1
|
Baeza-Loya S, Raible DW. Vestibular physiology and function in zebrafish. Front Cell Dev Biol 2023; 11:1172933. [PMID: 37143895 PMCID: PMC10151581 DOI: 10.3389/fcell.2023.1172933] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/06/2023] [Indexed: 05/06/2023] Open
Abstract
The vestibular system of the inner ear provides information about head motion and spatial orientation relative to gravity to ensure gaze stability, balance, and postural control. Zebrafish, like humans, have five sensory patches per ear that serve as peripheral vestibular organs, with the addition of the lagena and macula neglecta. The zebrafish inner ear can be easily studied due to its accessible location, the transparent tissue of larval fish, and the early development of vestibular behaviors. Thus, zebrafish are an excellent model for studying the development, physiology, and function of the vestibular system. Recent work has made great strides to elucidate vestibular neural circuitry in fish, tracing sensory transmission from receptors in the periphery to central computational circuits driving vestibular reflexes. Here we highlight recent work that illuminates the functional organization of vestibular sensory epithelia, innervating first-order afferent neurons, and second-order neuronal targets in the hindbrain. Using a combination of genetic, anatomical, electrophysiological, and optical techniques, these studies have probed the roles of vestibular sensory signals in fish gaze, postural, and swimming behaviors. We discuss remaining questions in vestibular development and organization that are tractable in the zebrafish model.
Collapse
Affiliation(s)
| | - David W. Raible
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-HNS and Biological Structure, University of Washington, Seattle, WA, United States
| |
Collapse
|
2
|
Liu Z, Hildebrand DGC, Morgan JL, Jia Y, Slimmon N, Bagnall MW. Organization of the gravity-sensing system in zebrafish. Nat Commun 2022; 13:5060. [PMID: 36030280 PMCID: PMC9420129 DOI: 10.1038/s41467-022-32824-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/18/2022] [Indexed: 01/07/2023] Open
Abstract
Motor circuits develop in sequence from those governing fast movements to those governing slow. Here we examine whether upstream sensory circuits are organized by similar principles. Using serial-section electron microscopy in larval zebrafish, we generated a complete map of the gravity-sensing (utricular) system spanning from the inner ear to the brainstem. We find that both sensory tuning and developmental sequence are organizing principles of vestibular topography. Patterned rostrocaudal innervation from hair cells to afferents creates an anatomically inferred directional tuning map in the utricular ganglion, forming segregated pathways for rostral and caudal tilt. Furthermore, the mediolateral axis of the ganglion is linked to both developmental sequence and neuronal temporal dynamics. Early-born pathways carrying phasic information preferentially excite fast escape circuits, whereas later-born pathways carrying tonic signals excite slower postural and oculomotor circuits. These results demonstrate that vestibular circuits are organized by tuning direction and dynamics, aligning them with downstream motor circuits and behaviors.
Collapse
Affiliation(s)
- Zhikai Liu
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Joshua L Morgan
- Dept. of Ophthalmology, Washington University in St. Louis, St. Louis, MO, USA
| | - Yizhen Jia
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas Slimmon
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA
| | - Martha W Bagnall
- Dept. of Neuroscience, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
3
|
Reichenberger I, Caussidier-Dechesne CJ, Straka H. Calretinin Immunoreactivity in the VIIIth Nerve and Inner Ear Endorgans of Ranid Frogs. Front Neurosci 2021; 15:691962. [PMID: 34305520 PMCID: PMC8292642 DOI: 10.3389/fnins.2021.691962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
Calcium-binding proteins are essential for buffering intracellular calcium concentrations, which are critical for regulating cellular processes involved in neuronal computations. One such calcium-binding protein, calretinin, is present in many neurons of the central nervous system as well as those which innervate cranial sensory organs, although often with differential distributions in adjacent cellular elements. Here, we determined the presence and distribution of calretinin-immunoreactivity in the peripheral vestibular and auditory system of ranid frogs. Calretinin-immunoreactivity was observed in ganglion cells innervating the basilar and amphibian papilla, and in a subpopulation of ganglion cells innervating the saccular epithelium. In contrast, none of the ganglion cells innervating the lagena, the utricle, or the three semicircular canals were calretinin-immunopositive, suggesting that this calcium-binding protein is a marker for auditory but not vestibular afferent fibers in the frog. The absence of calretinin in vestibular ganglion cells corresponds with the lack of type I hair cells in anamniote vertebrates, many of which in amniotes are contacted by the neurites of large, calyx-forming calretinin-immunopositive ganglion cells. In the sensory epithelia of all endorgans, the majority of hair cells were strongly calretinin-immunopositive. Weakly calretinin-immunopositive hair cells were distributed in the intermediate region of the semicircular canal cristae, the central part of the saccular macula, the utricular, and lagenar striola and the medial part of the amphibian papilla. The differential presence of calretinin in the frog vestibular and auditory sensory periphery might reflect a biochemical feature related to firing patterns and frequency bandwidths of self-motion versus acoustic stimulus encoding, respectively.
Collapse
Affiliation(s)
| | | | - Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Planegg, Germany
| |
Collapse
|
4
|
Dlugaiczyk J, Gensberger KD, Straka H. Galvanic vestibular stimulation: from basic concepts to clinical applications. J Neurophysiol 2019; 121:2237-2255. [DOI: 10.1152/jn.00035.2019] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Galvanic vestibular stimulation (GVS) plays an important role in the quest to understand sensory signal processing in the vestibular system under normal and pathological conditions. It has become a highly relevant tool to probe neuronal computations and to assist in the differentiation and treatment of vestibular syndromes. Following its accidental discovery, GVS became a diagnostic tool that generates eye movements in the absence of head/body motion. With the possibility to record extracellular and intracellular spikes, GVS became an indispensable method to activate or block the discharge in vestibular nerve fibers by cathodal and anodal currents, respectively. Bernie Cohen, in his attempt to decipher vestibular signal processing, has used this method in a number of hallmark studies that have added to our present knowledge, such as the link between selective electrical stimulation of semicircular canal nerves and the generation of directionally corresponding eye movements. His achievements paved the way for other major milestones including the differential recruitment order of vestibular fibers for cathodal and anodal currents, pronounced discharge adaptation of irregularly firing afferents, potential activation of hair cells, and fiber type-specific activation of central circuits. Previous disputes about the structural substrate for GVS are resolved by integrating knowledge of ion channel-related response dynamics of afferents, fiber type-specific innervation patterns, and central convergence and integration of semicircular canal and otolith signals. On the basis of solid knowledge of the methodology, specific waveforms of GVS are currently used in clinical diagnosis and patient treatment, such as vestibular implants and noisy galvanic stimulation.
Collapse
Affiliation(s)
- Julia Dlugaiczyk
- German Center for Vertigo and Balance Disorders, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Neurology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Hans Straka
- Department Biology II, Ludwig-Maximilians-Universität München, Planegg, Germany
| |
Collapse
|
5
|
Iversen MM, Christensen DA, Parker DL, Holman HA, Chen J, Frerck MJ, Rabbitt RD. Low-intensity ultrasound activates vestibular otolith organs through acoustic radiation force. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2017; 141:4209. [PMID: 28618821 PMCID: PMC5552392 DOI: 10.1121/1.4984287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 06/03/2023]
Abstract
The present study examined the efficacy of 5 MHz low-intensity focused ultrasound (LiFU) as a stimulus to remotely activate inner ear vestibular otolith organs. The otolith organs are the primary sensory apparati responsible for detecting orientation of the head relative to gravity and linear acceleration in three-dimensional space. These organs also respond to loud sounds and vibration of the temporal bone. The oyster toadfish, Opsanus tau, was used to facilitate unobstructed acoustic access to the otolith organs in vivo. Single-unit responses to amplitude-modulated LiFU were recorded in afferent neurons identified as innervating the utricle or the saccule. Neural responses were equivalent to direct mechanical stimulation, and arose from the nonlinear acoustic radiation force acting on the otolithic mass. The magnitude of the acoustic radiation force acting on the otolith was measured ex vivo. Results demonstrate that LiFU stimuli can be tuned to mimic directional forces occurring naturally during physiological movements of the head, loud air conducted sound, or bone conducted vibration.
Collapse
Affiliation(s)
- M M Iversen
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| | - D A Christensen
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| | - D L Parker
- Department of Radiology, University of Utah, 30 North 1900 East, Salt Lake City, Utah 84132, USA
| | - H A Holman
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| | - J Chen
- Communication Sciences and Disorders, University of Utah, 390 South 1530 East, Salt Lake City, Utah 84112, USA
| | - M J Frerck
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| | - R D Rabbitt
- Department of Bioengineering, University of Utah, 36 South Wasatch Drive, Salt Lake City, Utah 84112, USA
| |
Collapse
|
6
|
Straka H, Zwergal A, Cullen KE. Vestibular animal models: contributions to understanding physiology and disease. J Neurol 2016; 263 Suppl 1:S10-23. [PMID: 27083880 PMCID: PMC4833800 DOI: 10.1007/s00415-015-7909-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 12/20/2022]
Abstract
Our knowledge of the vestibular sensory system, its functional significance for gaze and posture stabilization, and its capability to ensure accurate spatial orientation perception and spatial navigation has greatly benefitted from experimental approaches using a variety of vertebrate species. This review summarizes the attempts to establish the roles of semicircular canal and otolith endorgans in these functions followed by an overview of the most relevant fields of vestibular research including major findings that have advanced our understanding of how this system exerts its influence on reflexive and cognitive challenges encountered during daily life. In particular, we highlight the contributions of different animal models and the advantage of using a comparative research approach. Cross-species comparisons have established that the morpho-physiological properties underlying vestibular signal processing are evolutionarily inherent, thereby disclosing general principles. Based on the documented success of this approach, we suggest that future research employing a balanced spectrum of standard animal models such as fish/frog, mouse and primate will optimize our progress in understanding vestibular processing in health and disease. Moreover, we propose that this should be further supplemented by research employing more “exotic” species that offer unique experimental access and/or have specific vestibular adaptations due to unusual locomotor capabilities or lifestyles. Taken together this strategy will expedite our understanding of the basic principles underlying vestibular computations to reveal relevant translational aspects. Accordingly, studies employing animal models are indispensible and even mandatory for the development of new treatments, medication and technical aids (implants) for patients with vestibular pathologies.
