1
|
Chronic Ouabain Prevents Radiation-Induced Reduction in the α2 Na,K-ATPase Function in the Rat Diaphragm Muscle. Int J Mol Sci 2022; 23:ijms231810921. [PMID: 36142836 PMCID: PMC9505176 DOI: 10.3390/ijms231810921] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
The damaging effect of ionizing radiation (IR) on skeletal muscle Na,K-ATPase is an open field of research. Considering a therapeutic potential of ouabain, a specific ligand of the Na,K-ATPase, we tested its ability to protect against the IR-induced disturbances of Na,K-ATPase function in rat diaphragm muscle that co-expresses the α1 and α2 isozymes of this protein. Male Wistar rats (n = 26) were subjected to 6-day injections of vehicle (0.9% NaCl) or ouabain (1 µg/kg/day). On the fourth day of injections, rats were exposed to one-time total-body X-ray irradiation (10 Gy), or a sham irradiation. The isolated muscles were studied 72 h post-irradiation. IR decreased the electrogenic contribution of the α2 Na,K-ATPase without affecting its protein content, thereby causing sarcolemma depolarization. IR increased serum concentrations of ouabain, IL-6, and corticosterone, decreased lipid peroxidation, and changed cellular redox status. Chronic ouabain administration prevented IR-induced depolarization and loss of the α2 Na,K-ATPase electrogenic contribution without changing its protein content. This was accompanied with an elevation of ouabain concentration in circulation and with the lack of IR-induced suppression of lipid peroxidation. Given the crucial role of Na,K-ATPase in skeletal muscle performance, these findings may have therapeutic implications as countermeasures for IR-induced muscle pathology.
Collapse
|
2
|
Fortune E, Lowery MM. Effect of membrane properties on skeletal muscle fiber excitability: a sensitivity analysis. Med Biol Eng Comput 2012; 50:617-29. [PMID: 22430618 DOI: 10.1007/s11517-012-0894-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 03/10/2012] [Indexed: 11/25/2022]
Abstract
In this study, the sensitivity of skeletal muscle fiber excitability to changes in temperature and a range of geometrical, electrical and ionic membrane properties was examined using model simulation. A mathematical model of the propagating muscle fiber action potential (AP) was used to simulate muscle fiber APs while changing individual muscle fiber parameters in isolation to examine how they affect muscle fiber AP amplitude, shape and conduction velocity (CV). The behavior of the model was verified by comparison with previously reported experimental data from both in vivo studies conducted at physiological temperatures and in vitro and in silico studies conducted at lower temperatures. The simulation results presented demonstrate the sensitivity of AP amplitude, shape and CV and, therefore, muscle fiber excitability to small changes in a wide range of different muscle fiber parameters. Furthermore, they demonstrate the potential of computational modeling as a tool for investigating the underlying mechanisms of complex phenomena such as those which govern skeletal muscle excitation.
Collapse
Affiliation(s)
- Emma Fortune
- School of Electrical, Electronic and Mechanical Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
3
|
McGill KC, Lateva ZC. History dependence of human muscle-fiber conduction velocity during voluntary isometric contractions. J Appl Physiol (1985) 2011; 111:630-41. [PMID: 21565985 DOI: 10.1152/japplphysiol.00208.2011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The conduction velocity (CV) of a muscle fiber is affected by the fiber's discharge history going back ∼1 s. We investigated this dependence by measuring CV fluctuations during voluntary isometric contractions of the human brachioradialis muscle. We recorded electromyogram (EMG) signals simultaneously from multiple intramuscular electrodes, identified potentials belonging to the same motor unit using EMG decomposition, and estimated the CV of each discharge from the interpotential interval. In 12 of 14 subjects, CV increased by ∼10% during the first second after recruitment and then fluctuated by about ±2% in a way that mirrored the fluctuations in the instantaneous firing rate. The CV profile could be precisely described in terms of the discharge history by a simple mathematical model. In the other two subjects, and one subject retested after cooling the arm, the CV fluctuations were inversely correlated with instantaneous firing rate. In all subjects, CV was additionally affected by very short interdischarge intervals (<25 ms): it was increased in doublets at recruitment, but decreased in doublets during continuous firing and after short interdischarge intervals in doubly innervated fibers. CV also exhibited a slow trend of about -0.05%/s that did not depend on the immediate discharge history. We suggest that measurements of CV fluctuations during voluntary contractions, or during stimulation protocols that involve longer and more complex stimulation patterns than are currently being used, may provide a sensitive approach for estimating the dynamic characteristics of ion channels in the human muscle-fiber membrane.
