1
|
Van de Bittner GC, Riley MM, Cao L, Ehses J, Herrick SP, Ricq EL, Wey HY, O’Neill MJ, Ahmed Z, Murray TK, Smith JE, Wang C, Schroeder FA, Albers MW, Hooker JM. Nasal neuron PET imaging quantifies neuron generation and degeneration. J Clin Invest 2017; 127:681-694. [PMID: 28112682 PMCID: PMC5272198 DOI: 10.1172/jci89162] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
Olfactory dysfunction is broadly associated with neurodevelopmental and neurodegenerative diseases and predicts increased mortality rates in healthy individuals. Conventional measurements of olfactory health assess odor processing pathways within the brain and provide a limited understanding of primary odor detection. Quantification of the olfactory sensory neurons (OSNs), which detect odors within the nasal cavity, would provide insight into the etiology of olfactory dysfunction associated with disease and mortality. Notably, OSNs are continually replenished by adult neurogenesis in mammals, including humans, so OSN measurements are primed to provide specialized insights into neurological disease. Here, we have evaluated a PET radiotracer, [11C]GV1-57, that specifically binds mature OSNs and quantifies the mature OSN population in vivo. [11C]GV1-57 monitored native OSN population dynamics in rodents, detecting OSN generation during postnatal development and aging-associated neurodegeneration. [11C]GV1-57 additionally measured rates of neuron regeneration after acute injury and early-stage OSN deficits in a rodent tauopathy model of neurodegenerative disease. Preliminary assessment in nonhuman primates suggested maintained uptake and saturable binding of [18F]GV1-57 in primate nasal epithelium, supporting its translational potential. Future applications for GV1-57 include monitoring additional diseases or conditions associated with olfactory dysregulation, including cognitive decline, as well as monitoring effects of neuroregenerative or neuroprotective therapeutics.
Collapse
Affiliation(s)
| | - Misha M. Riley
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | - Luxiang Cao
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Janina Ehses
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | - Scott P. Herrick
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Emily L. Ricq
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Hsiao-Ying Wey
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | - Michael J. O’Neill
- Eli Lilly and Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, United Kingdom
| | - Zeshan Ahmed
- Eli Lilly and Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, United Kingdom
| | - Tracey K. Murray
- Eli Lilly and Co. Ltd., Lilly Research Centre, Erl Wood Manor, Windlesham, Surrey, United Kingdom
| | - Jaclyn E. Smith
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| | | | - Mark W. Albers
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, and
| |
Collapse
|
2
|
Weiler E, Benali A. Olfactory epithelia differentially express neuronal markers. ACTA ACUST UNITED AC 2006; 34:217-40. [PMID: 16841165 DOI: 10.1007/s11068-005-8355-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 02/17/2006] [Accepted: 03/02/2006] [Indexed: 01/09/2023]
Abstract
All three olfactory epithelia, the olfactory epithelium proper (OE), the septal organ of Masera (SO), and the vomeronasal organ of Jacobson (VNO) originate from the olfactory placode. Here, their diverse neurochemical phenotypes were analyzed using the immunohistochemical expression pattern of different neuronal markers. The olfactory bulb (OB) served as neuronal control. Neuronal Nuclei Marker (NeuN) is neither expressed in sensory neurons in any of the three olfactory epithelia, nor in relay neurons (mitral/tufted cells) of the OB. However, OB interneurons (periglomerular/granule cells) labeled, as did supranuclear structures of VNO supporting cells and VNO glands. Protein Gene Product 9.5 (PGP9.5 = C-terminal ubiquitin hydrolase L1 = UCHL1) expression is exactly the opposite: all olfactory sensory neurons express PGP9.5 as do OB mitral/tufted cells but not interneurons. Neuron Specific Enolase (NSE) expression is highest in the most apically located OE and SO sensory neurons and patchy in VNO. In contrast, the cytoplasm of the most basally located neurons of OE and SO immunoreacted for Growth Associated Protein 43 (GAP-43/B50). In VNO neurons GAP-43 labeling is also nuclear. In the cytoplasm, Olfactory Marker Protein (OMP) is most intensely expressed in SO, followed by OE and least in VNO neurons; further, OMP is also expressed in the nucleus of basally located VNO neurons. OB mitral/tufted cells express OMP at low levels. Neurons closer to respiratory epithelium often expressed a higher level of neuronal markers, suggesting a role of those markers for neuronal protection against take-over. Within the VNO the neurons show clear apical-basal expression diversity, as they do for factors of the signal transduction cascade. Overall, expression patterns of the investigated neuronal markers suggest that OE and SO are more similar to each other than to VNO.