Collapse
Affiliation(s)
- Hans Straka
- Department Biology II, Ludwig-Maximilians-University Munich, Grosshaderner Str. 2, 82152, Planegg, Germany. .,German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, Ludwig-Maximilians-University of Munich, Munich, Germany.,Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Kathleen E Cullen
- Department of Physiology, McGill University, Montreal, QC, H3A 0G4, Canada
| |
Collapse
|
7
|
Venturino A, Oda A, Perin P. Hair cell-type dependent expression of basolateral ion channels shapes response dynamics in the frog utricle. Front Cell Neurosci 2015; 9:338. [PMID: 26441519 PMCID: PMC4561340 DOI: 10.3389/fncel.2015.00338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 08/17/2015] [Indexed: 01/27/2023] Open
Abstract
The dynamics of vestibular afferent responses are thought to be strongly influenced by presynaptic properties. In this paper, by performing whole-cell perforated-patch experiments in the frog utricle, we characterized voltage-dependent currents and voltage responses to current steps and 0.3–100 Hz sinusoids. Current expression and voltage responses are strongly related to hair cell type. In particular, voltage responses of extrastriolar type eB (low pass, −3 dB corner at 52.5 ± 12.8 Hz) and striolar type F cells (resonant, tuned at 60 ± 46 Hz) agree with the dynamics (tonic and phasic, respectively) of the afferent fibers they contact. On the other hand, hair cell release (measured with single-sine membrane ΔCm measurements) was linearly related to Ca in both cell types, and therefore did not appear to contribute to dynamics differences. As a tool for quantifying the relative contribution of basolateral currents and other presynaptic factors to afferent dynamics, the recorded current, voltage and release data were used to build a NEURON model of the average extrastriolar type eB and striolar type F hair cell. The model contained all recorded conductances, a basic mechanosensitive hair bundle and a ribbon synapse sustained by stochastic voltage-dependent Ca channels, and could reproduce the recorded hair cell voltage responses. Simulated release obtained from eB-type and F-type models display significant differences in dynamics, supporting the idea that basolateral currents are able to contribute to afferent dynamics; however, release in type eB and F cell models does not reproduce tonic and phasic dynamics, mainly because of an excessive phase lag present in both cell types. This suggests the presence in vestibular hair cells of an additional, phase-advancing mechanism, in cascade with voltage modulation.
Collapse
Affiliation(s)
| | - Adriano Oda
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| | - Paola Perin
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy
| |
Collapse
|
8
|
Huwe JA, Logan GJ, Williams B, Rowe MH, Peterson EH. Utricular afferents: morphology of peripheral terminals. J Neurophysiol 2015; 113:2420-33. [PMID: 25632074 DOI: 10.1152/jn.00481.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/23/2015] [Indexed: 11/22/2022] Open
Abstract
The utricle provides critical information about spatiotemporal properties of head movement. It comprises multiple subdivisions whose functional roles are poorly understood. We previously identified four subdivisions in turtle utricle, based on hair bundle structure and mechanics, otoconial membrane structure and hair bundle coupling, and immunoreactivity to calcium-binding proteins. Here we ask whether these macular subdivisions are innervated by distinctive populations of afferents to help us understand the role each subdivision plays in signaling head movements. We quantified the morphology of 173 afferents and identified six afferent classes, which differ in structure and macular locus. Calyceal and dimorphic afferents innervate one striolar band. Bouton afferents innervate a second striolar band; they have elongated terminals and the thickest processes and axons of all bouton units. Bouton afferents in lateral (LES) and medial (MES) extrastriolae have small-diameter axons but differ in collecting area, bouton number, and hair cell contacts (LES >> MES). A fourth, distinctive population of bouton afferents supplies the juxtastriola. These results, combined with our earlier findings on utricular hair cells and the otoconial membrane, suggest the hypotheses that MES and calyceal afferents encode head movement direction with high spatial resolution and that MES afferents are well suited to signal three-dimensional head orientation and striolar afferents to signal head movement onset.
Collapse
Affiliation(s)
- J A Huwe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - G J Logan
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - B Williams
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - M H Rowe
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| | - E H Peterson
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, Ohio
| |
Collapse
|
9
|
Lambert FM, Straka H. The frog vestibular system as a model for lesion-induced plasticity: basic neural principles and implications for posture control. Front Neurol 2012; 3:42. [PMID: 22518109 PMCID: PMC3324849 DOI: 10.3389/fneur.2012.00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 03/05/2012] [Indexed: 11/13/2022] Open
Abstract
Studies of behavioral consequences after unilateral labyrinthectomy have a long tradition in the quest of determining rules and limitations of the central nervous system (CNS) to exert plastic changes that assist the recuperation from the loss of sensory inputs. Frogs were among the first animal models to illustrate general principles of regenerative capacity and reorganizational neural flexibility after a vestibular lesion. The continuous successful use of the latter animals is in part based on the easy access and identifiability of nerve branches to inner ear organs for surgical intervention, the possibility to employ whole brain preparations for in vitro studies and the limited degree of freedom of postural reflexes for quantification of behavioral impairments and subsequent improvements. Major discoveries that increased the knowledge of post-lesional reactive mechanisms in the CNS include alterations in vestibular commissural signal processing and activation of cooperative changes in excitatory and inhibitory inputs to disfacilitated neurons. Moreover, the observed increase of synaptic efficacy in propriospinal circuits illustrates the importance of limb proprioceptive inputs for postural recovery. Accumulated evidence suggests that the lesion-induced neural plasticity is not a goal-directed process that aims toward a meaningful restoration of vestibular reflexes but rather attempts a survival of those neurons that have lost their excitatory inputs. Accordingly, the reaction mechanism causes an improvement of some components but also a deterioration of other aspects as seen by spatio-temporally inappropriate vestibulo-motor responses, similar to the consequences of plasticity processes in various sensory systems and species. The generality of the findings indicate that frogs continue to form a highly amenable vertebrate model system for exploring molecular and physiological events during cellular and network reorganization after a loss of vestibular function.
Collapse
|
10
|
Zakir M, Wu LQ, Dickman JD. Morphology and innervation of the vestibular lagena in pigeons. Neuroscience 2012; 209:97-107. [PMID: 22387112 DOI: 10.1016/j.neuroscience.2012.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/05/2012] [Accepted: 02/08/2012] [Indexed: 11/26/2022]
Abstract
The morphological characteristics of the pigeon lagena were examined using histology, scanning electron microscopy, and biotinylated dextran amine (BDA) neural tracers. The lagena epithelium was observed to lie partially in a parasagittal plane, but was also U-shaped with orthogonal (lateral) directed tips. Hair cell planar polarities were oriented away from a central reversal line that ran nearly the length of the epithelium. Similar to the vertebrate utricle and saccule, three afferent classes were observed based upon their terminal innervation pattern, which include calyx, dimorph, and bouton fibers. Calyx and dimorph afferents innervated the striola region of the lagena, whereas bouton afferents innervated the extrastriola and a small region of the central striola known as the type II band. Calyx units had large calyceal terminal structures that innervated only type I hair cells. Dimorph afferents innervated both type I and II hair cells, with calyx and bouton terminals. Bouton afferents had the largest most complex innervation patterns and the greatest terminal areas contacting many hair cells.
Collapse
Affiliation(s)
- M Zakir
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
11
|
Cellular and network contributions to vestibular signal processing: impact of ion conductances, synaptic inhibition, and noise. J Neurosci 2011; 31:8359-72. [PMID: 21653841 DOI: 10.1523/jneurosci.6161-10.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Head motion-related sensory signals are transformed by second-order vestibular neurons (2°VNs) into appropriate commands for retinal image stabilization during body motion. In frogs, these 2°VNs form two distinct subpopulations that have either tonic or highly phasic intrinsic properties, essentially compatible with low-pass and bandpass filter characteristics, respectively. In the present study, physiological data on cellular properties of 2°VNs of the grass frog (Rana temporaria) have been used to construct conductance-based spiking cellular models that were fine-tuned by fitting to recorded spike-frequency data. The results of this approach suggest that low-threshold, voltage-dependent potassium channels in phasic and spike-dependent potassium channels in tonic 2°VNs are important contributors to the differential, yet complementary response characteristics of the two vestibular subtypes. Extension of the cellular model with conductance-based synapses allowed simulation of afferent excitation and evaluation of the emerging properties of local feedforward inhibitory circuits. This approach revealed the relative contributions of intrinsic and synaptic factors on afferent signal processing in phasic 2°VNs. Additional extension of the single-cell model to a population model allowed testing under more natural conditions including asynchronous afferent labyrinthine input and synaptic noise. This latter approach indicated that the feedforward inhibition from the local inhibitory network acts as a high-pass filter, which reinforces the impact of the intrinsic membrane properties of phasic 2°VNs on peak response amplitude and timing. Thus, the combination of cellular and network properties enables phasic 2°VNs to work as a noise-resistant detector, suitable for central processing of short-duration vestibular signals.