Collapse
Affiliation(s)
- Kevin C McGill
- Rehabilitation R&D Center, VA Palo Alto Health Care System, 3801 Miranda Ave., Palo Alto, CA 94304, USA.
| | | |
Collapse
|
4
|
Fortune E, Lowery MM. Simulation of the Interaction Between Muscle Fiber Conduction Velocity and Instantaneous Firing Rate. Ann Biomed Eng 2010; 39:96-109. [DOI: 10.1007/s10439-010-0160-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 09/02/2010] [Indexed: 10/19/2022]
|
5
|
Blijham PJ, Drost G, Stegeman DF, Zwarts MJ. Reduced muscle-fiber conduction but normal slowing after cold exposure in paramyotonia congenita. Muscle Nerve 2008; 37:23-6. [PMID: 17823953 DOI: 10.1002/mus.20885] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study we investigated a family with paramyotonia (PC) congenita caused by a Gly1306Val mutation in the voltage-gated sodium-channel gene SCN4A. A previous study showed that exposure to cold aggravates the muscle stiffness in patients with this mutation. However, the mechanism behind cold sensitivity and the sodium-channel defect remained unclear. In order to gain a better understanding of sarcolemmal propagation in these patients, we measured muscle-fiber conduction velocity (MFCV) invasively. We studied four PC patients and four healthy subjects at room temperature. After the muscle was cooled, MFCV was measured again in the two PC patients and four control subjects. MFCV was significantly lower in the PC patients at room temperature, compatible with dysfunctional sodium channels. After cooling, MFCV was significantly lower in both groups as compared with room temperature. The relative slowing was 1.4% per degrees C for PC patients and 1.5% per degrees C for healthy subjects. These results indicate that, in these PC patients, mutant and wild-type sodium channels respond equally to cold exposure. Thus, MFCV is abnormal in these patients, but the aggravation of muscle stiffness cannot be explained by an abnormal sarcolemmal response to cold.
Collapse
Affiliation(s)
- Paul J Blijham
- Department of Clinical Neurophysiology, Institute of Neurology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | | | | | | |
Collapse
|
6
|
Sharabani-Yosef O, Nir U, Sampson SR. Thyroid hormone up-regulates Na+/K+ pump alpha2 mRNA but not alpha2 protein isoform in cultured skeletal muscle. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1573:183-8. [PMID: 12399029 DOI: 10.1016/s0304-4165(02)00423-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thyroid hormone (T(3)) is known to up-regulate the physiological expression of the Na(+)/K(+) pump in cultured skeletal muscle. We recently reported that primary cultured rat skeletal muscle expresses only the alpha(1), beta(1) and beta(2) protein isoforms of Na(+)/K(+) pump. Interestingly, alpha(2) mRNA is detectable while the alpha(2) protein isoform is not. We therefore examined whether T(3) might up-regulate the expression of Na(+)/K(+) pump alpha(2) isoform at the protein and mRNA level. We also examined the regulation by this hormone of the other isoforms of the pump. Primary cultures were treated with T3 for 48 h from day 4 to day 6 of differentiation. Protein and mRNA isoforms of Na(+)/K(+) pump were identified by Western blotting and Northern blotting, respectively. T(3) induced a marked increase in the beta(1) protein and a slight increase in the alpha(1) protein. T(3) did not affect expression of the beta(2) protein. The alpha(2) protein was not detected in either untreated or T(3)-treated cells. In contrast, alpha(2) mRNA was highly up-regulated by T(3) treatment compared to the other isoforms. The lack of expression of the alpha(2) protein isoform following T(3) treatment suggests that posttranscriptional events related to this isoform may be dependent on other growth factors or hormones.
