1
|
Südhof TC. Towards an Understanding of Synapse Formation. Neuron 2018; 100:276-293. [PMID: 30359597 PMCID: PMC6226307 DOI: 10.1016/j.neuron.2018.09.040] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/10/2018] [Accepted: 09/25/2018] [Indexed: 12/17/2022]
Abstract
Synapses are intercellular junctions specialized for fast, point-to-point information transfer from a presynaptic neuron to a postsynaptic cell. At a synapse, a presynaptic terminal secretes neurotransmitters via a canonical release machinery, while a postsynaptic specialization senses neurotransmitters via diverse receptors. Synaptic junctions are likely organized by trans-synaptic cell-adhesion molecules (CAMs) that bidirectionally orchestrate synapse formation, restructuring, and elimination. Many candidate synaptic CAMs were described, but which CAMs are central actors and which are bystanders remains unclear. Moreover, multiple genes encoding synaptic CAMs were linked to neuropsychiatric disorders, but the mechanisms involved are unresolved. Here, I propose that engagement of multifarious synaptic CAMs produces parallel trans-synaptic signals that mediate the establishment, organization, and plasticity of synapses, thereby controlling information processing by neural circuits. Among others, this hypothesis implies that synapse formation can be understood in terms of inter- and intracellular signaling, and that neuropsychiatric disorders involve an impairment in such signaling.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology, Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Pinto MJ, Pedro JR, Costa RO, Almeida RD. Visualizing K48 Ubiquitination during Presynaptic Formation By Ubiquitination-Induced Fluorescence Complementation (UiFC). Front Mol Neurosci 2016; 9:43. [PMID: 27375430 PMCID: PMC4901079 DOI: 10.3389/fnmol.2016.00043] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022] Open
Abstract
In recent years, signaling through ubiquitin has been shown to be of great importance for normal brain development. Indeed, fluctuations in ubiquitin levels and spontaneous mutations in (de)ubiquitination enzymes greatly perturb synapse formation and neuronal transmission. In the brain, expression of lysine (K) 48-linked ubiquitin chains is higher at a developmental stage coincident with synaptogenesis. Nevertheless, no studies have so far delved into the involvement of this type of polyubiquitin chains in synapse formation. We have recently proposed a role for polyubiquitinated conjugates as triggering signals for presynaptic assembly. Herein, we aimed at characterizing the axonal distribution of K48 polyubiquitin and its dynamics throughout the course of presynaptic formation. To accomplish so, we used an ubiquitination-induced fluorescence complementation (UiFC) strategy for the visualization of K48 polyubiquitin in live hippocampal neurons. We first validated its use in neurons by analyzing changing levels of polyubiquitin. UiFC signal is diffusely distributed with distinct aggregates in somas, dendrites and axons, which perfectly colocalize with staining for a K48-specific antibody. Axonal UiFC aggregates are relatively stable and new aggregates are formed as an axon grows. Approximately 65% of UiFC aggregates colocalize with synaptic vesicle clusters and they preferentially appear in the axonal domains of axo-somatodendritic synapses when compared to isolated axons. We then evaluated axonal accumulation of K48 ubiquitinated signals in bead-induced synapses. We observed rapid accumulation of UiFC signal and endogenous K48 ubiquitin at the sites of newly formed presynapses. Lastly, we show by means of a microfluidic platform, for the isolation of axons, that presynaptic clustering on beads is dependent on E1-mediated ubiquitination at the axonal level. Altogether, these results indicate that enrichment of K48 polyubiquitin at the site of nascent presynaptic terminals is an important axon-intrinsic event for presynaptic differentiation.
