hippocampal subregions exhibit differences in the extent and potential underlying mechanisms of preictal activity. The finding of robust and significantly consistent preictal activity of subicular, CA1, and dentate neurons in the dorsal hippocampus, despite the likelihood that many seizures initiated in other brain regions, suggests the existence of a broader neuronal network whose activity changes minutes before spontaneous seizures initiate.
Collapse
|
40
|
GABAergic projections from the medial septum selectively inhibit interneurons in the medial entorhinal cortex. J Neurosci 2015; 34:16739-43. [PMID: 25505326 DOI: 10.1523/jneurosci.1612-14.2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The medial septum (MS) is required for theta rhythmic oscillations and grid cell firing in the medial entorhinal cortex (MEC). While GABAergic, glutamatergic, and cholinergic neurons project from the MS to the MEC, their synaptic targets are unknown. To investigate whether MS neurons innervate specific layers and cell types in the MEC, we expressed channelrhodopsin-2 in mouse MS neurons and used patch-clamp recording in brain slices to determine the response to light activation of identified cells in the MEC. Following activation of MS axons, we observed fast monosynaptic GABAergic IPSPs in the majority (>60%) of fast-spiking (FS) and low-threshold-spiking (LTS) interneurons in all layers of the MEC, but in only 1.5% of nonstellate principal cells (NSPCs) and in no stellate cells. We also observed fast glutamatergic responses to MS activation in a minority (<5%) of NSPCs, FS, and LTS interneurons. During stimulation of MS inputs at theta frequency (10 Hz), the amplitude of GABAergic IPSPs was maintained, and spike output from LTS and FS interneurons was entrained at low (25-60 Hz) and high (60-180 Hz) gamma frequencies, respectively. By demonstrating cell type-specific targeting of the GABAergic projection from the MS to the MEC, our results support the idea that the MS controls theta frequency activity in the MEC through coordination of inhibitory circuits.
Collapse
|
41
|
Sakimoto Y, Sakata S. Change in hippocampal theta activity during behavioral inhibition for a stimulus having an overlapping element. Behav Brain Res 2014; 282:111-6. [PMID: 25549854 DOI: 10.1016/j.bbr.2014.12.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 11/18/2022]
Abstract
It is believed that a decline in hippocampal theta power is induced by response inhibition for a conflict stimulus having an overlapping element. This study used a simultaneous feature positive (simul FP: A-, AX+) task and a serial FP (A-, X→A+) task. In these tasks, the compound and single stimuli have an overlapping element, and rats are required to exhibit response inhibition for the single stimulus A. We examined hippocampal theta activity during simul FP (A-, AX+), serial FP (A-, X→A+), and simple discrimination (SD; A-, X+) tasks and revealed that the transient decrease in hippocampal theta power occurred during response inhibition for the single stimulus A in simul FP tasks, which provides evidence that a transient decline in hippocampal theta power is induced by behavioral inhibition of conflict stimuli having an overlapping element. Thus, we concluded that the transient decline in hippocampal theta power was induced by behavioral inhibition for the conflict stimulus having an overlapping element.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| | - Shogo Sakata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan.
| |
Collapse
|
42
|
Newman EL, Hasselmo ME. Grid cell firing properties vary as a function of theta phase locking preferences in the rat medial entorhinal cortex. Front Syst Neurosci 2014; 8:193. [PMID: 25352787 PMCID: PMC4196519 DOI: 10.3389/fnsys.2014.00193] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/22/2014] [Indexed: 12/11/2022] Open
Abstract
Theta rhythmic fluctuations in the hippocampal–entorhinal circuit are believed to reflect rapid transitions between modes of mnemonic processing. Specifically, activity at the trough and peak of CA1 pyramidal layer theta is thought to correspond to retrieval and encoding related processing, respectively. Spatially tuned “grid cells” in layers II and III of the medial entorhinal cortex preferentially spike during the trough and peak phases of theta, respectively. Such differences suggest differential involvement of these layers to the processes of retrieval and encoding. It remains unknown, however, if the properties of grid cells that spike preferentially at the trough vs. the peak of theta differ systematically. Such putative differences would offer insights into the differential processing that occurs during these two phases. The goal of the present work was to contrast these types of grid cells. We found that significant functional dissociations do exist: trough locked grid cells carried more spatial information, had a higher degree of head direction tuning, and were more likely to phase precess. Thus, grid cells that activate during the putative retrieval phase of theta (trough) have a greater degree of location, orientation, and temporal tuning specificity relative to grid cells that activate during the putative encoding phase (peak), potentially reflecting the influence of the retrieved content. Additionally, trough locked grid cells had a lower average firing rate, were more likely to burst, and were less phase locked to high-gamma (∼80 Hz). Further analyses revealed they had different waveforms profiles and that systemic blockade of muscarinic acetylcholine receptors reduced the spatial tuning of both types, although these differences were only significant for the peak locked grid cells. These differences suggest that trough and peak locked grid cells are distinct populations of neurons.