Collapse
|
12
|
Wu LQ, Dickman JD. Magnetoreception in an avian brain in part mediated by inner ear lagena. Curr Biol 2011; 21:418-23. [PMID: 21353559 DOI: 10.1016/j.cub.2011.01.058] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 12/29/2010] [Accepted: 01/24/2011] [Indexed: 12/26/2022]
Abstract
Many animals use the Earth's geomagnetic field for orientation and navigation, but the neural mechanisms underlying that ability remain enigmatic. Support for at least two avian magnetoreceptors exists, including magnetically activated photochemicals in the retina and ferrimagnetic particles in the beak. The possibility of a third magnetoreceptor in the inner ear lagena organs has been suggested. The brain must process magnetic receptor information to derive constructs representing directional heading and geosurface location. Here, we used the c-Fos transcription factor, a marker for activated neurons, to discover where in the brain computations related to a specific set of magnetic field stimulations occur. We found that neural activations in discrete brain loci known to be involved in orientation, spatial memory, and navigation may constitute a major magnetoreception pathway in birds. We also found, through ablation studies, that much of the observed pathway appears to receive magnetic information from the pigeon lagena receptor organs.
Collapse
Affiliation(s)
- Le-Qing Wu
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
13
|
MONTGOMERY JC, WINDSOR S, BASSETT D. Behavior and physiology of mechanoreception: separating signal and noise. Integr Zool 2009; 4:3-12. [DOI: 10.1111/j.1749-4877.2008.00130.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
|
15
|
Jones TA, Jones SM, Hoffman LF. Resting discharge patterns of macular primary afferents in otoconia-deficient mice. J Assoc Res Otolaryngol 2008; 9:490-505. [PMID: 18661184 DOI: 10.1007/s10162-008-0132-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2007] [Accepted: 07/07/2008] [Indexed: 10/21/2022] Open
Abstract
Vestibular primary afferents in the normal mammal are spontaneously active. The consensus hypothesis states that such discharge patterns are independent of stimulation and depend instead on excitation by vestibular hair cells due to background release of synaptic neurotransmitter. In the case of otoconial sensory receptors, it is difficult to test the independence of resting discharge from natural tonic stimulation by gravity. We examined this question by studying discharge patterns of single vestibular primary afferent neurons in the absence of gravity stimulation using two mutant strains of mice that lack otoconia (OTO-; head tilt, het-Nox3, and tilted, tlt-Otop1). Our findings demonstrated that macular primary afferent neurons exhibit robust resting discharge activity in OTO- mice. Spike interval coefficient of variation (CV = SD/mean spike interval) values reflected both regular and irregular discharge patterns in OTO- mice, and the range of values for rate-normalized CV was similar to mice and other mammals with intact otoconia although there were proportionately fewer irregular fibers. Mean discharge rates were slightly higher in otoconia-deficient strains even after accounting for proportionately fewer irregular fibers [OTO- = 75.4 +/- 31.1(113) vs OTO+ = 68.1 +/- 28.5(143) in sp/s]. These results confirm the hypothesis that resting activity in macular primary afferents occurs in the absence of ambient stimulation. The robust discharge rates are interesting in that they may reflect the presence of a functionally 'up-regulated' tonic excitatory process in the absence of natural sensory stimulation.
Collapse
Affiliation(s)
- T A Jones
- Communication Sciences and Disorders, School of Allied Health Sciences, East Carolina University, Health Sciences Building, Rm 3310P, Greenville, NC 27858-4353, USA.
| | | | | |
Collapse
|
16
|
Haque A, Zakir M, Dickman JD. Recovery of gaze stability during vestibular regeneration. J Neurophysiol 2007; 99:853-65. [PMID: 18045999 DOI: 10.1152/jn.01038.2007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many motion related behaviors, such as gaze stabilization, balance, orientation, and navigation largely depend on a properly functioning vestibular system. After vestibular insult, many of these responses are compromised but can return during the regeneration of vestibular receptors and afferents as is known to occur in birds, reptiles, and amphibians. Here we characterize gaze stability in pigeons to rotational motion during regeneration after complete bilateral vestibular loss via an ototoxic antibiotic. Immediate postlesion effects included severe head oscillations, postural ataxia, and total lack of gaze control. We found that these abnormal behaviors gradually subsided, and gaze stability slowly returned to normal function according to a temporal sequence that lasted several months. We also found that the dynamic recovery of gaze function during regeneration was not homogeneous for all types of motion. Instead high-frequency motion stability was first achieved, followed much later by slow movement stability. In addition, we found that initial gaze stability was established using almost exclusive head-response components with little eye-movement contribution. However, that trend reversed as recovery progressed so that when gaze stability was complete, the eye component had increased and the head response had decreased to levels significantly different from that observed in normal birds. This was true even though the head-fixed VOR response recovered normally. Recovery of gaze stability coincided well with the three stage temporal sequence of morphologic regeneration previously described by our laboratory.
Collapse
Affiliation(s)
- Asim Haque
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
17
|
Li A, Xue J, Peterson EH. Architecture of the mouse utricle: macular organization and hair bundle heights. J Neurophysiol 2007; 99:718-33. [PMID: 18046005 DOI: 10.1152/jn.00831.2007] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hair bundles are critical to mechanotransduction by vestibular hair cells, but quantitative data are lacking on vestibular bundles in mice or other mammals. Here we quantify bundle heights and their variation with macular locus and hair cell type in adult mouse utricular macula. We also determined that macular organization differs from previous reports. The utricle has approximately 3,600 hair cells, half on each side of the line of polarity reversal (LPR). A band of low hair cell density corresponds to a band of calretinin-positive calyces, i.e., the striola. The relation between the LPR and the striola differs from previous reports in two ways. First, the LPR lies lateral to the striola instead of bisecting it. Second, the LPR follows the striolar trajectory anteriorly, but posteriorly it veers from the edge of the striola to reach the posterior margin of the macula. Consequently, more utricular bundles are oriented mediolaterally than previously supposed. Three hair cell classes are distinguished in calretinin-stained material: type II hair cells, type ID hair cells contacting calretinin-negative (dimorphic) afferents, and type IC hair cells contacting calretinin-positive (calyceal) afferents. They differ significantly on most bundle measures. Type II bundles have short stereocilia. Type IC bundles have kinocilia and stereocilia of similar heights, i.e., KS ratios (ratio of kinocilium to stereocilia heights) approximately 1, unlike other receptor classes. In contrast to these class-specific differences, bundles show little regional variation except that KS ratios are lowest in the striola. These low KS ratios suggest that bundle stiffness is greater in the striola than in the extrastriola.
Collapse
Affiliation(s)
- A Li
- Department of Biological Sciences and Neuroscience Program, Ohio University, Athens, OH 45701, USA
| | | | | |
Collapse
|
18
|
Abstract
The ability of hair bundles to signal head movements and sounds depends significantly on their structure, but a quantitative picture of bundle structure has proved elusive. The problem is acute for vestibular organs because their hair bundles exhibit complex morphologies that vary with endorgan, hair cell type, and epithelial locus. Here we use autocorrelation analysis to quantify stereociliary arrays (the number, spacing, and distribution of stereocilia) on hair cells of the turtle utricle. Our first goal was to characterize zonal variation across the macula, from medial extrastriola, through striola, to lateral extrastriola. This is important because it may help explain zonal variation in response dynamics of utricular hair cells and afferents. We also use known differences in type I and II bundles to estimate array characteristics of these two hair cell types. Our second goal was to quantify variation in array orientation at single macular loci and use this to estimate directional tuning in utricular afferents. Our major findings are that, of the features measured, array width is the most distinctive feature of striolar bundles, and within the striola there are significant, negatively correlated gradients in stereocilia number and spacing that parallel gradients in bundle heights. Together with previous results on stereocilia number and bundle heights, our results support the hypothesis that striolar hair cells are specialized to signal high-frequency/acceleration head movements. Finally, there is substantial variation in bundle orientation at single macular loci that may help explain why utricular afferents respond to stimuli orthogonal to their preferred directions.
Collapse
Affiliation(s)
- M H Rowe
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
19
|
Xue J, Peterson EH. Hair Bundle Heights in the Utricle: Differences Between Macular Locations and Hair Cell Types. J Neurophysiol 2006; 95:171-86. [PMID: 16177175 DOI: 10.1152/jn.00800.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hair bundle structure is a major determinant of bundle mechanics and thus of a hair cell's ability to encode sound and head movement stimuli. Little quantitative information about bundle structure is available for vestibular organs. Here we characterize hair bundle heights in the utricle of a turtle, Trachemys scripta. We visualized bundles from the side using confocal images of utricular slices. We measured kinocilia and stereocilia heights and array length (distance from tall to short end of bundle), and we calculated a KS ratio (kinocilium height/height of the tallest stereocilia) and bundle slope (height fall-off from tall to short end of bundle). To ensure that our measurements reflect in vivo dimensions as closely as possible, we used fixed but undehydrated utricular slices, and we measured heights in three dimensions by tracing kinocilia and stereocilia through adjacent confocal sections. Bundle heights vary significantly with position on the utricular macula and with hair cell type. Type II hair cells are found throughout the macula. We identified four subgroups that differ in bundle structure: zone 1 (lateral extrastriola), striolar zone 2, striolar zone 3, and zone 4 (medial extrastriola). Type I hair cells are confined to striolar zone 3. They have taller stereocilia, longer arrays, lower KS ratios, and steeper slopes than do neighboring (zone 3) type II bundles. Models and experiments suggest that these location- and type-specific differences in bundle heights will yield parallel variations in bundle mechanics. Our data also raise the possibility that differences in bundle structure and mechanics will help explain location- and type-specific differences in the physiological profiles of utricular afferents, which have been reported in frogs and mammals.