Collapse
Affiliation(s)
- Maria J Pinto
- Center for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB), Center for Neuroscience and Cell Biology, University of CoimbraCoimbra, Portugal
| | - Joana R Pedro
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra Coimbra, Portugal
| | - Rui O Costa
- Center for Neuroscience and Cell Biology (CNC), University of Coimbra Coimbra, Portugal
| | - Ramiro D Almeida
- Center for Neuroscience and Cell Biology (CNC), University of CoimbraCoimbra, Portugal; School of Allied Health Technologies, Polytechnic Institute of Porto (ESTSP-IPP)Vila Nova de Gaia, Portugal; Institute for Interdisciplinary Research, University of CoimbraCoimbra, Portugal
| |
Collapse
|
3
|
Abstract
CNS injury may lead to permanent functional deficits because it is still not possible to regenerate axons over long distances and accurately reconnect them with an appropriate target. Using rat neurons, microtools, and nanotools, we show that new, functional neurites can be created and precisely positioned to directly (re)wire neuronal networks. We show that an adhesive contact made onto an axon or dendrite can be pulled to initiate a new neurite that can be mechanically guided to form new synapses at up to 0.8 mm distance in <1 h. Our findings challenge current understanding of the limits of neuronal growth and have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration. Significance statement: Brain and spinal cord injury may lead to permanent disability and death because it is still not possible to regenerate neurons over long distances and accurately reconnect them with an appropriate target. Using microtools and nanotools we have developed a new method to rapidly initiate, elongate, and precisely connect new functional neuronal circuits over long distances. The extension rates achieved are ≥60 times faster than previously reported. Our findings have direct implications for the development of new therapies and surgical techniques to achieve functional regeneration after trauma and in neurodegenerative diseases. It also opens the door for the direct wiring of robust brain-machine interfaces as well as for investigations of fundamental aspects of neuronal signal processing and neuronal function.
Collapse
|
4
|
Goulet-Hanssens A, Magdesian MH, Lopez-Ayon GM, Grutter P, Barrett CJ. Reversing adhesion with light: a general method for functionalized bead release from cells. Biomater Sci 2016; 4:1193-6. [DOI: 10.1039/c6bm00168h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Coated beads retain great importance in the study of cell adhesion and intracellular communication; we present a generally applicable method permitting spatiotemporal control of bead adhesion from cells.
Collapse
Affiliation(s)
| | | | | | - Peter Grutter
- Program in NeuroEngineering
- McGill University
- Montreal
- Canada
- Department of Physics
| | | |
Collapse
|
5
|
Suarez F, Thostrup P, Colman D, Grutter P. Dynamics of presynaptic protein recruitment induced by local presentation of artificial adhesive contacts. Dev Neurobiol 2012; 73:98-106. [PMID: 22648784 DOI: 10.1002/dneu.22037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 11/06/2022]
Abstract
In this study, we introduce a novel approach to induce and observe the formation of presynaptic compartments in axons through a combination of atomic force microscopy (AFM) and fluorescence microscopy. First, we use a poly-D-lysine-coated bead attached to an AFM tip to induce the recruitment of two synaptic proteins, bassoon and synaptophysin, and measure their absolute arrival times to the presynaptic department. We find that bassoon arrives before synaptophysin. Second, we observe the formation of very long (several 10s of μm), structured, protein-containing membranous strings as the AFM tip was withdrawn from the axon. It is conceivable that these strings might be a novel mechanism by which new neurites or branch points along existing neurites may be generated in situ.
Collapse
|
6
|
Clustering of excess growth resources within leading growth cones underlies the recurrent "deposition" of varicosities along developing neurites. Exp Neurol 2010; 225:140-53. [PMID: 20558161 DOI: 10.1016/j.expneurol.2010.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 05/30/2010] [Accepted: 06/07/2010] [Indexed: 11/21/2022]
Abstract
Varicosities (VRs) are ubiquitous neuronal structures that are considered to serve as presynaptic structures. The mechanisms of their assembly are unknown. Using cultured Aplysia neurons, we found that in the absence of postsynaptic targets, VRs form at the leading edge of extending neurites when anterogradely transported organelles accumulate within the palm of the growth cone (GC) at a rate that exceeds their utilization by the GC machinery. The aggregation of excess organelles at the palm of the GC leads to slowdown of the GC's advance. As the size of the organelle clusters increases, the rate of organelle sequestration diminishes and the supply of building blocks to the GC resumes. The GCs' advance is re-initiated, "leaving behind" an organelle-loaded nascent VR. These mechanisms account for the recurrent "deposition" of almost equally spaced VRs by advancing GCs. Consistent with the view that VRs serve as "ready-to-go" presynaptic terminals, we found that a short train of action potentials leads to exocytosis of labeled vesicles within the varicosities. We propose that the formation and spacing of VRs by advancing GCs is the default outcome of the balance between the rate of supply of growth-supporting resources and the usage of these resources by the GC's machinery at the leading edges of specific neurites.