Collapse
Affiliation(s)
- Orna Sharabani-Yosef
- Faculty of Life Sciences, Gonda-Goldschmeid Center, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
7
|
Yensen C, Matar W, Renaud JM. K+-induced twitch potentiation is not due to longer action potential. Am J Physiol Cell Physiol 2002; 283:C169-77. [PMID: 12055085 DOI: 10.1152/ajpcell.00549.2001] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine whether an increased duration of the action potential contributes to the K+-induced twitch potentiation at 37 degrees C. Twitch contractions were elicited by field stimulation, and action potentials were measured with conventional microelectrodes. For mouse extensor digitorum longus (EDL) muscle, twitch force was greater at 7-13 mM K+ than at 4.7 mM (control). For soleus muscle, twitch force potentiation was observed between 7 and 11 mM K+. Time to peak and half-relaxation time were not affected by the increase in extracellular K+ concentration in EDL muscle, whereas both parameters became significantly longer in soleus muscle. Decrease in overshoot and prolongation of the action potential duration observed at 9 and 11 mM K+ were mimicked when muscles were respectively exposed to 25 and 50 nM tetrodotoxin (TTX; used to partially block Na+ channels). Despite similar action potentials, twitch force was not potentiated by TTX. It is therefore suggested that the K+-induced potentiation of the twitch in EDL muscle is not due to a prolongation of the action potential and contraction time, whereas a longer contraction, especially the relaxation phase, may contribute to the potentiation in soleus muscle.
Collapse
Affiliation(s)
- Craig Yensen
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada K1H 8M5
| | | | | |
Collapse
|
8
|
Abstract
Like nearly all biologic structures, the peripheral nervous system is remarkably temperature sensitive. Clinical neurophysiologists are most aware of the untoward effects of cooling on nerve conduction studies, including reduced conduction velocity, prolonged distal latency, and increased response amplitude and duration. However, familiarity with the effects of temperature variation on the peripheral nervous system can also provide a deeper understanding of the physiological mechanisms underlying the function of nerve, muscle, and neuromuscular junction in health and disease. Intentional temperature alteration can also improve the diagnostic accuracy of certain electrophysiologic tests, such as the use of heat when performing repetitive nerve stimulation in myasthenia gravis or the use of cold during needle electromyography in some of the myotonic disorders. Finally, extremes of temperature have long been known to produce permanent neuronal dysfunction; recent investigations are beginning to elucidate the mechanisms of such injury.
Collapse
Affiliation(s)
- S B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, TCC-810, Boston, MA 02215, USA
| |
Collapse
|
9
|
Sharabani-Yosef O, Bak A, Nir U, Sampson SR. Na(+)/K(+) pump expression in the L8 rat myogenic cell line: effects of heterologous alpha subunit transfection. J Cell Physiol 2001; 187:365-73. [PMID: 11319760 DOI: 10.1002/jcp.1089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We have characterized the physiological and biochemical properties of the Na(+)/K(+) pump and its molecular expression in L8 rat muscle cells. Pump properties were measured by [(3)H]ouabain binding and (86)Rb uptake. Scatchard plot analysis of specific ouabain binding indicated the presence of a single family of binding sites with a B(max) of approximately 135 fmol/ mg P and a K(D) of 3.3 x 10(-8). (86)Rb uptake due to specific pump activity was found to be 20% of the total in L8 cells. The results indicated lower affinity of L8 cells for ouabain and lower activity of the pump than that reported for chick or rat skeletal muscle in primary culture. Both the alpha(1) and beta(1) protein and mRNA isoforms were expressed in myoblasts and in myotubes, while the alpha(2), alpha(3), and beta(2) isoforms were not detectable. We attempted to overcome low physiological expression of the Na(+)/K(+) pump by employing a vector expressing an avian high affinity alpha subunit. This allowed identification of the transfected subunit separate from that endogenously expressed in L8 cells. Successful transfection into L8 myoblasts and myotubes was recognized by anti-avian alpha subunit monoclonal antibodies. Fusion index, Na(+)/K(+) pump activity, and the level of the transmembrane resting potential were all significantly greater in transfected L8 (tL8) cells than in non-tL8. The total amount of alpha subunit (avian and rat) in tL8 cells was greater than that (only rat) in non-tL8 cells. This relatively high abundance of the Na(+)/K(+) pump in transfected cells may indicate that avian and rat alpha subunits hybridize to form functional pump complexes.