Collapse
Affiliation(s)
- Ehren L Newman
- Center for Memory and Brain, Department of Psychological and Brain Sciences, Boston University, Boston, MA USA
| | - Michael E Hasselmo
- Center for Memory and Brain, Department of Psychological and Brain Sciences, Boston University, Boston, MA USA
| |
Collapse
|
43
|
A neural mass model of place cell activity: theta phase precession, replay and imagination of never experienced paths. J Comput Neurosci 2014; 38:105-27. [PMID: 25284339 DOI: 10.1007/s10827-014-0533-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 10/24/2022]
Abstract
Recent results on hippocampal place cells show that the replay of behavioral sequences does not simply reflect previously experienced trajectories, but may also occur in the reverse direction, or may even include never experienced paths. In order to elucidate the possible mechanisms at the basis of this phenomenon, we have developed a model of sequence learning. The present model consists of two layers of place cell units. Long-range connections among units implement heteroassociation between the two layers, trained with a temporal Hebb rule. The network was trained assuming that a virtual rat moves within a virtual maze. This training leads to the formation of bidirectional synapses between the two layers, i.e. synapses connecting a neuron both with its previous and subsequent element in the path. Subsequently, two distinct conditions were simulated with the trained network. During an exploratory phase, characterized by a similar consideration to the external environment and to the internal representation, the model simulates the occurrence of theta precession in the forward path and the temporal compression. During an imagination phase, when there is no consideration to the external location, the model produces trains of gamma oscillations, without the presence of a theta rhythm, and simulates the occurrence of both direct and reverse replay, and the imagination of never experienced paths. The new paths are built by combining bunches of previous trajectories. The main mechanisms at the basis of this behavior are explained in detail, and lines for future improvements (e.g., to simulate preplay) are discussed.
Collapse
|
44
|
Sakimoto Y, Sakata S. Hippocampal theta activity during behavioral inhibition for conflicting stimuli. Behav Brain Res 2014; 275:183-90. [PMID: 25218872 DOI: 10.1016/j.bbr.2014.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 08/26/2014] [Accepted: 08/30/2014] [Indexed: 11/18/2022]
Abstract
A recent behavioral inhibitory theory proposed that the hippocampus plays an important role in response inhibition to conflicting stimuli composed of simple inhibitory associations between events embedded in concurrent simple excitatory associations. In addition, the theory states that a serial feature negative (FN) task is a hippocampal-dependent task requiring the formation of a simple inhibitory association; on the other hand, a simple discrimination (SD) task is a typical hippocampus-independent task. In the present study, we recorded hippocampal theta activity from rats during FN and SD tasks to identify any potential differences. In the FN (A+, B→A-) task used in this study, rats were required to press a lever to present stimulus A (A+) and avoid pressing a lever to present a serial compound stimulus (B→A-). In the simple discrimination task (A+, B-), rats were required to press a lever to present stimulus A (A+) and avoid pressing a lever to present stimulus B (B-). We observed a transient decline of hippocampal theta power during response inhibition for a serial compound stimulus in the FN task. Thus, we conclude that the transient decline in hippocampal theta power reflects response inhibition for a conflicting stimulus. The results of the present study strongly support the behavioral inhibition theory.
Collapse
Affiliation(s)
- Yuya Sakimoto
- Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan.
| | - Shogo Sakata
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
45
|
Colgin LL. Theta-gamma coupling in the entorhinal-hippocampal system. Curr Opin Neurobiol 2014; 31:45-50. [PMID: 25168855 DOI: 10.1016/j.conb.2014.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/10/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
For decades, theta rhythms (∼5-10Hz) have been thought to play a critical role in memory processing in the entorhinal-hippocampal network. However, recent evidence suggests that successful memory performance also requires coupling of ∼30-100Hz gamma rhythms to particular phases of the theta cycle. Recent insights imply ways in which theta-gamma coupling may facilitate transfer of information throughout the entorhinal-hippocampal network. Activating gamma-modulated cell assemblies at a particular theta phase may allow the network to produce a more powerful output by ensuring that distributed cells fire closely in time. I hypothesize that such a mechanism would serve to facilitate either memory encoding or memory retrieval, depending on which type of gamma rhythms are recruited.