Collapse
|
7
|
Abstract
CNS synapse assembly typically follows after stable contacts between "appropriate" axonal and dendritic membranes are made. We show that presynaptic boutons selectively form de novo following neuronal fiber adhesion to beads coated with poly-d-lysine (PDL), an artificial cationic polypeptide. As demonstrated by atomic force and live confocal microscopy, functional presynaptic boutons self-assemble as rapidly as 1 h after bead contact, and are found to contain a variety of proteins characteristic of presynaptic endings. Interestingly, presynaptic compartment assembly does not depend on the presence of a biological postsynaptic membrane surface. Rather, heparan sulfate proteoglycans, including syndecan-2, as well as others possibly adsorbed onto the bead matrix or expressed on the axon surface, are required for assembly to proceed by a mechanism dependent on the dynamic reorganization of F-actin. Our results indicate that certain (but not all) nonspecific cationic molecules like PDL, with presumably electrostatically mediated adhesive properties, can effectively bypass cognate and natural postsynaptic ligands to trigger presynaptic assembly in the absence of specific target recognition. In contrast, we find that postsynaptic compartment assembly depends on the prior presence of a mature presynaptic ending.
Collapse
|
8
|
Betley JN, Wright CVE, Kawaguchi Y, Erdélyi F, Szabó G, Jessell TM, Kaltschmidt JA. Stringent specificity in the construction of a GABAergic presynaptic inhibitory circuit. Cell 2009; 139:161-74. [PMID: 19804761 DOI: 10.1016/j.cell.2009.08.027] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/12/2009] [Accepted: 08/12/2009] [Indexed: 11/25/2022]
Abstract
GABAergic interneurons are key elements in neural coding, but the mechanisms that assemble inhibitory circuits remain unclear. In the spinal cord, the transfer of sensory signals to motor neurons is filtered by GABAergic interneurons that act presynaptically to inhibit sensory transmitter release and postsynaptically to inhibit motor neuron excitability. We show here that the connectivity and synaptic differentiation of GABAergic interneurons that mediate presynaptic inhibition is directed by their sensory targets. In the absence of sensory terminals these GABAergic neurons shun other available targets, fail to undergo presynaptic differentiation, and withdraw axons from the ventral spinal cord. A sensory-specific source of brain derived neurotrophic factor induces synaptic expression of the GABA synthetic enzyme GAD65--a defining biochemical feature of this set of interneurons. The organization of a GABAergic circuit that mediates presynaptic inhibition in the mammalian CNS is therefore controlled by a stringent program of sensory recognition and signaling.