Collapse
Affiliation(s)
- Jingbing Xue
- Department of Biological Sciences, Irvine Hall, Ohio University, Athens, OH 45701, USA
| | | |
Collapse
|
20
|
Straka H, Beraneck M, Rohregger M, Moore LE, Vidal PP, Vibert N. Second-Order Vestibular Neurons Form Separate Populations With Different Membrane and Discharge Properties. J Neurophysiol 2004; 92:845-61. [PMID: 15044516 DOI: 10.1152/jn.00107.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Membrane and discharge properties were determined in second-order vestibular neurons (2°VN) in the isolated brain of grass frogs. 2°VN were identified by monosynaptic excitatory postsynaptic potentials after separate electrical stimulation of the utricular nerve, the lagenar nerve, or individual semicircular canal nerves. 2°VN were classified as vestibulo-ocular or -spinal neurons by the presence of antidromic spikes evoked by electrical stimulation of the spinal cord or the oculomotor nuclei. Differences in passive membrane properties, spike shape, and discharge pattern in response to current steps and ramp-like currents allowed a differentiation of frog 2°VN into two separate, nonoverlapping types of vestibular neurons. A larger subgroup of 2°VN (78%) was characterized by brief, high-frequency bursts of up to five spikes and the absence of a subsequent continuous discharge in response to positive current steps. In contrast, the smaller subgroup of 2°VN (22%) exhibited a continuous discharge with moderate adaptation in response to positive current steps. The differences in the evoked spike discharge pattern were paralleled by differences in passive membrane properties and spike shapes. Despite these differences in membrane properties, both types, i.e., phasic and tonic 2°VN, occupied similar anatomical locations and displayed similar afferent and efferent connectivities. Differences in response dynamics of the two types of 2°VN match those of their pre- and postsynaptic neurons. The existence of distinct populations of 2°VN that differ in response dynamics but not in the spatial organization of their afferent inputs and efferent connectivity to motor targets suggests that frog 2°VN form one part of parallel vestibulomotor pathways.
Collapse
Affiliation(s)
- H Straka
- Department of Physiology, Ludwig-Maximilians-Universität Munchen, 80336 Munich, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
The sensory end organs of the inner ear of the lungfish, Protopterus, were examined using scanning and transmission electron microscopy. The utricle has a structure and hair cell orientation pattern that are typical for vertebrates, although the hair cells are unusually large. There are the typical three semicircular canals extending from the utricle, with the typical hair cell orientations, but the lateral canal sensory crista looks like the "hemicrista" of some amphibians and amniotes, lacking a saddle-shaped flare on one wall of the ampulla. Unlike most vertebrates that have the saccule and lagena as two separate pouches ventral to the utricle, the lungfish has a single large ventral pouch that contains a single large pasty otoconial mass. This mass covers two hair cell patches, each like a striola with prominent hair cell ciliary bundles, that are presumed to represent saccular and lagenar maculae. However, these two major sensory patches are not completely separate maculae because they lie within a less densely populated field of smaller hair cells, which forms an extrastriolar region that surrounds and fills the region between the two striolae of higher hair cell density. The more caudal lagenar striola is a vertically elongated stripe with hair cell orientation vectors facing antiparallel on either side of a midline drawn vertically along the macula, resembling the macula lagena of some bony fishes but not of tetrapods. The more rostral saccular striola is a curving band with hair cell orientation vectors facing away from its midline, but because this macula curves in three dimensions, the vectors at the rostral end of this striola are oriented mediolaterally, whereas the vectors on the caudal half of this striola are oriented dorsoventrally. The presence of a macula neglecta was confirmed near the posterior canal as a tiny single patch of a few dozen hair cells with all the cell orientations directed caudally. The ciliary bundles on the cells in the striolar-like regions of all of three otolithic organs average over 80 cilia, a number far greater than for any other fish studied to date. The features of the single sacculolagenar pouch with separate striolar-like regions, the cellular orientation in the otolith organs, and the large cells and ciliary bundles in Protopterus also were observed in specimens of the other extant lungfish genera, Lepidosiren and Neoceratodus.
Collapse
Affiliation(s)
- Christopher Platt
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
| | | | | |
Collapse
|
22
|
Dickman JD, Huss D, Lowe M. Morphometry of otoconia in the utricle and saccule of developing Japanese quail. Hear Res 2004; 188:89-103. [PMID: 14759573 DOI: 10.1016/s0378-5955(03)00377-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 11/11/2003] [Indexed: 10/26/2022]
Abstract
The development of otoconia in the utricular and saccular maculae from initial embryonic formation to adult stages was examined in Japanese quails. Both the morphology and size of the otoconia were quantified at different developmental stages. It was observed that the otoconia were initially formed on embryologic stage E5 in the saccule and E6 in the utricle. Otolith mass areas increased in a sigmoidal growth pattern, with saccular otolith areas being smaller than the utricular mass areas. Saccular otolith masses reached adult values at embryonic stage E12 and utricular areas reached adult values at post-hatch day 7. Mature individual otoconia were characterized by a barrel shape with two trihedral faceted ends. However, initial formation of otoconia at E5 (saccular) and E6 (utricular) maculae was characterized by a double fluted morphology that consisted of an hourglass shape with extended fins forming trihedral angles of 120 degrees. Double fluted otoconia rapidly filled, so that by embryonic day 8 mature otoconia dominated the maculae for the remainder of development through adulthood. Thus, a progression from double fluted to mature forms was noted. Mature utricular otoconia in adult quails averaged 11 microm in length and 5 microm in width, with length/width ratios of approximately 2.5:1, for all size ranges. Saccular otoconia were smaller, having about 70% the size of utricular otoconia in both length and width. During development, the average size and range of individual otoconia increased nearly linearly for both otolith organs. In the utricular macula, large otoconia were concentrated in the lateral regions of the epithelium. In contrast, otoconia of various sizes were distributed uniformly across the surface of the saccular macula.
Collapse
Affiliation(s)
- J David Dickman
- Department of Otolaryngology, Washington University, 660 South Euclid, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
23
|
Straka H, Holler S, Goto F, Kolb FP, Gilland E. Differential spatial organization of otolith signals in frog vestibular nuclei. J Neurophysiol 2003; 90:3501-12. [PMID: 12853438 DOI: 10.1152/jn.00372.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation maps of pre- and postsynaptic field potential components evoked by separate electrical stimulation of utricular, lagenar, and saccular nerve branches in the isolated frog hindbrain were recorded within a stereotactic outline of the vestibular nuclei. Utricular and lagenar nerve-evoked activation maps overlapped strongly in the lateral and descending vestibular nuclei, whereas lagenar amplitudes were greater in the superior vestibular nucleus. In contrast, the saccular nerve-evoked activation map coincided largely with the dorsal nucleus and the adjacent dorsal part of the lateral vestibular nucleus, corroborating a major auditory and lesser vestibular function of the frog saccule. The stereotactic position of individual second-order otolith neurons matched the distribution of the corresponding otolith nerve-evoked activation maps. Furthermore, particular types of second-order utricular and lagenar neurons were clustered with particular types of second-order canal neurons in a topology that anatomically mirrored the preferred convergence pattern of afferent otolith and canal signals in second-order vestibular neurons. Similarities in the spatial organization of functionally equivalent types of second-order otolith and canal neurons between frog and other vertebrates indicated conservation of a common topographical organization principle. However, the absence of a precise afferent sensory topography combined with the presence of spatially segregated groups of particular second-order vestibular neurons suggests that the vestibular circuitry is organized as a premotor map rather than an organotypical sensory map. Moreover, the conserved segmental location of individual vestibular neuronal phenotypes shows linkage of individual components of vestibulomotor pathways with the underlying genetically specified rhombomeric framework.
Collapse
Affiliation(s)
- Hans Straka
- Physiologisches Institut, 80336 München, Germany.
| | | | | | | | | |
Collapse
|
24
|
Abstract
Biotinylated dextran amine (BDA) was used to retrogradely label afferents innervating the utricular macula in adult pigeons. The pigeon utriclar macula consists of a large rectangular-shaped neuroepithelium with a dorsally curved anterior edge and an extended medioposterior tail. The macula could be demarcated into several regions based on cytoarchitectural differences. The striola occupied 30% of the macula and contained a large density of type I hair cells with fewer type II hair cells. Medial and lateral extrastriola zones were located outside the striola and contained only type II hair cells. A six- to eight-cell-wide band of type II hair cells existed near the center of the striola. The reversal line marked by the morphological polarization of hair cells coursed throughout the epithelium, near the peripheral margin, and through the center of the type II band. Calyx afferents innervated type I hair cells with calyceal terminals that contained between 2 and 15 receptor cells. Calyx afferents were located only in the striola region, exclusive of the type II band, had small total fiber innervation areas and low innervation densities. Dimorph afferents innervated both type I and type II hair cells with calyceal and bouton terminals and were primarily located in the striola region. Dimorph afferents had smaller calyceal terminals with few type I hair cells, extended fiber branches with bouton terminals and larger innervation areas. Bouton afferents innervated only type II hair cells in the extrastriola and type II band regions. Bouton afferents innervating the type II band had smaller terminal fields with fewer bouton terminals and smaller innervation areas than fibers located in the extrastriolar zones. Bouton afferents had the most bouton terminals on the longest fibers, the largest innervation areas with the highest innervation densities of all afferents. Among all afferents, smaller terminal innervation fields were observed in the striola and large fields were located in the extrastriola. The cellular organization and innervation patterns of the utricular maculae in birds appear to represent an organ in adaptive evolution, different from that observed for amphibians or mammals.