Collapse
Affiliation(s)
- Laura Lee Colgin
- Center for Learning and Memory, Department of Neuroscience, The University of Texas at Austin, 1 University Station Stop C7000, Austin, TX 78712, USA.
| |
Collapse
|
46
|
Sparks DW, Chapman CA. Contribution of Ih to the relative facilitation of synaptic responses induced by carbachol in the entorhinal cortex during repetitive stimulation of the parasubiculum. Neuroscience 2014; 278:81-92. [PMID: 25130557 DOI: 10.1016/j.neuroscience.2014.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/31/2014] [Accepted: 08/07/2014] [Indexed: 11/16/2022]
Abstract
Neurons in the superficial layers of the entorhinal cortex provide the hippocampus with the majority of its cortical sensory input, and also receive the major output projection from the parasubiculum. This puts the parasubiculum in a position to modulate the activity of entorhinal neurons that project to the hippocampus. These brain areas receive cholinergic projections that are active during periods of theta- and gamma-frequency electroencephalographic (EEG) activity. The purpose of this study was to investigate how cholinergic receptor activation affects the strength of repetitive synaptic responses at these frequencies in the parasubiculo-entorhinal pathway and the cellular mechanisms involved. Whole-cell patch-clamp recordings of rat layer II medial entorhinal neurons were conducted using an acute slice preparation, and responses to 5-pulse trains of stimulation at theta- and gamma-frequency delivered to the parasubiculum were recorded. The cholinergic agonist carbachol (CCh) suppressed the amplitude of single synaptic responses, but also produced a relative facilitation of synaptic responses evoked during stimulation trains. The N-methyl-d-aspartate (NMDA) glutamate receptor blocker APV did not significantly reduce the relative facilitation effect. However, the hyperpolarization-activated cationic current (Ih) channel blocker ZD7288 mimicked the relative facilitation induced by CCh, suggesting that CCh-induced inhibition of Ih could produce the effect by increasing dendritic input resistance (Rin). Inward-rectifying and leak K(+) currents are known to interact with Ih to affect synaptic excitability. Application of the K(+) channel antagonist Ba(2+) depolarized neurons and enhanced temporal summation, but did not block further facilitation of train-evoked responses by ZD7288. The Ih-dependent facilitation of synaptic responses can therefore occur during reductions in inward-rectifying potassium current (IKir) associated with dendritic depolarization. Thus, in addition to cholinergic reductions in transmitter release that are known to facilitate train-evoked responses, these findings emphasize the role of inhibition of Ih in the integration of synaptic inputs within the entorhinal cortex during cholinergically-induced oscillatory states, likely due to enhanced summation of excitatory postsynaptic potentials (EPSPs) induced by increases in dendritic Rin.
Collapse
Affiliation(s)
- D W Sparks
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada
| | - C A Chapman
- Centre for Studies in Behavioural Neurobiology, Department of Psychology, Concordia University, Montréal, Québec H4B 1R6, Canada.