Collapse
Affiliation(s)
- J Nicholas Betley
- Howard Hughes Medical Institute, Kavli Institute of Brain Science, Departments of Neuroscience, Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Schmidt JT. Activity-driven sharpening of the retinotectal projection: the search for retrograde synaptic signaling pathways. ACTA ACUST UNITED AC 2004; 59:114-33. [PMID: 15007831 DOI: 10.1002/neu.10343] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patterned visual activity, acting via NMDA receptors, refines developing retinotectal maps by shaping individual retinal arbors. Because NMDA receptors are postsynaptic but the retinal arbors are presynaptic, there must be retrograde signals generated downstream of Ca(++) entry through NMDA receptors that direct the presynaptic retinal terminals to stabilize and grow or to withdraw. This review defines criteria for retrograde synaptic messengers, and then applies them to the leading candidates: nitric oxide (NO), brain-derived neurotrophic factor (BDNF), and arachidonic acid (AA). NO is not likely to be a general mechanism, as it operates only in selected projections of warm blooded vertebrates to speed up synaptic refinement, but is not essential. BDNF is a neurotrophin with strong growth promoting properties and complex interactions with activity both in its release and receptor signaling, but may modulate rather than mediate the retrograde signaling. AA promotes growth and stabilization of synaptic terminals by tapping into a pre-existing axonal growth-promoting pathway that is utilized by L1, NCAM, N-cadherin, and FGF and acts via PKC, GAP43, and F-actin stabilization, and it shares some overlap with BDNF pathways. The actions of both are consistent with recent demonstrations that activity-driven stabilization includes directed growth of new synaptic contacts. Certain nondiffusible factors (synapse-specific CAMs, ephrins, neurexin/neuroligin, and matrix molecules) may also play a role in activity-driven synapse stabilization. Interactions between these pathways are discussed.
Collapse
Affiliation(s)
- John T Schmidt
- Department of Biological Sciences and Center for Neuroscience Research, University at Albany-SUNY, 1400 Washington Avenue, Albany, New York 12222, USA.
| |
Collapse
|
10
|
Abstract
Synapse formation is a complex process that culminates in the linking up and locking in of pre- and postsynaptic membranes. Shen at al. (2004 [this issue of Cell]) begin to dissect the molecular instructions that govern target selection of pre- and postsynaptic membrane interactions.
Collapse
Affiliation(s)
- David R Colman
- The Montreal Neurological Institute of McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
11
|
Krueger SR, Kolar A, Fitzsimonds RM. The presynaptic release apparatus is functional in the absence of dendritic contact and highly mobile within isolated axons. Neuron 2004; 40:945-57. [PMID: 14659093 DOI: 10.1016/s0896-6273(03)00729-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Whether contact of an axon with a dendrite is a necessary inductive signal for the assembly of functional presynaptic machinery is controversial. Combining FM1-43 imaging with retrospective immunocytochemistry, we observe many functional synaptic vesicle (SV) release sites lacking postsynaptic specializations in cultured hippocampal neurons. These "orphan" release sites share the same exocytic machinery and mechanisms of endocytic recycling as mature synaptic sites. Moreover, quantitative analysis of FM1-43 destaining at these orphan release sites reveals similar kinetics with slightly lower release probabilities. Time-lapse imaging of FM1-43 reveals that orphans are generated by complete or partial mobilization of synaptic release sites that retain their functionality in transit. Orphan clusters fuse with existing synaptic release sites or form novel release sites onto dendrites. Mobilization and stabilization of orphan boutons to new sites of dendritic contact may represent a necessary presynaptic counterpart to postsynaptic changes observed during development and plasticity in the CNS.
Collapse
Affiliation(s)
- Stefan R Krueger
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | | | | |
Collapse
|
12
|
Ghirardi M, Naretto G, Fiumara F, Vitiello F, Montarolo PG. Target-dependent modulation of neurotransmitter release in cultured Helix neurons involves adhesion molecules. J Neurosci Res 2001; 65:111-20. [PMID: 11438980 DOI: 10.1002/jnr.1134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The secretory capabilities of the serotonergic neuron C1 of cerebral ganglion of Helix pomatia were markedly reduced when it was cultured in contact with the wrong target neuron, C3. When the neuron B2, one of its physiological targets, was micromanipulated within the network made of intermingled neurites originating from the axonal stumps of both C1 and C3 neurons, C1 increased the amount of the evoked transmitter release, which, after 30 min, reached the level observed when cocultured with the appropriate target. The removal of the appropriate target brought C1 back to the low release condition. By imaging C1 neurites with a fluorescent dye, morphological changes involving a local increase in the number of varicosities could be observed as early as 30 min after contact with the appropriate target. Monoclonal antibody 4E8 against apCAM, a family of Aplysia adhesion molecules, recognizes apCAM-like molecules of the Helix central nervous system on immunocytochemistry and Western blot analysis. The contact with the appropriate target previously incubated in a 4E8 solution, which did not interfere with its capacity to respond to serotonin, failed to increase the transmitter release of C1 cocultured in the presence of the wrong target, C3. These results suggest that the apCAM-like antigens bound to the target membrane participate in the molecular processes responsible for the assembly of the "release machinery" present in the functional presynaptic structure.