Collapse
Affiliation(s)
- O Sharabani-Yosef
- Faculty of Life Sciences, Gonda-Goldschmeid Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | |
Collapse
|
10
|
Ortega B, Millar ID, Beesley AH, Robson L, White SJ. Stable, polarised, functional expression of Kir1.1b channel protein in Madin-Darby canine kidney cell line. J Physiol 2000; 528 Pt 1:5-13. [PMID: 11018101 PMCID: PMC2270111 DOI: 10.1111/j.1469-7793.2000.00005.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1. The family of Kir1.1 (ROMK) channel proteins constitute a secretory pathway for potassium in principal cells of cortical collecting duct and thick ascending limb of Henle's loop. Mutations in Kir1.1 account for some types of Bartter's syndrome. 2. Here we report that stable transfection of Kir1.1b (ROMK2) in Madin-Darby canine kidney (MDCK) cell line results in expression of inwardly rectifying K+ currents and transmonolayer electrical and transport properties appropriate to Kir1.1 function. When grown on permeable supports, transfected monolayers secreted K+ into the apical solution. This secretion was inhibited by application of barium to the apical membrane, or by reduction in expression temperature from 37 to 26 C. However, whole-cell voltage clamp electrophysiology showed that K+ conductance was higher in cells expressing Kir1.1b at 26C. 3. To investigate this further, Kir1.1b was tagged with (EGFP), a modification that did not affect channel activity. Protein synthesis was inhibited with cycloheximide. Spectrofluorimetry was used to compare protein degradation at 37 and 26 C. The increased level of Kir1.1b at the plasma membrane at 26 C was due to an increase in protein stability. 4. Confocal microscopic investigation of EGFP-Kir1. 1b fluorescence in transfected cells showed that the channel protein was targeted to the apical domain of the cell. 5. These results demonstrate that Kir1.1b is capable of appropriate trafficking and function in MDCK cell lines at physiological temperatures. In addition, expression of Kir1.1b in MDCK cell lines provides a useful and convenient tool for the study of functional activity and targeting of secretory K+ channels.
Collapse
Affiliation(s)
- B Ortega
- Laboratory for Membrane Protein Function, Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- T A Schmidt
- Department of Medicine B 2142, Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
12
|
Gülden M, Seibert H, Voss JU. In vitro toxicity screening using cultured rat skeletal muscle cells. II. Agents affecting excitable membranes. Toxicol In Vitro 1994; 8:197-206. [DOI: 10.1016/0887-2333(94)90183-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/1993] [Revised: 05/19/1993] [Indexed: 10/27/2022]
|
13
|
Brodie C, Sampson SR. Early signals in serum-induced increases in ouabain-sensitive Na(+)-K+ pump activity and in glucose transport in rat skeletal muscle are amiloride-sensitive. J Neurochem 1993; 60:2247-53. [PMID: 8388036 DOI: 10.1111/j.1471-4159.1993.tb03511.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The acute effects of serum on sodium-potassium (Na(+)-K+) pump activity and glucose uptake in cultured rat skeletal muscle were studied. Addition of serum to myotubes in phosphate-buffered saline caused Na(+)-K+ pump activity (as measured by changes in the ouabain-sensitive component of both membrane potential and 86Rb uptake) to increase, with peak effects obtained after 30 min. The effect was blocked completely by treatment with amiloride, but not by tetrodotoxin, which blocks voltage-dependent Na+ channels. On transfer of myotubes to Na(+)-free, choline buffer, resting Na(+)-K+ pump activity decreased to about 10% of that in phosphate-buffered saline. Addition of regular serum, but not Na(+)-free serum, caused Na(+)-K+ pump activity to increase slightly. Similar results were obtained with serum on glucose uptake, the peak effect being reached within 15 min. Stimulation of glucose uptake by serum was partially reduced by amiloride and was not altered by tetrodotoxin. Removal of external Na+ also eliminated serum effects on glucose uptake. The results demonstrate that there are similar signals involving Na(+)-H+ exchange for serum-induced increases in Na(+)-K+ pump activity and glucose transport. The lack of complete blockade of serum-induced elevation of glucose transport suggests an additional, as yet undefined, intracellular signal for stimulation of this transport system.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
14
|
Alboim SV, Bak A, Sampson SR. Tunicamycin reduces Na(+)-K(+)-pump expression in cultured skeletal muscle. J Cell Physiol 1992; 150:640-6. [PMID: 1311332 DOI: 10.1002/jcp.1041500325] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to examine effects of tunicamycin (TM), which inhibits core glycosylation of the beta-subunit, on functional expression of the Na(+)-K+ pump in primary cultures of embryonic chick skeletal muscle. Measurements were made of specific-[3H]-ouabain binding, ouabain-sensitive 86Rb uptake, resting membrane potential (Em), and electrogenic pump contribution to Em (Ep) of single myotubes with intracellular microelectrodes. Growth of 4-6-day-old skeletal myotubes in the presence of TM (1 microgram/ml) for 21-24 hr reduced the number of Na(+)-K+ pumps to 60-90% of control. Na(+)-K+ pump activity, the level of resting Em and Ep were also reduced significantly by TM. In addition, TM completely blocked the hyperpolarization of Em induced in single myotubes by cooling to 10 degrees C and then re-warming to 37 degrees C. Effects of tunicamycin were compared with those of tetrodotoxin (TTX; 2 x 10(-7) M for 24 hr), which blocks voltage-dependent Na+ channels. TM produced significantly greater decreases in ouabain-binding and Em than did TTX, findings that indicate that reduced Na(+)-K+ pump expression was not exclusively secondary to decreased intracellular Na+, the primary regulator of pump synthesis in cultured muscle. Similarly, effects of TM were significantly greater than those of cycloheximide, which inhibits protein synthesis by 95%. These findings demonstrate that effects were not due to inhibition of protein synthesis. We conclude that glycosylation of the Na(+)-K+ pump beta-subunit is required for full physiological expression of pump activity in skeletal muscle.