Collapse
Affiliation(s)
- Xiaohong Si
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, Mississippi 39211, USA
| | | | | |
Collapse
|
25
|
Abstract
The innervation patterns of vestibular saccular afferents were quantitatively investigated in pigeons using biotinylated dextran amine as a neural tracer and three-dimensional computer reconstruction. Type I hair cells were found throughout a large portion of the macula, with the highest density observed in the striola. Type II hair cells were located throughout the macula, with the highest density in the extrastriola. Three classes of afferent innervation patterns were observed, including calyx, dimorph, and bouton units, with 137 afferents being anatomically reconstructed and used for quantitative comparisons. Calyx afferents were located primarily in the striola, innervated a number of type I hair cells, and had small innervation areas. Most calyx afferent terminal fields were oriented parallel to the anterior-posterior axis and the morphological polarization reversal line. Dimorph afferents were located throughout the macula, contained fewer type I hair cells in a calyceal terminal than calyx afferents and had medium sized innervation areas. Bouton afferents were restricted to the extrastriola, with multi-branching fibers and large innervation areas. Most of the dimorph and bouton afferents had innervation fields that were oriented dorso-ventrally but were parallel to the neighboring reversal line. The organizational morphology of the saccule was found to be distinctly different from that of the avian utricle or lagena otolith organs and appears to represent a receptor organ undergoing evolutionary adaptation toward sensing linear motion in terrestrial and aerial species.
Collapse
Affiliation(s)
- M Zakir
- Research Department, Central Institute for the Deaf, Washington University, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
26
|
Brichta AM, Aubert A, Eatock RA, Goldberg JM. Regional analysis of whole cell currents from hair cells of the turtle posterior crista. J Neurophysiol 2002; 88:3259-78. [PMID: 12466445 DOI: 10.1152/jn.00770.2001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The turtle posterior crista is made up of two hemicristae, each consisting of a central zone containing type I and type II hair cells and a surrounding peripheral zone containing only type II hair cells and extending from the planum semilunatum to the nonsensory torus. Afferents from various regions of a hemicrista differ in their discharge properties. To see if afferent diversity is related to the basolateral currents of the hair cells innervated, we selectively harvested type I and II hair cells from the central zone and type II hair cells from two parts of the peripheral zone, one near the planum and the other near the torus. Voltage-dependent currents were studied with the whole cell, ruptured-patch method and characterized in voltage-clamp mode. We found regional differences in both outwardly and inwardly rectifying voltage-sensitive currents. As in birds and mammals, type I hair cells have a distinctive outwardly rectifying current (I(K,L)), which begins activating at more hyperpolarized voltages than do the outward currents of type II hair cells. Activation of I(K,L) is slow and sigmoidal. Maximal outward conductances are large. Outward currents in type II cells vary in their activation kinetics. Cells with fast kinetics are associated with small conductances and with partial inactivation during 200-ms depolarizing voltage steps. Almost all type II cells in the peripheral zone and many in the central zone have fast kinetics. Some type II cells in the central zone have large outward currents with slow kinetics and little inactivation. Although these currents resemble I(K,L), they can be distinguished from the latter both electrophysiologically and pharmacologically. There are two varieties of inwardly rectifying currents in type II hair cells: activation of I(K1) is rapid and monoexponential, whereas that of I(h) is slow and sigmoidal. Many type II cells either have both inward currents or only have I(K1); very few cells only have I(h). Inward currents are less conspicuous in type I cells. Type II cells near the torus have smaller outwardly rectifying currents and larger inwardly rectifying currents than those near the planum, but the differences are too small to account for variations in discharge properties of bouton afferents innervating the two regions of the peripheral zone. The large outward conductances seen in central cells, by lowering impedances, may contribute to the low rotational gains of some central-zone afferents.
Collapse
Affiliation(s)
- Alan M Brichta
- Department of Otolaryngology-Head and Neck Surgery, Pharmacology and Physiology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
27
|
Kondo K, Sagara H, Hirosawa K, Kaga K, Matsushima S, Mabuchi K, Uchimura H, Watanabe T. Hair cell development in vivo and in vitro: analysis by using a monoclonal antibody specific to hair cells in the chick inner ear. J Comp Neurol 2002; 445:176-98. [PMID: 11891661 DOI: 10.1002/cne.10159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to establish a hair cell-specific marker and a convenient explant culture system for developing chick otocysts to facilitate in vivo and in vitro studies focusing on hair cell genesis in the inner ear. To achieve this, a hair cell-specific monoclonal antibody, 2A7, was generated by immunizing chick inner ear tissues to a mouse. Through the use of immunofluorescence and immunoelectron microscopy, it was shown that 2A7 immunoreactivity (2A7-IR) was primarily restricted to the apical region of inner ear hair cells, including stereocilia, kinocilia, apical membrane amongst the extending cilia, and superficial layer of the cuticular plate. Although the 2A7 antibody immunolabeled basically all of the hair cells in the posthatch chick inner ear, two different patterns of 2A7-IR were observed; hair cells located in the striolar region of the utricular macula, which consist of two distinct cell types identifiable on the basis of the type of nerve ending, Type I and II hair cells, showed labeling restricted to the basal end of the hair bundles. On the other hand, hair cells in the extrastriolar region, which are exclusively of Type II, showed labeling extending over virtually the entire length of the bundles. These findings raised the possibility that chick vestibular Type II hair cells, characterized by their bouton-type afferent nerve endings, can be divided into two subpopulations. Analysis of developing inner ear by using the 2A7 antibody revealed that this antibody also recognizes newly differentiated immature hair cells. Thus, the 2A7 antibody is able to recognize both immature and mature hair cells in vivo. The developmental potential of embryonic otocysts in vitro was then assessed by using explant cultures as a model. In this study, conventional otocyst explant cultures were modified by placing the tissues on floating polycarbonate filters on culture media, thereby allowing the easy manipulation of explants. In these cultures, 2A7-positive hair cells were differentiated from dividing precursor cells in vitro on the same schedule as in vivo. Furthermore, it was found that hair cells with both types of 2A7-IR were generated in culture as in vivo, indicating that a maturational process of hair cells also occurred. All these results as presented here suggest that the 2A7 monoclonal antibody as a hair cell-specific marker together with the culture system could be a potential tool in analysis of mechanisms underlying hair cell development.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/analysis
- Antibody Specificity
- Cell Division
- Cells, Cultured
- Chick Embryo/chemistry
- Chick Embryo/embryology
- Chick Embryo/growth & development
- Chick Embryo/ultrastructure
- Chickens
- Culture Techniques
- Epitopes/immunology
- Hair Cells, Auditory, Inner/chemistry
- Hair Cells, Auditory, Inner/embryology
- Hair Cells, Auditory, Inner/growth & development
- Hair Cells, Auditory, Inner/ultrastructure
- Mice
- Mice, Inbred BALB C
- Staining and Labeling
- Stem Cells/chemistry
- Stem Cells/cytology
- Stem Cells/ultrastructure
Collapse
Affiliation(s)
- Kenji Kondo
- Department of Clinical Pathology, Kyorin University School of Medicine, Tokyo 181-8611, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Edwards CJ, Kelley DB. Auditory and lateral line inputs to the midbrain of an aquatic anuran: neuroanatomic studies in Xenopus laevis. J Comp Neurol 2001; 438:148-62. [PMID: 11536185 PMCID: PMC3493254 DOI: 10.1002/cne.1306] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Computation of rate in auditory signals is essential to call recognition in anurans. This task is ascribed to a group of central nervous system nuclei in the dorsal midbrain or torus semicircularis, homologous to the inferior colliculus of mammals. We have mapped the connections of the subnuclei of the torus semicircularis in Xenopus laevis to determine which receive auditory and which receive lateral line information. Relative to terrestrial anurans, the torus of X. laevis is hypertrophied and occupies the entire caudal, dorsal midbrain. Auditory input to the torus, that arising directly from the dorsal medullary nucleus, is present only in the laminar nucleus. The principal and magnocellular nuclei receive their input from the lateral line nucleus of the medulla. All three nuclei of the torus also have reciprocal connections with the superior olive and the nucleus of the lateral lemniscus. Ascending efferents from all three nuclei of the torus innervate central and lateral thalamic nuclei, and all have a weak reciprocal connection with the posterior thalamus. The laminar and magnocellular nuclei have reciprocal connections with the ventral thalamus, and all three nuclei of the torus receive descending input from the anterior entopeduncular nucleus. The laminar and magnocellular nuclei also receive descending input from the preoptic area. Based on our identification of toral nuclei and these results we assign a major function for the detection of water-borne sounds to the laminar nucleus and a major function for the detection of near field disturbances in water pressure to the principal and magnocellular nuclei.
Collapse
Affiliation(s)
| | - Darcy B. Kelley
- Correspondence to: Darcy B. Kelley, Department of Biological Sciences, MC 2432, Columbia University, New York, NY 10027.
| |
Collapse
|
29
|
Harada Y, Kasuga S, Tamura S. Comparison and evolution of the lagena in various animal species. Acta Otolaryngol 2001; 121:355-63. [PMID: 11425201 DOI: 10.1080/000164801300102770] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The structure of the vestibular organs of the teleost fish (bluegill), newts (Japanese fire-belly newt), frogs (black-spotted pond frog), snapping turtles and birds (chicks) was morphologically compared, with particular attention to the lagena macula, and the differences between animal species with relation to evolution were considered. Teleost fish had no striola on the lagena macula. The striola of newts were short and restricted to the central area of the macula, but those of frogs, snapping turtles and chicks extended from the anterior to posterior edges of the macula. This indicates that the frog is more highly evolved than the newt. The length of the kinocilium of sensory hairs was equal to that of the longest stereocilium in teleost fish and newts, but the kinocilia of frogs, snapping turtles and chicks were longer than the longest stereocilium. This indicates that the function of the lagena of teleost fish and newts is for hearing whilst in the other animals they are for posture. The diameter of the sensory hair bundles is small in teleost fish and frogs, but large in newts and snapping turtles. This indicates that the sensitivity of the sensory cells of the lagena towards outer force is low in teleost fish and frogs, high in newts and snapping turtles and intermediate in birds. The lagena of snapping turtles protrudes from the basilar papilla into the vestibule but the lagena of chicks lies on the tip of the long projecting basilar papilla. From observation of the locations of lagenae it is natural to speculate that there must have been some species of animal now extinct that had the evolving location of the lagena prior to that of chicks. In future it will be very interesting and useful to identify this extinct animal using DNA techniques.