Collapse
Affiliation(s)
- M Ghirardi
- Dipartimento di Neuroscienze, Sezione di Fisiologia, Università di Torino, Torino, Italy.
| | | | | | | | | |
Collapse
|
13
|
Scheiffele P, Fan J, Choih J, Fetter R, Serafini T. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 2000; 101:657-69. [PMID: 10892652 DOI: 10.1016/s0092-8674(00)80877-6] [Citation(s) in RCA: 915] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Most neurons form synapses exclusively with other neurons, but little is known about the molecular mechanisms mediating synaptogenesis in the central nervous system. Using an in vitro system, we demonstrate that neuroligin-1 and -2, postsynaptically localized proteins, can trigger the de novo formation of presynaptic structure. Nonneuronal cells engineered to express neuroligins induce morphological and functional presynaptic differentiation in contacting axons. This activity can be inhibited by addition of a soluble version of beta-neurexin, a receptor for neuroligin. Furthermore, addition of soluble beta-neurexin to a coculture of defined pre- and postsynaptic CNS neurons inhibits synaptic vesicle clustering in axons contacting target neurons. Our results suggest that neuroligins are part of the machinery employed during the formation and remodeling of CNS synapses.
Collapse
Affiliation(s)
- P Scheiffele
- Department of Molecular and Cell Biology, University of California, Berkeley 94720, USA.
| | | | | | | | | |
Collapse
|
14
|
Son YJ, Patton BL, Sanes JR. Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. Eur J Neurosci 1999; 11:3457-67. [PMID: 10564354 DOI: 10.1046/j.1460-9568.1999.00766.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motoneurons reinnervating skeletal muscles form nerve terminals at sites of contact with a specialized basal lamina. To analyse the molecules and mechanisms that underly these responses, we introduce two systems in which basal lamina-derived components induce presynaptic differentiation of cultured neurons from chick ciliary ganglia in the absence of a postsynaptic cell. In one, ciliary neurites that contact substrates coated with a recombinant laminin beta2 fragment form varicosities that are rich in synaptic vesicle proteins, depleted of neurofilaments, and capable of depolarization-dependent exocytosis and endocytosis. Thus, a single molecule can trigger a complex, coordinated program of presynaptic differentiation. In a second system, neurites growing on cryostat sections of adult kidney form vesicle-rich, neurofilament-poor arbors on glomeruli. Glomerular basal lamina, like synaptic basal lamina, is rich in laminin beta2 and collagen (alpha3-5) IV. However, glomeruli from mutant mice lacking these proteins were capable of inducing differentiation, suggesting the glomerulus as a source of novel presynaptic organizing molecules.