Collapse
Affiliation(s)
- S V Alboim
- Health Sciences Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
15
|
Brodie C, Sampson SR. Serum factor induces selective increase in Na-channel expression in cultured skeletal muscle. J Cell Physiol 1991; 148:48-53. [PMID: 1650374 DOI: 10.1002/jcp.1041480106] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have examined effects of horse serum (HS) and various fractions (1 million-1M, 300K, 100K, and 30K nominal molecular weight limit) obtained by ultrafiltration on expression of TTX-sensitive Na-channels and on activities of the Na-K pump and glucose transport systems in cultured myotubes obtained from 1-2-day-old neonatal rat pups. Five-day-old cells were transferred to serum-free medium with no hormone or growth factor supplements (DMEM) for 24 hr and then treated with the various serum fractions for 48 hr. Measurements were made of specific [3H]-saxitoxin (STX) binding, action potential properties, 86Rb-uptake and 2-deoxyglucose (2-DG) uptake. HS significantly increased all parameters compared to DMEM (increases in STX-binding, 69%; Rb-uptake, 65%; 2-DG uptake, 93%). Results of treatment with the separate fractions showed that the 300K fraction caused a significantly greater increase in STX-binding than either HS or the other fractions. In contrast, the increases in Rb and 2-DG uptakes induced by the different fractions were not different from that obtained with HS. We conclude that serum contains a factor that selectively increases expression of TTX-sensitive Na-channels in skeletal muscle.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
16
|
Brodie C, Sampson SR. Nerve growth factor and fibroblast growth factor influence post-fusion expression of Na-channels in cultured rat skeletal muscle. J Cell Physiol 1990; 144:492-7. [PMID: 2167902 DOI: 10.1002/jcp.1041440317] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have examined effects of nerve growth factor (NGF) and fibroblast growth factor (FGF) on the density of tetrodotoxin (TTX)-sensitive Na-channels in cultured rat skeletal muscle. Measurements were made of specific binding of [3H]saxitoxin (STX) and the frequency and rate of rise of spontaneously occurring action potentials, the physiological expression of Na-channel density. Cells were transferred to various growth conditions at 6 days in vitro, and measurements were made beginning 24 hr later. Both growth factors (GF) caused dose-related increases in Na-channels compared with myotubes maintained in normal, serum-supplemented growth medium. Maximum effects occurred with a concentration of NGF of 50 ng/ml and FGF of 15 ng/ml. Scatchard analysis of specific STX binding showed an increase in Bmax with no significant change in Kd. Similar increases occurred on rate of rise and frequency spontaneous action potential. Treatment of cultures with cycloheximide or actinomycin D, inhibitors of protein and RNA synthesis, completely prevented the increase in STX-binding induced by GF treatment. The results indicate that NGF and FGF have important effects on regulation of excitable cell gene products after differentiation.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
17
|
Abstract
Primary cultures of skeletal muscle obtained from neonatal rats possess a saturable process for active glucose uptake, the myotubes having a relatively high affinity for the substrate with a Km of 1 mM. The expression of the glucose transport system was most apparent after fusion of single myoblasts to multinucleated myotubes [3-4 days in vitro (DIV)], at which time glucose uptake increased sharply to reach plateau values at about 6-8 DIV. Treatment of the cells at age 6 DIV with triiodothyronine or thyroxine caused a marked increase in glucose uptake beginning 4 h after treatment and reaching a maximum at 24 h. Thyroid hormone-induced increase in glucose uptake was not reduced by either tetrodotoxin or verapamil, thus indicating that the effect was not secondary to the ability of the hormone to increase contractile activity. The effect of thyroid hormones was eliminated completely by inhibition of protein synthesis. The results indicate that thyroid hormones play an important role in regulation of glucose transport in skeletal muscle.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
18
|
Brodie C, Sampson SR. Veratridine-induced oscillations in membrane potential of cultured rat skeletal muscle: role of the Na-K pump. Cell Mol Neurobiol 1990; 10:217-26. [PMID: 2163752 DOI: 10.1007/bf00734575] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