Collapse
Affiliation(s)
- Elke Weiler
- Department of Neurophysiology, Ruhr-University Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | | |
Collapse
|
3
|
Koo JH, Gill S, Pannell LK, Menco BPM, Margolis JW, Margolis FL. The interaction of Bex and OMP reveals a dimer of OMP with a short half-life. J Neurochem 2004; 90:102-16. [PMID: 15198671 DOI: 10.1111/j.1471-4159.2004.02463.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Olfactory marker protein (OMP) participates in the olfactory signal transduction pathway. This is evident from the behavioral and electrophysiological deficits of OMP-null mice, which can be reversed by intranasal infection of olfactory sensory neurons with an OMP-expressing adenovirus. Bex, brain expressed X-linked protein, has been identified as a protein that interacts with OMP. We have now further characterized the interaction of OMP and Bex1/2 by in vitro binding assays and by immuno-coprecipitation experiments. OMP is a 19 kDa protein but these immunoprecipitation studies have revealed the unexpected presence of a 38 kDa band in addition to the expected 19 kDa band. Furthermore, the 38 kDa form was preferentially co-immunoprecipitated with Bex from cell extracts. In-gel tryptic digestion, mass spectrometry, and two-dimensional gel electrophoresis indicate that the 38 kDa protein behaves as a covalently cross-linked OMP-homodimer. The 38 kDa band was also identified in western blots of olfactory epithelium demonstrating its presence in vivo. The stabilities and subcellular localizations of the OMP-monomer and -dimer were studied in transfected cells. These results demonstrated that the OMP-dimer is much less stable than the monomer, and that while the monomer is present both in the nuclear and cytosolic compartments, the dimer is preferentially located in a Triton X-100 insoluble cytoskeletal fraction. These novel observations led us to hypothesize that regulation of the level of the rapidly turning-over OMP-dimer and its interaction with Bex1/2 is critical for OMP function in sensory transduction.
Collapse
Affiliation(s)
- Jae Hyung Koo
- Department of Anatomy & Neurobiology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
4
|
Yasuno H, Fukazawa K, Fukuoka T, Kondo E, Sakagami M, Noguchi K. Nerve growth factor applied onto the olfactory epithelium alleviates degenerative changes of the olfactory receptor neurons following axotomy. Brain Res 2000; 887:53-62. [PMID: 11134589 DOI: 10.1016/s0006-8993(00)02966-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The olfactory neuroepithelium of the mammalian nervous system manifests continuous neurogenesis throughout life. Recent studies suggest that neurotrophic factors and their receptors may play a role in the regulation of development and regeneration in the olfactory system. However, there have been very few in vivo studies investigating the effect of exogenous neurotrophic factors in the olfactory system. In the present study, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) were administered into the rat olfactory mucosa for 5 days just after the transection of the olfactory nerve. We then examined the effect of exogenous neurotrophic factors on the degenerative changes in axotomized olfactory receptor neurons (ORNs). Further, we examined the location of their receptors, Trk A and Trk B. We found that both mature and immature ORNs expressed more intense signals for olfactory marker protein and beta-tubulin mRNAs, respectively, when NGF was applied to the axotomized olfactory neuroepithelium for 5 days, compared to the ORNs of saline-treated controls. BDNF at a 10 microg total dose did not show this effect. The effect of NGF applied onto the olfactory epithelium is consistent with the immunohistochemical finding that Trk A was present in the dendrites and axon bundles in normal and axotomized ORNs. These results suggest that NGF may protect the degenerative changes in mature and immature ORNs following axotomy through the binding to the Trk A receptor located on the surface of the olfactory epithelium.