Collapse
Affiliation(s)
- Y J Son
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
15
|
Goshgarian HG, Yu XJ, Rafols JA. Neuronal and glial changes in the rat phrenic nucleus occurring within hours after spinal cord injury. J Comp Neurol 1989; 284:519-33. [PMID: 2768550 DOI: 10.1002/cne.902840404] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The present study describes specific morphological changes in the normal ultrastructure of the rat phrenic nucleus which occur within 4 hours after an ipsilateral spinal cord hemisection rostral to the nucleus. Phrenic neurons were identified at EM levels by retrograde HRP labeling. Ultrastructural features of the phrenic nucleus in uninjured animals and at 4 hours and 1, 2, and 4 days after injury were qualitatively analyzed and then quantitated with a computerized morphometric system. Our results indicated that by 4 hours posthemisection, there was a significant increase in the number of double synapses. Furthermore, the number of double synapses remained significantly higher than normal at all the other posthemisection periods. A significant increase in the length of dendrodendritic membrane appositions was also noted as early as 4 hours posthemisection. The mean normal appositional length of 1.42 +/- 0.09 microns increased to 1.89 +/- 0.12 microns at 4 hours and further increased to 2.20 +/- 0.20 microns by 1 day posthemisection. The increase in the length of membrane appositions was most likely due to an active retraction of astroglial processes from their normal position in between the dendrites. Although there was an increase in the mean length of the dendrodendritic appositions, the mean percentage of the appositions (expressed as the total number of appositions divided by the total number of dendrites in each sample) was not increased significantly over normal values during the early posthemisection periods. By 2 and 4 days posthemisection, however, the percentage of dendrodendritic appositions increased to significantly higher values than normal. Normally, 4.68 +/- 0.69% of the dendrites in the phrenic nucleus were found to be in apposition, and this number increased significantly to 7.27 +/- 1.06% by 2 days and 7.46 +/- 0.79% by 4 days posthemisection. At these later posthemisection periods, the mean length of the appositions decreased to levels which were no longer significantly higher than normal. A distribution analysis of the length of each dendrodendritic apposition in both the normal and spinal hemisected rats showed that there were more dendrodendritic appositions in the phrenic nucleus at the later posthemisection periods. It also showed that their mean length was decreased because many of the new appositions were relatively short. The above neuronal and glial alterations of the phrenic nucleus have never before been described as a response to injury of the mammalian spinal cord. Furthermore, the possibility that the above changes could represent the morphological substrate for the unmasking of functionally ineffective synapses in ou
Collapse
Affiliation(s)
- H G Goshgarian
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201
| | | | | |
Collapse
|
16
|
Burry RW, Hayes DM. Highly basic 30- and 32-kilodalton proteins associated with synapse formation on polylysine-coated beads in enriched neuronal cell cultures. J Neurochem 1989; 52:551-60. [PMID: 2911029 DOI: 10.1111/j.1471-4159.1989.tb09155.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuronal proteins involved in axonal outgrowth and synapse formation were examined in an enriched neuronal cell culture system of the cerebellum. In rat cerebellar cell cultures, 98.9% of the cells are neurons and the remaining 1.1% of the cells are flat nonneuronal cells. These enriched neuronal cultures, examined with two-dimensional gel electrophoresis, showed protein patterns similar to those of neonatal cerebellum, but very different patterns from glial enriched cultures. High levels of a neuronal membrane acidic 29-kilodalton (kD) protein were found. It has been shown previously that neuronal cultures incubated with polylysine-coated beads will develop numerous presynaptic elements on the bead surface. We report here that isolation of the beads from enriched neuronal cell cultures incubated with [35S]methionine showed, with two-dimensional nonequilibrium pH gradient gel electrophoresis (2D-NEPHGE), levels of a basic 32-kD protein (pI 8) note detected in cultures alone, and increased levels of a 30-kD protein (pI 10). When culture medium was examined with 2D-NEPHGE, three acidic proteins were identified that were secreted by the cultured neurons. In summary, a neuronal enriched cell culture system was used with isolated polylysine-coated beads to identify basic 30-kD and 32-kD proteins that may be involved in synapse formation.