| |
Collapse
|
47
|
Economo MN, Martínez JJ, White JA. Membrane potential-dependent integration of synaptic inputs in entorhinal stellate neurons. Hippocampus 2014; 24:1493-505. [PMID: 25044927 DOI: 10.1002/hipo.22329] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2014] [Indexed: 11/06/2022]
Abstract
Stellate cells (SCs) of the medial entorhinal cortex exhibit robust spontaneous membrane-potential oscillations (MPOs) in the theta (4-12 Hz) frequency band as well as theta-frequency resonance in their membrane impedance spectra. Past experimental and modeling work suggests that these features may contribute to the phase-locking of SCs to the entorhinal theta rhythm and may be important for forming the hexagonally tiled grid cell place fields exhibited by these neurons in vivo. Among the major biophysical mechanisms contributing to MPOs is a population of persistent (non-inactivating or slowly inactivating) sodium channels. The resulting persistent sodium conductance (GNaP ) gives rise to an apparent increase in input resistance as the cell approaches threshold. In this study, we used dynamic clamp to test the hypothesis that this increased input resistance gives rise to voltage-dependent, and thus MPO phase-dependent, changes in the amplitude of excitatory and inhibitory post-synaptic potential (PSP) amplitudes. We find that PSP amplitude depends on membrane potential, exhibiting a 5-10% increase in amplitude per mV depolarization. The effect is larger than-and sums quasi-linearly with-the effect of the synaptic driving force, V - Esyn . Given that input-driven MPOs 10 mV in amplitude are commonly observed in MEC stellate cells in vivo, this voltage- and phase-dependent synaptic gain is large enough to modulate PSP amplitude by over 50% during theta-frequency MPOs. Phase-dependent synaptic gain may therefore impact the phase locking and phase precession of grid cells in vivo to ongoing network oscillations. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael N Economo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Department of Bioengineering, Brain Institute, University of Utah, Salt Lake City, Utah
| | | | | |
Collapse
|
48
|
Cholinergic blockade reduces theta-gamma phase amplitude coupling and speed modulation of theta frequency consistent with behavioral effects on encoding. J Neurosci 2014; 33:19635-46. [PMID: 24336727 DOI: 10.1523/jneurosci.2586-13.2013] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Large-scale neural activation dynamics in the hippocampal-entorhinal circuit local field potential, observable as theta and gamma rhythms and coupling between these rhythms, is predictive of encoding success. Behavioral studies show that systemic administration of muscarinic acetylcholine receptor antagonists selectively impairs encoding, suggesting that they may also disrupt the coupling between the theta and gamma bands. Here, we tested the hypothesis that muscarinic antagonists selectively disrupt coupling between theta and gamma. Specifically, we characterized the effects of systemically administered scopolamine on movement-induced theta and gamma rhythms recorded in the superficial layers of the medial entorhinal cortex (MEC) of freely moving rats. We report the novel result that gamma power at the peak of theta was most reduced following muscarinic blockade, significantly shifting the phase of maximal gamma power to occur at later phases of theta. We also characterize the existence of multiple distinct gamma bands in the superficial layers of the MEC. Further, we observed that theta frequency was significantly less modulated by movement speed following muscarinic blockade. Finally, the slope relating speed to theta frequency, a correlate of familiarity with a testing enclosure, increased significantly less between the preinjection and recovery trials when scopolamine was administered during the intervening injection session than when saline was administered, suggesting that scopolamine reduced encoding of the testing enclosure. These data are consistent with computational models suggesting that encoding and retrieval occur during the peak and trough of theta, respectively, and support the theory that acetylcholine regulates the balance between encoding versus retrieval.
Collapse
|
49
|
Hasselmo ME. Neuronal rebound spiking, resonance frequency and theta cycle skipping may contribute to grid cell firing in medial entorhinal cortex. Philos Trans R Soc Lond B Biol Sci 2013; 369:20120523. [PMID: 24366135 DOI: 10.1098/rstb.2012.0523] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Data show a relationship of cellular resonance and network oscillations in the entorhinal cortex to the spatial periodicity of grid cells. This paper presents a model that simulates the resonance and rebound spiking properties of entorhinal neurons to generate spatial periodicity dependent upon phasic input from medial septum. The model shows that a difference in spatial periodicity can result from a difference in neuronal resonance frequency that replicates data from several experiments. The model also demonstrates a functional role for the phenomenon of theta cycle skipping in the medial entorhinal cortex.
Collapse
Affiliation(s)
- Michael E Hasselmo
- Center for Memory and Brain, Department of Psychology and Graduate Program for Neuroscience, Boston University, , 2 Cummington St., Boston, MA 02215, USA
| |
Collapse
|
50
|
The decline in rat hippocampal theta activity during response inhibition for the compound stimulus of negative patterning and simultaneous feature-negative tasks. Behav Brain Res 2013; 257:111-7. [PMID: 24045064 DOI: 10.1016/j.bbr.2013.09.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/03/2013] [Accepted: 09/07/2013] [Indexed: 11/24/2022]
Abstract
In experiment 1 of this study, we compared hippocampal theta activity between negative patterning and simple discrimination tasks. Our results demonstrated a transient decline in theta activity during response inhibition for a compound stimulus in the negative patterning task. In experiment 2 of this study, we compared hippocampal theta activity among simultaneous feature-negative, compound stimulus discrimination, and simple discrimination tasks in order to determine the cause of the decline in hippocampal theta activity during negative patterning tasks. Our results revealed that the decline in hippocampal theta activity occurred during the response inhibition for a compound stimulus in the simultaneous feature-negative task but not during the compound stimulus discrimination or simple discrimination tasks. Thus, we conclude that the transient decline in hippocampal theta activity is related to the inhibition in response to a compound stimulus that has an element that overlaps with a single stimulus.
Collapse
|