Collapse
Affiliation(s)
- H Yasuno
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 663-8501, Hyogo, Japan
| | | | | | | | | | | |
Collapse
|
5
|
Abstract
Several studies have demonstrated that contact between the olfactory nerve and the forebrain is critical for normal olfactory bulb development. Removal of the embryonic olfactory placode results in a failure of the olfactory bulb to form, as well as causing other forebrain malformations. The current study introduces a technique that permits removal of contact between specific regions of the olfactory nerve and the bulb early in development, without causing damage to other brain regions, and without removing the peripheral olfactory organ. The manipulation, which involves insertion of a small Teflon chip between the cribriform plate and the bulb, prohibits growth of new axons into the "shadow" region behind the implant. Focal denervation of the olfactory bulb causes a decrease in bulb and layer sizes, a reduction in mitral cell number, and changes to bulb architecture. Using a battery of antibodies (OMP, MAP2, TuJ1, calretinin, calbindin, parvalbumin, TH, and GAD), we further demonstrated that 1) focal denervation alters the relationship between the olfactory nerve and the bulb, 2) the fine structure of cells in denervated regions is disrupted, and 3) cellular phenotypes change in response to loss of afferent contact. These results suggest that contact between the olfactory nerve and the bulb is important for maintaining bulb architecture and cell survival, structure, and phenotype. They also point to focal denervation as a useful technique for examining the role of neural contact in olfactory development and maintenance of the central nervous system.
Collapse
Affiliation(s)
- J M Leo
- Program in Neuroscience, University of Virginia, Charlottesville 22903, USA
| | | | | |
Collapse
|
6
|
Goheen BL, Kott JN, Anderson NL, Kim A, Westrum LE. Host primary olfactory axons make synaptic contacts in a transplanted olfactory bulb. J Comp Neurol 1995; 352:203-12. [PMID: 7721990 DOI: 10.1002/cne.903520204] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Previous light microscopic studies have shown that host olfactory neurons are able to grow into a transplanted fetal olfactory bulb, and behavioral studies have shown that animals with transplanted olfactory bulbs recover functional olfactory abilities. We examined the olfactory bulb transplant at the ultrastructural level to determine whether synaptic contacts are reestablished between host olfactory neurons and donor olfactory bulb. Mature rats that, as neonates, had received embryonic olfactory bulb transplants following olfactory bulb removal were studied. An antibody specific for olfactory marker protein was used to identify the primary olfactory neurons; it was bound by a gold-conjugated secondary antibody for visualization. To preserve the antigenicity of the olfactory marker protein for immunolabeling, Lowicryl K4M hydrophilic resin was used. Synaptic contacts were unmistakable between labeled axons of host olfactory neurons and unlabeled processes within glomerulus-like areas of the transplanted olfactory bulb. The surrounding neuropil contained other elements similar to those found in normal tissue, including synaptic contacts between unlabeled profiles. We clearly show that the transplanted olfactory bulb exhibits sufficient plasticity to form an array of normal synaptic contacts, including the contacts from host primary olfactory neurons.
Collapse
Affiliation(s)
- B L Goheen
- Department of Neurological Surgery, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
7
|
Johnson EW, Eller PM, Jafek BW. An immuno-electron microscopic comparison of olfactory marker protein localization in the supranuclear regions of the rat olfactory epithelium and vomeronasal organ neuroepithelium. Acta Otolaryngol 1993; 113:766-71. [PMID: 8291436 DOI: 10.3109/00016489309135898] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immuno-electron microscopy was used to examine olfactory marker protein (OMP) ultrastructural localization in the supranuclear regions of the rat olfactory epithelium (OE) and vomeronasal organ (VNO) neuroepithelium. In the OE, OMP immuno-reaction product was observed within the cytoplasm of olfactory chemoreceptor cell dendrites, vesicles and cilia. Reaction product was absent from olfactory microvillar cells and their unique microvillar projections. In the neuroepithelium of the VNO, immuno-reaction product was seen within the dendrites of the chemoreceptor cells, and in the bases of their attached microvilli; the remaining distal portions of these microvilli were unlabeled. These results demonstrate a difference in the distribution of OMP immunoreactivity over the surfaces of the rat OE and VNO. They also show that OMP immunoreactivity does not exist in the rat olfactory microvillar cells.