Collapse
Affiliation(s)
- R W Burry
- Department of Anatomy, College of Medicine, Ohio State University, Columbus 43210-1239
| | | |
Collapse
|
17
|
Burry RW. Presynaptic elements on artificial surfaces. A model for the study of development and regeneration of synapses. NEUROCHEMICAL PATHOLOGY 1986; 5:345-60. [PMID: 3306478 DOI: 10.1007/bf02842943] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently a model has been developed to study the synapse formation in which the components of a synapse can be isolated and examined independently. The observation of neurites forming presynaptic elements on polylysine-coated surfaces is a model for which the formation of presynaptic elements can be studied independently of a cellular postsynaptic element. Studies with neurons from both cell cultures and the intact cerebellum have shown that beads coated with poly-basic proteins can serve as a "postsynaptic element." With use of this system, observation have shown that the presynaptic element can form quickly, within 3 h, and contain many of the characteristics of a mature presynaptic element, such as synaptic vesicle antigens. Additional studies have shown that astrocytes appear to be involved in the loss or removal of the presynaptic elements on beads. Thus, synaptogenesis may involve the development of inappropriate synaptic contacts, which are eliminated by astrocytes. The lack of regeneration in the central nervous system (CNS) also may involve the astrocyte's ability to remove immature and/or inappropriate presynaptic elements and growth cones as they attempt to cross the lesion site.
Collapse
|
18
|
Burry RW, Ho RH, Matthew WD. Presynaptic elements formed on polylysine-coated beads contain synaptic vesicle antigens. JOURNAL OF NEUROCYTOLOGY 1986; 15:409-19. [PMID: 3091776 DOI: 10.1007/bf01611725] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cell cultures of the rat cerebellum were immunostained with antibodies to synaptic vesicle antigens, Synapsin I and SV48. Light microscopic immunocytochemistry showed that the initial appearance of demonstrable SV48 and Synapsin I immunoreactivity occurred at different times. Synapsin I immunostaining, unlike SV48 immunostaining, was first seen at 3 days in vitro as occasional punctate immunofluorescence in neurites, while SV48 immunostaining was first seen at 5 days in vitro. Both SV48 and Synapsin I punctate immunostaining became frequent at 7 days in vitro. Double labelling experiments showed coexistence of the above proteins in punctate swellings and growth cones. Using the electron microscope, either SV48 or Synapsin I immunostaining was demonstrated within presynaptic elements in the neuropil. When cultures were incubated with polylysine-coated beads, both types of immunostaining were found in the vesicle containing presynaptic elements formed on the bead surface. It is concluded that Synapsin I and SV48 are co-localized in the same populations of presynaptic elements, co-localized in some growth cones and found in presynaptic elements on beads.
Collapse
|
19
|
Burry RW, Hayes DM. Development and elimination of presynaptic elements on polylysine-coated beads implanted in neonatal rat cerebellum. J Neurosci Res 1986; 15:67-78. [PMID: 3959128 DOI: 10.1002/jnr.490150107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Polylysine-coated sepharose beads were implanted in the cerebellum of neonatal rats and examined at 3 hr, 3 days, 7 days, 14 days, and 21 days after surgery. Previous studies at 5 or 8 days after implantation showed that axons formed neuronal swellings that appeared to be presynaptic elements, with the bead surface in the position of a postsynaptic element. Results reported here show that no beads at 3 hr had presynaptic elements, whereas the number of beads with presynaptic elements increased to high levels at 3 and 7 days but dropped to low values at 14 and 21 days after implantation. Presynaptic elements were seen on beads regardless of their distance from cerebellar tissue except at 3 hr, when no axons were seen in the implant, indicating that axons first grew into the implant and then formed presynaptic elements. The morphological measurements of presynaptic elements on beads at 3 to 7 days after implantation showed increases in area and number of synaptic vesicles, which then decreased at 14 and 21 days after implantation. These results show that axons can grow into implants of polylysine-coated beads and form presynaptic elements that do not survive with increased time after implantation. The survival of presynaptic elements on beads can be used as a model for investigations into regeneration of axons and presynaptic elements in the injured brain.