1. The acute effects of veratridine on membrane potential (Em) and Na-K pump activity in cultured skeletal muscle were examined. 2. At a concentration of 10(-4) M, veratridine caused depolarization of Em and a decrease in Na-K pump activity. At concentrations of 10(-5) and 10(-6) M, veratridine caused oscillations of Em and an increase in Na-K pump activity compared to untreated, control cells. The oscillations consisted of depolarization to about -40 mV followed by hyperpolarization to about -90 mV; the level of hyperpolarization was higher at 37 than at 23 degrees C. 3. Veratridine-induced oscillations could be prevented by pretreatment with tetrodotoxin (10(-6) M) and blocked or prevented by ouabain, which depolarizes Em of cultured myotubes. In contrast, depolarization of Em to -60 mV by excess K+ did not alter the amplitude or frequency of the oscillations. 4. The results demonstrate that veratridine-induced increase in Na influx both depolarizes cultured myotubes and increases the activity of the Na-K pump, which repolarizes Em to levels higher than control. This sequence accounts for veratridine-induced oscillations in Em. High concentrations of veratridine cause only depolarization of Em and inhibition of Na-K pump activity.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
19
|
Brodie C, Sampson SR. Regulation of the sodium-potassium pump in cultured rat skeletal myotubes by intracellular sodium ions. J Cell Physiol 1989; 140:131-7. [PMID: 2544613 DOI: 10.1002/jcp.1041400116] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The properties of the Na-K pump and some of the factors controlling its amount and function were studied in rat myotubes in culture. The number of Na-K pump sites was quantified by measuring the amount of [3H]ouabain bound to whole-cell preparations. Activity of the pump was determined by measurement of ouabain-sensitive 86Rb-uptake and component of membrane potential. Chronic treatment of myotubes with tetrodotoxin (TTX), which lowers [Na]i, decreased the number of Na-K pumps, the ouabain-sensitive 86Rb uptake, and the size of the electrogenic pump component of Em. In contrast, chronic treatment with either ouabain or veratridine, which increases [Na+]i, resulted in an elevated level of Na-K pump sites. This effect was blocked by inhibitors of protein synthesis. Neither rates of degradation nor affinity of pump sites in cells treated with TTX, veratridine, or ouabain differred from those in control cells. The number and activity of Na-K pump sites were unaffected by chronic elevation in [Ca]i or chronic depolarization. We conclude that alterations in the level in intracellular Na ions play the major role in regulation of Na-K pump synthesis in cultured mammalian skeletal muscle.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
20
|
Brodie C, Brody M, Sampson SR. Characterization of the relation between sodium channels and electrical activity in cultured rat skeletal myotubes: regulatory aspects. Brain Res 1989; 488:186-94. [PMID: 2545301 DOI: 10.1016/0006-8993(89)90708-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The relation among sodium channel density, frequency of electrical activity and maximal rate of rise of the action potential was studied in developing and mature rat skeletal myotubes in culture. The number of tetrodotoxin (TTX)-sensitive Na-channels was determined by measurements of the amount of [3H]saxitoxin (STX) bound to the cultures, and electrical properties were recorded with intracellular microelectrodes. The EC50 for TTX-induced decreases in maximal STX-binding, frequency and rate of rise of action potentials was in the range 8-20 nM. The 3 variables increased in parallel with age in culture to reach peak values at age 7-8 days, and then decreased in parallel until 10-12 days in culture. The age-related increase in Na-channel density was decreased, but not abolished, by prevention of myoblast fusion. Treatment with the Ca2+ ionophore, A23187, down-regulated, and blockade of Ca-channels with verapamil up-regulated the number of Na-channels. Na-channel density was also increased by chronic treatment with TTX and elevated external [K+], which eliminated spontaneous electrical and contractile activity. Parallel effects were observed on frequency and rate of rise of action potentials. Up-regulation of Na-channels was prevented by simultaneous treatment of myotubes with inhibitors of protein synthesis. We conclude that electrical and mechanical activity of cultured myotubes regulate de novo synthesis of Na-channels through alterations in the level of cytosolic Ca2+.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | |
Collapse
|
21
|