Collapse
Affiliation(s)
- E W Johnson
- Department of Otolaryngology, University of Colorado Health Sciences Center, Denver
| | | | | |
Collapse
|
8
|
Valverde F, Heredia M, Santacana M. Characterization of neuronal cell varieties migrating from the olfactory epithelium during prenatal development in the rat. Immunocytochemical study using antibodies against olfactory marker protein (OMP) and luteinizing hormone-releasing hormone (LH-RH). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1993; 71:209-20. [PMID: 8491043 DOI: 10.1016/0165-3806(93)90173-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The development of neurons located outside the olfactory epithelium was studied by using antisera against olfactory marker protein (OMP) and luteinizing hormone-releasing hormone (LH-RH) in the rat. The study was restricted to the localization of these cells in the nasal cavity and in the region of the olfactory bulb during development. We describe groups of cells that stain positively for OMP located principally on the ventro-lateral aspect of the olfactory bulbs. A comparison is made with the LH-RH-immunoreactive system of cells which predominate on the medial aspect following the known trajectory of the nervus terminalis. OMP-immunoreactive cells appeared along the course of the olfactory fibers when they were first detected at embryonic day 16. These cells became restricted to a small group above the cribriform plate, ventral to the olfactory bulbs that seemed to disappear shortly after birth. It is concluded that these cells, which like the LH-RH cells have most probably migrated from the olfactory placode, represent a group of intervening neurons between the olfactory receptor cells and the olfactory bulb, serving as hints for olfactory axons to reach their targets during prenatal development.
Collapse
Affiliation(s)
- F Valverde
- Laboratorio de Neuroanatomía Comparada, Instituto Cajal CSIC, Madrid, Spain
| | | | | |
Collapse
|
9
|
Monti-Graziadei AG. Cell migration from the olfactory neuroepithelium of neonatal and adult rodents. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1992; 70:65-74. [PMID: 1473279 DOI: 10.1016/0165-3806(92)90104-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study reports the presence of olfactory cell clusters in postnatal and adult animals within the lamina propria of the olfactory mucosa and the nerve fiber layer of the olfactory bulb. The results obtained from mice and rats, partially or totally unilaterally bulbectomized, have been compared with observations in intact control animals. Light microscopic observation has shown that, in bulbectomized animals, the clusters are present in both experimental and normal sides and are usually associated with olfactory axon bundles. Moreover, when compared with intact animals, differences are present in terms of number of clusters and regions from where they originate. The morphological identity of the cells of the clusters with the globose basal cell of the olfactory neuroepithelium could be demonstrated with the electron microscope. By autoradiographic means, it was possible to show that they originate from the olfactory neurogenetic matrix and migrate along olfactory axon bundles. Interestingly, the migrating cells do not express olfactory marker protein. Altogether, these observations suggest that the olfactory matrix may be capable of originating neural elements other than olfactory receptor neurons.
Collapse
Affiliation(s)
- A G Monti-Graziadei
- Department of Biological Science, Florida State University Tallahassee 32306
| |
Collapse
|
10
|
|
11
|
|
12
|
Barber PC, Jensen S, Zimmer J. Differentiation of neurons containing olfactory marker protein in adult rat olfactory epithelium transplanted to the anterior chamber of the eye. Neuroscience 1982; 7:2687-95. [PMID: 7155346 DOI: 10.1016/0306-4522(82)90092-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Olfactory marker protein is a cytoplasmic component unique to fully-differentiated olfactory sensory neurons. It has been proposed that expression of this protein occurs only if the neurons make synaptic contact with the central nervous system. In the present experiments, adult olfactory epithelium was transplanted as an autograft to the anterior chamber of the eye. This procedure destroys the mature sensory neurons, which are subsequently replaced by division and differentiation of stem cells. The newly-formed sensory neurons differentiate sufficiently to produce olfactory marker protein, without apparently contacting central nervous tissue. We conclude that contact with the central nervous system is not necessary for expression of olfactory marker protein.
Collapse
|
13
|
Miragall F, Monti Graziadei GA. Experimental studies on the olfactory marker protein. II. Appearance of the olfactory marker protein during differentiation of the olfactory sensory neurons of mouse: an immunohistochemical and autoradiographic study. Brain Res 1982; 239:245-50. [PMID: 7046875 DOI: 10.1016/0006-8993(82)90846-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The time interval between the incorporation of [3H]thymidine and the appearance of olfactory marker protein (OMP) in autoradiographically labeled neurons which have differentiated from stem cells, has been determined by autoradiographic and immunohistochemical techniques. The first [3H]thymidine-labeled, OMP-containing elements have been observed 7 days after administration of the radioactive thymidine. This result allows some speculation on the potential function of the olfactory marker protein.
Collapse
|