Collapse
|
20
|
Burry RW, Kniss DA, Ho RH. Enhanced survival of apparent presynaptic elements on polylysine-coated beads by inhibition of non-neuronal cell proliferation. Brain Res 1985; 346:42-50. [PMID: 2932199 DOI: 10.1016/0006-8993(85)91092-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Increased survival of presynaptic-like neuronal profiles was found in cell cultures of rat cerebellum when the non-neuronal cell numbers were reduced with an antimitotic drug. In both treated and untreated cell cultures, neurites grew onto the polylysine-coated surface of sepharose beads and formed a swelling. The neuronal swelling contained an accumulation of synaptic vesicles and a membrane density at the site of contact with the bead and was called an apparent presynaptic element. The apparent presynaptic elements in untreated cultures increased in number from the time the beads were added to the culture to 7 days incubation and then showed a decrease to one half the 7-day value at 14 days incubation. A 75% reduction in cell division of non-neuronal cells was seen in cultures exposed to a 5 X 10(-6)M cytosine arabinoside (Ara-C) for 2 days. Adding polylysine-coated beads to cultures treated with Ara-C showed at 14 days incubation a 7-fold increase in the number of apparent presynaptic elements as compared to untreated cultures. Additional experiments examined the numbers of neurites on the beads and found only small differences between treated and untreated cultures. A decrease, however, was shown in the number of glial fibrillary acidic protein staining astrocytes on the surface of the beads in treated cultures. The reduction of astrocytes by Ara-C appeared to enhance the survival of apparent presynaptic elements but did not enhance the growth of neurites. These results suggest that proliferating non-neuronal cells at a site of injury in the central nervous system may inhibit the formation of synaptic contacts and the growth of neurites through the site of injury.
Collapse
|
21
|
Abstract
The formation of synapses in cell cultures of rat cerebellum was examined in the presence of the protein synthesis inhibitor cycloheximide. First, cell survival in the presence of 25 micrograms/ml cycloheximide was determined by phase contrast microscopy, trypan blue exclusion, total protein and uptake of [3H]gamma-aminobutyric acid (GABA). Neurons with 24 h incubation in cycloheximide appeared normal with little cell death, but by 48 h incubation the first signs of cell death were found. Some viable neurons were still found in cultures incubated continuously in cycloheximide for 72 h. Normally, the number of synapses seen in cerebellar cultures with the electron microscope shows an increase during the first several weeks in culture. However, the number of synapses in cultures treated with cycloheximide decreased, indicating that inhibition of protein synthesis at least partially inhibited synaptogenesis. Cycloheximide also inhibited the maintenance of synapses already formed as seen by the decrease in the number of synapses from the time the cycloheximide was added. To determine the sensitivity of the forming presynaptic element to cycloheximide, the development of apparent presynaptic elements was investigated. In cultures treated with polylysine-coated sepharose beads, neurites grew and formed apparent presynaptic elements with the bead taking the position of the postsynaptic element. Cultures pretreated with cycloheximide for 1 h followed by 24 h incubation with both cycloheximide and coated beads showed a normal number of apparent presynaptic elements. The first decrease in numbers was seen after 12 h preincubation and 12 h incubation with both cycloheximide and coated beads. Even after 72 h continuous incubation some apparent presynaptic elements could be formed although at reduced levels. Results presented here suggest that continuous protein synthesis is not necessary for the formation of the presynaptic element, but that active protein synthesis is required for neurons to form and maintain postsynaptic elements.
Collapse
|
22
|
Abstract
Polylysine-coated sepharose beads implanted in the cerebellum of 3-4-day-old rats resulted in the formation of neuronal swellings on the surface of the beads. These neuronal swellings resembled presynaptic elements and contained numerous 40 nm vesicles that accumulated at the site of contact with the bead. Uncoated beads did not show apparent presynaptic elements on the surface of the beads. The in vivo finding of apparent presynaptic elements on polylysine-coated beads suggests that polybasic surfaces may be involved in recognition leading to the formation of presynaptic elements. This system offers an excellent model to test developing or regenerating axons to determine their ability to form presynaptic elements.
Collapse
|