Brodie C, Sampson SR. Characterization of resting membrane potential and its electrogenic pump component in cultured chick myotubes. Int J Dev Neurosci 1989; 7:165-72. [PMID: 2540625 DOI: 10.1016/0736-5748(89)90066-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of the electrogenic Na+-K+ pump in the determination of the level of the resting membrane potential in cultured chick limb muscle was investigated. Transmembrane resting potential and ouabain-sensitive 86Rb-uptake were measured in myotubes at different ages in culture from 2 to 10 days in vitro. Inhibition of the Na+-K+ pump with ouabain prevented the developmental increase in membrane potential which normally follows fusion of myotubes (day 2-3). In mature myotubes, ouabain caused a dose-related decrease in both membrane potential and 86Rb-uptake, with values for EC50 and maximal effect being nearly the same on both variables. The decrease in membrane potential by ouabain, up to 20 mV maximum, occurred within 2-5 sec and was not accompanied by detectable changes in input resistance. Membrane potential was also reduced by a decrease in temperature of the recording medium and removal of extracellular K+, both of which reduce Na+-K+ pump activity. We also found that the relation between membrane potential and extracellular K+ concentration was completely attenuated by ouabain in the physiological range (2-10 mM). We conclude that the electrogenic Na+-K+ pump plays an important role in the determination of the resting membrane potential of chick myotubes and that regulation of its level is not entirely explained by the diffusion potential hypothesis.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
22
|
Brodie C, Sampson SR. Effects of carbamylcholine on membrane potential and Na-K pump activity of cultured rat skeletal myotubes. Cell Mol Neurobiol 1988; 8:393-410. [PMID: 2852060 DOI: 10.1007/bf00711225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
1. We measured changes in resting membrane potential (Em) and Na-K pump activity, assayed by ouabain-sensitive 86Rb uptake, in response to carbamylcholine (CCh) and its continued presence in single rat skeletal myotubes in culture. 2. CCh caused immediate depolarization from control Em (-80 to -85 mV) to near 0 followed by repolarization of varying degrees depending on the age of the culture and temperature of the recording medium; repolarization of Em was most apparent by culture age 8-9 days in vitro (DIV), Em reaching values as high as -60 mV by 5-10 min after peak depolarization at 37 degrees C. 3. Input resistance, which decreased during CCh depolarization, increased only slightly during the initial phase of repolarization and then remained essentially unchanged during the major component of membrane repolarization in the presence of CCh. 4. Ouabain, given before CCh, prevented repolarization of Em and, when given after repolarization had begun, reversed it and caused Em to return to about -7 mV. 5. Na-K pump activity was decreased in myotubes in which Em did not repolarize or did so only slightly, and was increased by over 40-50% in myotubes whose Em repolarized by 40-60 mV, even though CCh was still present in the medium. Inhibition of pump activity in non repolarizing myotubes was related to Na influx, inhibition being reversed to stimulation when CCh was administered to myotubes in Na-free medium. 6. Repeated (three or four times) or prolonged (up to 60-min) administration of CCh to myotubes in which repolarization was hardly expressed (age 6-7 DIV) caused increases both in the amount of repolarization and in 86Rb uptake, both being related to the number or duration of CCh exposures. 7. We conclude that repolarization of Em following CCh-induced depolarization of cultured rat skeletal myotubes depends to a large extent on an increase in activity of the electrogenic Na-K pump.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
23
|
Abstract
Effects of nerve growth factor (NGF) were examined on the growth of rat skeletal myotubes in culture and the expression of Na-K pump activity in this preparation. We found NGF to cause an immediate increase in electrogenic Na-K pump activity as determined by electrogenic component of membrane potential (Em) and ouabain-sensitive 86Rb uptake. When given chronically, NGF was able to replace serum as an essential supplement for development of cultured myotubes. Thus, when maintained in a serum-free, basal nutrient medium (DMEM), myotubes progressively deteriorated as indicated by morphological appearance, Em and the number of [3H]ouabain binding sites compared with myotubes grown in normal, serum-supplemented growth medium (GM). In contrast, the presence of NGF in DMEM completely prevented the deterioration of these properties, their values actually exceeding those in GM. These findings demonstrate a trophic effect of NGF on bioelectric properties of neonatal mammalian muscle cells.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Science, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