Collapse
Affiliation(s)
- Y Harada
- Hiroshima University, Higashi-Hiroshima, Japan
| | | | | |
Collapse
|
30
|
Cortopassi KA, Lewis ER. A comparison of the linear tuning properties of two classes of axons in the bullfrog lagena. BRAIN, BEHAVIOR AND EVOLUTION 2000; 51:331-48. [PMID: 9623909 DOI: 10.1159/000006546] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Various vertebrate inner-ear end organs appear to have switched their sensory function between equilibrium sensing and acoustic sensing over the courses of various lines of evolution. It is possible that all that is required to make this transition is to provide an end organ with access to the appropriate stimulus mode and frequency range. If, as we believe, however, the adaptive advantage of an acoustic sensory system lies in its ability to sort the total acoustic input into components that correspond to individual acoustic sources, and the adaptive advantage of an equilibrium sensory system lies in its ability to compute the total orientation and motion of the head without regard to the individual sources contributing to that orientation and motion, then it is easy to argue that the differences between acoustic and equilibrium sensors should be more profound than simply access to the appropriate stimuli. Effective signal-sorting requires high resolution in both time and frequency; to achieve this resolution, a peripheral tuning structure must be one of high dynamic order (i.e., constructed from multiple independent energy storage elements). If the peripheral tuning structure simply converts head acceleration to head displacement, velocity, or jerk (i.e., provides one or two steps of integration or differentiation with respect to time, where one energy storage element per step is required), then high dynamic order is inappropriate. Because the bullfrog lagena possesses both acoustic and equilibrium sensitive regions, it is especially suited for comparing these two sensor types and addressing the question of dynamic order of tuning. In this paper we report observations of the linear tuning properties of bullfrog lagenar primary afferent nerve fibers obtained by stimulating the lagena with random, dorsoventral micromotion over the frequency range from 10 Hz to 1.0 kHz. Tuning curves obtained by reverse correlation analysis and discrete Fourier transformation were used to estimate the dynamic order of each fiber's associated peripheral tuning structure. We found two classes of lagenar afferent axons--those with lowpass amplitude tuning characteristics (44 units) and those with bandpass amplitude tuning characteristics (73 units). Lowpass units were found to originate at the equilibrium region of the macula, and they exhibited low dynamic order--summed low- and high-frequency slopes (absolute values) ranged from 10 dB/decade to 64 dB/decade, implying dynamic orders of less than one to three (the modal value was equal to one). Bandpass units were found to originate at the acoustic region of the macula, and they exhibited higher dynamic order than lowpass units--summed low- and high-frequency slopes (absolute values) ranged from 53 dB/decade to 185 dB/decade, implying dynamic orders of three to nine (the modal value was equal to five). It appears that while lagenar equilibrium and acoustic sensors both possess access to signals in the acoustic frequency range, lagenar acoustic sensors are tuned by means of peripheral structures with markedly greater dynamic order and consequently markedly greater physical complexity. These results suggest that steep-sloped (high-dynamic-order) tuning properties reflect special adaptations in acoustic sensors not found in equilibrium sensors, and that any evolutionary transition between the two sensor types must have involved profound structural changes.
Collapse
Affiliation(s)
- K A Cortopassi
- Joint Graduate Group in Bioengineering, University of California at Berkeley, 94720, USA
| | | |
Collapse
|
31
|
Smotherman MS, Narins PM. Hair cells, hearing and hopping: a field guide to hair cell physiology in the frog. J Exp Biol 2000; 203:2237-46. [PMID: 10887064 DOI: 10.1242/jeb.203.15.2237] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
For more than four decades, hearing in frogs has been an important source of information for those interested in auditory neuroscience, neuroethology and the evolution of hearing. Individual features of the frog auditory system can be found represented in one or many of the other vertebrate classes, but collectively the frog inner ear represents a cornucopia of evolutionary experiments in acoustic signal processing. The mechano-sensitive hair cell, as the focal point of transduction, figures critically in the encoding of acoustic information in the afferent auditory nerve. In this review, we provide a short description of how auditory signals are encoded by the specialized anatomy and physiology of the frog inner ear and examine the role of hair cell physiology and its influence on the encoding of sound in the frog auditory nerve. We hope to demonstrate that acoustic signal processing in frogs may offer insights into the evolution and biology of hearing not only in amphibians but also in reptiles, birds and mammals, including man.
Collapse
Affiliation(s)
- M S Smotherman
- Department of Biology, University of California, Riverside, CA 92521-0427, USA
| | | |
Collapse
|
32
|
Ricci AJ, Correia MJ. Electrical response properties of avian lagena type II hair cells: a model system for vestibular filtering. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:R943-53. [PMID: 10198371 DOI: 10.1152/ajpregu.1999.276.4.r943] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Data presented represent the first electrical recordings from avian lagena type II hair cells. The perforated-patch variant of the whole cell recording technique was used to investigate how the macroscopic currents shaped the voltage response of the hair cells. Voltage-clamp data separated cells into two broad classes on the basis of differences in activation rates, rates and degree of inactivation, and pharmacological sensitivity. Current-clamp recordings revealed low-quality membrane voltage oscillations (Qc < 1) during pulse current injections. Oscillation frequency correlated with activation rate of the macroscopic currents. The quality of membrane oscillations (Qc) varied linearly with frequency for cells with little inactivation. For cells with rapid inactivation, no relationship was found between Qc and frequency. Rapid inactivation may serve to extend the bandwidth of vestibular hair cells. The frequency measured from voltage responses to pulsed currents may reflect the corner frequency of the cell. The filtering properties of avian lagena hair cells are like those found in all other vestibular end organs, suggesting that the electrical membrane properties of these cells are not responsible for specializing them to a particular stimulus modality.
Collapse
Affiliation(s)
- A J Ricci
- Department of Otolaryngology, University of Texas Medical Branch at Galveston, Galveston, Texas 77555-1031, USA.
| | | |
Collapse
|
33
|
Lewis ER, Narins PM. The Acoustic Periphery of Amphibians: Anatomy and Physiology. COMPARATIVE HEARING: FISH AND AMPHIBIANS 1999. [DOI: 10.1007/978-1-4612-0533-3_4] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
López-Anaya VL, López-Maldonado D, Serrano EE. Development of the Xenopus laevis VIIIth cranial nerve: increase in number and area of axons of the saccular and papillar branches. J Morphol 1997; 234:263-76. [PMID: 9373966 PMCID: PMC7183393 DOI: 10.1002/(sici)1097-4687(199712)234:3<263::aid-jmor5>3.0.co;2-a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Development of three branches of the VIIIth cranial nerve was examined in the anuran, Xenopus laevis. Sectioned tissue from the saccular, amphibian papillar, and basilar papillar branches of stage 52 larvae, 1 day postmetamorphosis juveniles, and 2-year adult animals was analyzed under the light microscope with a digital image analysis system. Numbers and cross-sectional areas of myelinated axons were measured in five to six nerve sections at each developmental age for each of the three branches. In all three branches, results show a significant increase in axon numbers between larval stage 52 and juvenile ages and negligible increase in axon number between the juvenile and adult ages. There were differences in the average number of axons between the saccular (704.4 +/- 39.5; n = 5), amphibian papillar (508.4 +/- 35.0; n = 5), and basilar papillar (316.0 +/- 7.0; n = 5) branches of adult animals. Myelinated axons increase at an estimated rate of 11.7, 15.1, and 6.2 axons per day for the saccular, amphibian papillar, and basilar papillar branches, respectively. Axonal cross-sectional areas increased throughout the developmental ages of this study, with the greatest increase taking place between juvenile and adult ages. In adult animals, 98% of axons in all three branches have diameters between 2-10 microns. Ratios of axons to hair cells in adult animals were estimated at 0.3, 1.1, and 5.3 for the sacculus, amphibian papilla, and basilar papilla, respectively. The higher axon to hair cell ratio correlates with the increasing acoustical frequency sensitivity of the end organ.
Collapse
Affiliation(s)
| | | | - Elba E. Serrano
- To whom reprint requests should be addressed Send correspondence to: Dr. E. E. Serrano, Dept. of Biology, New Mexico State University, Las Cruces, NM, 88003. Tel No. (575) 646-5217; FAX (575) 646-5665;
| |
Collapse
|
35
|
Straka H, Biesdorf S, Dieringer N. Canal-specific excitation and inhibition of frog second-order vestibular neurons. J Neurophysiol 1997; 78:1363-72. [PMID: 9310427 DOI: 10.1152/jn.1997.78.3.1363] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Second-order vestibular neurons (secondary VNs) were identified in the in vitro frog brain by their monosynaptic excitation following electrical stimulation of the ipsilateral VIIIth nerve. Ipsilateral disynaptic inhibitory postsynaptic potentials were revealed by bath application of the glycine antagonist strychnine or of the gamma-aminobutyric acid-A (GABA(A)) antagonist bicuculline. Ipsilateral disynaptic excitatory postsynaptic potentials (EPSPs) were analyzed as well. The functional organization of convergent monosynaptic and disynaptic excitatory and inhibitory inputs onto secondary VNs was studied by separate electrical stimulation of individual semicircular canal nerves on the ipsilateral side. Most secondary VNs (88%) received a monosynaptic EPSP exclusively from one of the three semicircular canal nerves; fewer secondary VNs (10%) were monosynaptically excited from two semicircular canal nerves; and even fewer secondary VNs (2%) were monosynaptically excited from each of the three semicircular canal nerves. Disynaptic EPSPs were present in the majority of secondary VNs (68%) and originated from the same (homonymous) semicircular canal nerve that activated a monosynaptic EPSP in a given neuron (22%), from one or both of the other two (heteronymous) canal nerves (18%), or from all three canal nerves (28%). Homonymous activation of disynaptic EPSPs prevailed (74%) among those secondary VNs that exhibited disynaptic EPSPs. Disynaptic inhibitory postsynaptic potentials (IPSPs) were mediated in 90% of the tested secondary VNs by glycine, in 76% by GABA, and in 62% by GABA as well as by glycine. These IPSPs were activated almost exclusively from the same semicircular canal nerve that evoked the monosynaptic EPSP in a given secondary VN. Our results demonstrate a canal-specific, modular organization of vestibular nerve afferent fiber inputs onto secondary VNs that consists of a monosynaptic excitation from one semicircular canal nerve followed by disynaptic excitatory and inhibitory inputs originating from the homonymous canal nerve. Excitatory and inhibitory second-order (secondary) vestibular interneurons are envisaged to form side loops that mediate spatially similar but dynamically different signals to secondary vestibular projection neurons. These feedforward side loops are suited to adjust the dynamic response properties of secondary vestibular projection neurons by facilitating or disfacilitating phasic and tonic input components.
Collapse
Affiliation(s)
- H Straka
- Physiologisches Institut, Munich, Germany
| | | | | |
Collapse
|
36
|
Affiliation(s)
- A Lysakowski
- Department of Anatomy and Cell Biology, University of Illinois College of Medicine, Chicago 60612, USA.
| |
Collapse
|
37
|
Cochran SL. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog. Neuroscience 1995; 68:1147-65. [PMID: 8544989 DOI: 10.1016/0306-4522(95)00200-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The concentrations of inorganic cations (K+, Na+, and Ca2+) bathing the isolated frog labyrinth were varied in order to assess their role in influencing and mediating synaptic transmission at the hair cell-afferent fiber synapse. Experiments employed intracellular recordings of synaptic activity from VIIIth nerve afferents. Recordings were digitized continuously at 50 kHz, and excitatory postsynaptic potentials were detected and parameters quantified by computer algorithms. Particular attention was focused on cationic effects upon excitatory postsynaptic potential frequency of occurrence and excitatory postsynaptic potential amplitude, in order to discriminate between pre- and postsynaptic actions. Because the small size of afferents preclude long term stable recordings, alterations in cationic concentrations were applied transiently and their peak effects on synaptic activity were assessed. Increases in extracellular K+ concentration of a few millimolar produced a large increase in the frequency of occurrence of excitatory postsynaptic potentials with little change in amplitude, indicating that release of transmitter from the hair cell is tightly coupled to its membrane potential. Increasing extracellular Na+ concentration resulted in an increase in excitatory postsynaptic potential amplitude with no significant change in excitatory postsynaptic potential frequency of occurrence, suggesting that the transmitter-gated subsynaptic channel conducts Na+ ions. Decreases in extracellular Ca2+ concentration had little effect upon excitatory postsynaptic potential frequency, but increased excitatory postsynaptic potential frequency and amplitude. These findings suggest that at higher concentrations Ca2+ act presynaptically to prevent transmitter release and postsynaptically to prevent Na+ influx during the generation of the excitatory postsynaptic potential. The influences of these ions on synaptic activity at this synapse are remarkably similar to those reported at the vertebrate neuromuscular junction. The major differences between these two synapses are the neurotransmitters and the higher resting release rate and higher sensitivity of release to increased K+ concentrations of the hair cells over that of motor nerve terminals. These differences reflect the functional roles of the two synapses: the motor nerve terminal response in an all-or-nothing signal consequent from action potential invasion, while the hair cell releases transmitter in a graded fashion, proportionate to the extent of stereocilial deflection. Despite these differences between the two junctions, the similar actions of these elemental cations upon synaptic function at each implies that these ions may participate similarly in the operations of other synapses, independent of the neurotransmitter type.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- S L Cochran
- Department of Otolaryngology, University of Texas Medical Branch at Galveston 77555-1063, USA
| |
Collapse
|
38
|
Dieringer N. ‘Vestibular compensation’: Neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 1995. [DOI: 10.1016/0301-0082(95)80009-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Reichenberger I, Dieringer N. Size-related colocalization of glycine and glutamate immunoreactivity in frog and rat vestibular afferents. J Comp Neurol 1994; 349:603-14. [PMID: 7860791 DOI: 10.1002/cne.903490408] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Presence and distribution of glutamate, glycine, GABA and beta-alanine in VIIIth nerves of frogs and rats were investigated with postembedding immunocytochemical methods on serial semithin sections. In Scarpa's ganglion of the frog, all cell bodies were glutamate immunoreactive. About 17% of the cells per section were also glycine immunoreactive, but none were GABA or beta-alanine immunoreactive. The mean diameter of glycine-positive cell bodies (26.7 +/- 6.9 microns; N = 130) was significantly (P < 0.0001) larger than that of glycine-negative cell bodies (15.7 +/- 5.4 microns; N = 272). The intensity of glutamate immunostaining decreased with cell diameter, whereas the intensity of glycine immunostaining increased with cell diameter. As a result, the staining intensities for glutamate and glycine in a given cell were negatively correlated. Glycine immunoreactivity was also present in a size-related manner in distal and proximal afferent fibers. The majority of thin fibers (< 4 microns) was glycine negative, whereas most of the thick fibers (> 10 microns) were glycine positive. Glycine-positive fibers were observed in the sensory epithelial of all end organs in the inner ear. The saccular macula and its nerve, however, contained only few glycine immunoreactive structures. In Scarpa's ganglion of the rat, all cells were immunoreactive for glutamate, about 12% for colocalized glycine, and none for GABA or beta-alanine. Glycine-positive cell bodies were significantly (P < 0.0001) larger (32.2 +/- 5.2 microns; N = 82) than glycine-negative cell bodies (25.1 +/- 5.3 microns; N = 274). Cell bodies in the spiral ganglion were only glutamate immunoreactive, whereas staining for glutamate, glycine, and GABA was dense in the ventral cochlear nucleus. These results demonstrate that thicker vestibular afferent fibers represent a particular subpopulation that differs from the majority of thinner afferents due to their glycine immunoreactivity.
Collapse
|
40
|
Abstract
Stimulation of the efferent nerves to the vestibular organs of the frog's inner ear produces either facilitation or inhibition of afferent firing. Similarly, application of acetylcholine (ACH), the major transmitter of the efferents, can produce both facilitation and/or inhibition as previously reported [Guth et al. (1986) Acta Otolaryngol. 102, 194-204; Norris et al. (1988) Hear. Res. 32, 197-206]. The firing rates of afferent neurons of the semicircular canal (SCC) using multiunit recordings are generally facilitated by ACH. Conversely, the firing rates of afferent units innervating the saccule are generally inhibited by ACH. This latter inhibition is antagonized by strychnine more potently than by curare, which is more potent than atropine. When inhibition is antagonized by strychnine or curare an underlying facilitation is revealed. The inhibition of saccular afferents by ACH shows desensitization requiring about 20 min to recover. The ACH-induced inhibition is mimicked by nicotine at very high concentrations but not by dimethyl phenylpiperazinium or cytisine. The fact that multiunit afferent firing from the SCC is generally facilitated while that from the saccule is generally inhibited by ACH suggests a different distribution of ACH receptors and receptor types (i.e. muscarinic or nicotinic and their subtypes) in the two organs and demonstrates the usefulness of recording from multiple units simultaneously. The difference in distribution of ACH receptors may be important for understanding the physiology of vestibular efferents.
Collapse
Affiliation(s)
- P S Guth
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112
| | | | | | | |
Collapse
|
41
|
Baird RA, Schuff NR. Peripheral innervation patterns of vestibular nerve afferents in the bullfrog utriculus. J Comp Neurol 1994; 342:279-98. [PMID: 8201035 DOI: 10.1002/cne.903420210] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Vestibular nerve afferents innervating the bullfrog utriculus differ in their response dynamics and sensitivity to natural stimulation. They also supply hair cells that differ markedly in hair bundle morphology. To examine the peripheral innervation patterns of individual utricular afferents more closely, afferent fibers were labeled by the extracellular injection of horseradish peroxidase (HRP) into the vestibular nerve after sectioning the vestibular nerve medial to Scarpa's ganglion to allow the degeneration of sympathetic and efferent fibers. The peripheral arborizations of individual afferents were then correlated with the diameters of their parent axons, the regions of the macula they innervate, and the number and type of hair cells they supply. The utriculus is divided by the striola, a narrow zone of distinctive morphology, into medial and lateral parts. Utricular afferents were classified as striolar or extrastriolar according to the epithelial entrance of their parent axons and the location of their terminal fields. In general, striolar afferents had thicker parent axons, fewer subepithelial bifurcations, larger terminal fields, and more synaptic endings than afferents in extrastriolar regions. Afferents in a juxtastriolar zone, immediately adjacent to the medial striola, had innervation patterns transitional between those in the striola and more peripheral parts of the medial extrastriola. Most afferents innervated only a single macular zone. The terminal fields of striolar afferents, with the notable exception of a few afferents with thin parent axons, were generally confined to one side of the striola. Hair cells in the bullfrog utriculus have previously been classified into four types based on hair bundle morphology (Lewis and Li: Brain Res. 83:35-50, 1975). Afferents in the extrastriolar and juxtastriolar zones largely or exclusively innervated Type B hair cells, the predominant hair cell type in the utricular macula. Striolar afferents supplied a mixture of four hair cell types, but largely contacted Type B and Type C hair cells, particularly on the outer rows of the medial striola. Afferents supplying more central striolar regions innervated fewer Type B and large numbers of Type E and Type F hair cells. Striolar afferents with thin parent axons largely supplied Type E hair cells with bulbed kinocilia in the innermost striolar rows.