24
|
Brodie C, Bak A, Shainberg A, Sampson SR. Role of Na-K ATPase in regulation of resting membrane potential of cultured rat skeletal myotubes. J Cell Physiol 1987; 130:191-8. [PMID: 3029145 DOI: 10.1002/jcp.1041300204] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The role of Na-K ATPase in the determination of resting membrane potential (Em) as a function of extracellular K ion concentration was investigated in cultured rat myotubes. The Em of control myotubes at 37 degrees C varied as a function of (K+)0 with a slope of about 58-60 mV per ten-fold change in (K+)0. Inhibition of the Na-K pump with ouabain or by reduced temperature revealed that this relation consists of two components. One, between (K+)0 of 10 and 100 mM, remains unchanged by alterations in enzyme activity; The second, between (K+)0 of 1 and 10 mM, is related to the amount of Na-K pump activity, the slope decreasing as pump activity decreases. Indeed, with complete inhibition of the Na-K pump, Em does not change over the range of (K+)0 1 to 10 mM. Measurements of 86Rb efflux and input resistance of individual myotubes showed that membrane permeability does not change as (K+)0 increases from 1 to 10 mM but increases as (K+)0 increases further. Monensin, which increases Na ion permeability, increases Em at values of external K+ below 10 mM, and is without effect at higher values of K+ concentration. The effect of monensin is blocked by ouabain. Tetrodotoxin, which blocks voltage-dependent Na+ channels, decreases Em at low (2-10 mM) K+. We conclude that changes in Em as a function of extracellular K+ concentration in the physiological range are not adequately explained by the diffusion potential hypothesis of Em, and that other theories (electrogenic pump, surface-absorption) must be considered.
Collapse
|
25
|
Brodie C, Sampson SR. Influence of various growth factors and conditions on development of resting membrane potential and its electrogenic pump component of cultured rat skeletal myotubes. Int J Dev Neurosci 1986; 4:327-37. [PMID: 2844063 DOI: 10.1016/0736-5748(86)90050-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The effects of different growth factors and growth conditions were studied on the development of resting membrane potential and its electrogenic--ouabain-sensitive--pump component in cultured rat myotubes. Resting potential and its electrogenic pump component were dependent on the initial plating density of the myotubes, both values increasing with increasing density. Medium from cells plated at high density, when used to replace the medium of low density cells, increased both the resting potential and its electrogenic pump component of low density myotubes. Treatment of myotubes with cytosine-arabinoside delayed the appearance of [3H]ouabain binding sites and electrogenic pump component of resting potential, but by 8 days in culture there was no difference between treated and control cells. Similarly, cells plated initially in 5% horse serum developed resting potential and its electrogenic pump component more slowly than those in 15% horse serum, but by 8-10 days in vitro, the differences were no longer apparent. Chick embryo extract was found to have little, if any, influence on development of resting potential and its electrogenic pump component. We conclude that the different growth conditions and factors to the extent that they influence membrane potential, do so by altering the time of appearance of Na-K ATPase, the activity of which contributes a considerable component to resting potential.
Collapse
Affiliation(s)
- C Brodie
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
26
|
Brodie C, Sampson SR. Effects of chronic ouabain treatment on [3H]ouabain binding sites and electrogenic component of membrane potential in cultured rat myotubes. Brain Res 1985; 347:121-3. [PMID: 2996713 DOI: 10.1016/0006-8993(85)90896-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The effects of incubation of cultured rat skeletal myotubes in ouabain were studied on the number of [3H]ouabain binding sites and electrogenic component of membrane potential. Ouabain treatment for 2-6 days increased the number of binding sites, resting membrane potential (Em) and the ouabain-sensitive component of Em in the muscle cells. The findings strengthen the idea that Na,K-ATPase has an important role in regulation of Em in cultured skeletal muscle and suggest that Na-K pump inhibition during development may be a regulatory mechanism for cellular synthesis of Na,K-ATPase.
Collapse
|