Collapse
Affiliation(s)
- R A Baird
- R.S. Dow Neurological Sciences Institute, Portland, Oregon 97209
| | | |
Collapse
|
42
|
Wadan K, Dieringer N. Abducens nerve responses of the frog during horizontal linear acceleration: data and model. BIOLOGICAL CYBERNETICS 1994; 70:533-540. [PMID: 7915145 DOI: 10.1007/bf00198806] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Abducens nerve responses of frogs were evoked by sinusoidal oscillations on a horizontal linear sled. The depth of modulation of these responses and their phases depended on the orientation of the head with respect to the direction of linear acceleration. Longitudinal acceleration evoked abducens responses that consisted of two discharge maxima per stimulus cycle. At consecutively more oblique head orientations, one of these two discharge maxima increased and the other decreased. Transverse accelerations evoked abducens responses that consisted of only one discharge maximum per stimulus cycle. Removal of the labyrinthine organs on one side abolished these responses in the contralateral abducens nerve but did not affect the responses in the ipsilateral abducens nerve. The latter result indicates that the responses in each abducens nerve originate from hair cells on the contralateral utricle. The experimentally determined modulation and phase values and their dependence on the orientation angle of the acceleration vector were used to characterize a functional cluster of hair cells located medially with respect to the striola in a fan-like sector on the utricle ('lateral rectus fan'). Parameters of this fan were used to develop a model that satisfactorily simulates the recorded abducens responses. This model predicts a majority of afferents with excitatory and a few afferents with inhibitory contributions to the abducens nerve responses. The phasic response components of about 90% of these afferents are larger than their tonic response components.
Collapse
Affiliation(s)
- K Wadan
- Physiologisches Institut der Universität München, Germany
| | | |
Collapse
|
43
|
Abstract
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Collapse
Affiliation(s)
- R A Baird
- R.S. Dow Neurological Sciences Institute, Good Samaritan Hospital and Medical Center, Portland, Oregon 97209
| | | | | |
Collapse
|
44
|
Baird RA, Torres MA, Schuff NR. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity. Hear Res 1993; 65:164-74. [PMID: 8458749 DOI: 10.1016/0378-5955(93)90211-i] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Adult bullfrog were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 microM gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence or absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest stereocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier than hair cell types with shorter kinocilia. In the sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.
Collapse
Affiliation(s)
- R A Baird
- Good Samaritan Hospital and Medical Center, R.S. Dow Neurological Sciences Institute, Portland, OR 97209
| | | | | |
Collapse
|
45
|
Lee WS, Newman A, Honrubia V. Afferent innervation of the vestibular nuclei in the chinchilla. I. A method for labeling individual vestibular receptors with horseradish peroxidase. Brain Res 1992; 597:269-77. [PMID: 1335348 DOI: 10.1016/0006-8993(92)91484-v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A new method was developed for specific labeling of primary vestibular afferent fibers from selected end-organs with horseradish peroxidase (HRP) applied extracellularly in the inner ear space. In 48 chinchillas, labeling was performed successfully in all animals by scratching the surface of the sensory end-organ of interest with an electrolytically sharpened needle and replacing the fluid in the vestibule with 30% HRP solution. Merely replacing the vestibular fluid (endo- and perilymph) with HRP did not label the ganglion cells or the afferent fibers in the brain stem. The specificity of labeling was verified by histological inspection of the ganglion cells and nerve fibers innervating the damaged and intact receptors. When the posterior semicircular canal and saccular receptors were scratched, labeled fibers and ganglion cells were found in the nerve and ganglion rostrodorsally and caudoventrally, respectively. Labeled ganglion cells from different superior vestibular nerve (SVN) receptors did not show as clear a segregation pattern as did labeled receptors from the inferior vestibular nerve (IVN). Once inside the brain stem, labeled fibers from the SVN receptors were rostral to those from the IVN receptors. The fibers of the vestibular root divided into an ascending and a descending branch which formed the vestibular tract. Labeled fibers from the SVN receptors divided rostrolaterally to those from the IVN receptors. In the vestibular tract, fibers coursed in different locations according to the receptor of origin. Fibers from the utriculus were lateral to those from the horizontal semicircular canal, which were lateral to those from the anterior semicircular canal. Fibers from the sacculus were lateral to those from the posterior semicircular canal.
Collapse
Affiliation(s)
- W S Lee
- Department of Otorhinolaryngology, Yonsei University School of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
46
|
Affiliation(s)
- R A Baird
- Department of Neurootology, R. S. Dow Neurological Sciences Institute, Good Samaritan Hospital and Medical Center, Portland, Oregon 97209
| |
Collapse
|
47
|
Lapeyre P, Guilhaume A, Cazals Y. Differences in hair bundles associated with type I and type II vestibular hair cells of the guinea pig saccule. Acta Otolaryngol 1992; 112:635-42. [PMID: 1442010 DOI: 10.3109/00016489209137453] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Several studies have reported variations in shape and size of stereociliary bundles and in a limited number of observations have associated them to type I and type II hair cells. A systematic study has been undertaken for which a technique was developed in order to identify both cell types and their corresponding hair bundles. Numerous fissures were obtained in saccular epithelia and observed in scanning electron microscopy. Saccular type I and type II hair cells in the guinea pig were found to have distinctive hair bundles. The tallest stereocilia of almost all type I cells were longer than 6 microns, and were shorter in the striola compared to the periphery. In contrast, the tallest stereocilia of almost all type II cells were shorter than 6 microns and were not found to vary notably in size from the striola to the periphery. Hair bundles with stereocilia organized in straight or in staggered rows were found for both types of cells across the whole saccular epithelium, with no apparent particular distribution. Possible physiological significance of differences in hair bundles is discussed.
Collapse
Affiliation(s)
- P Lapeyre
- Laboratoire d'Audiologie Expérimentale, INSERM unité 229, Université Bordeaux II, Hôpital Pellegrin, France
| | | | | |
Collapse
|
48
|
Manley GA, Haeseler C, Brix J. Innervation patterns and spontaneous activity of afferent fibres to the lagenar macula and apical basilar papilla of the chick's cochlea. Hear Res 1991; 56:211-26. [PMID: 1685157 DOI: 10.1016/0378-5955(91)90172-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To investigate the origin of non-auditory fibres in the apical area of the avian cochlear ganglion, we recorded from nerve fibres in the young chick (87% of animals were aged between 5 and 10 days post-hatching). After characterization of their spontaneous activity patterns and, if present, their responses to sound, some fibres were stained with cobalt-ion injections and traced to their peripheral terminals. All stained fibres which were traced to the lagenar macula (N = 13) were non-auditory. They did not increase firing rate or phase-couple to sound stimuli. Their spontaneous activity was either regular (12 cases) or irregular (1 case). Regularly-firing cells all innervated several to very many hair cells, whereby there was no great difference in the pattern of spontaneous activity between those making calyx endings on relatively few hair cells in the striola region and those making small bouton endings on up to 80 hair cells outside the striola. All fibres that responded in any way to sound were irregularly spontaneously active. Three fibres, two of which only responded to sound with phase-coupling, innervated several hair cells in the apical, abneural region of the basilar papilla. Two other fibres traced to the basilar papilla are of previously undescribed types.
Collapse
Affiliation(s)
- G A Manley
- Institut für Zoologie, Technischen Universität München, Garching, F.R.G
| | | | | |
Collapse
|
49
|
Goldberg JM. The vestibular end organs: morphological and physiological diversity of afferents. Curr Opin Neurobiol 1991; 1:229-35. [PMID: 1821186 DOI: 10.1016/0959-4388(91)90083-j] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Vestibular-nerve fibers, even those innervating a single end organ, have been found to differ in their branching patterns within the neuroepithelium. They also vary in their responses to head movements and to activation of efferent fibers, and in the central pathways to which they contribute. These results are enabling plausible inferences to be made about the peripheral mechanisms determining the discharge properties of physiologically distinguishable afferents, and about the contributions the different afferents make to the overall functioning of the vestibular system.
Collapse
Affiliation(s)
- J M Goldberg
- Department of Pharmacological and Physiological Sciences, University of Chicago, Illinois 60637
| |
Collapse
|
50
|
Abstract
Intracellular microelectrode recording/labelling techniques were used to investigate vestibular afferent responses in the bullfrog, to very small amplitude (less than 0.5 degree p-p) sinusoidal rotations in the vertical plane over the frequency range of 0.063-4 Hz. The axis of rotation was congruent with the axis of the anterior semicircular canal. Robust responses to peak accelerations as low as 0.031 degree/S2 were obtained from units subsequently traced to either the central portion of the anterior canal crista or the striolar region of the utricle. All of these microrotationally sensitive afferent neurons had irregular resting discharge rates and the majority had transfer ratios (relative to rotational velocity) of 1-40 spikes/s per degree/s. Individual utricular afferent velocity transfer ratios were nearly constant over the frequency range of 0.125-4 Hz. Canal units generally displayed decreasing response transfer ratios as stimulus frequencies increased. These findings indicate that although utricular striolar and central crista afferent velocity transfer ratios to microrotations were very similar, utricular striolar afferent neurons were more faithful sensors of very small amplitude rotational velocity in the vertical plane.
Collapse
Affiliation(s)
- S F Myers
- Department of Otolaryngology, Wayne State University School of Medicine, Detroit, MI 48201
| | | |
Collapse
|