1
|
Erdem M, Erdem Ş, Alver A, Kıran TR, Karahan SC. β 2-adrenoceptor agonist formoterol attenuates NLRP3 inflammasome activation and GSDMD-mediated pyroptosis in microglia through enhancing IκBα/NF-κB inhibition, SQSTM1/p62-dependent selective autophagy and ESCRT-III-mediated plasma membrane repair. Mol Cell Neurosci 2024; 130:103956. [PMID: 39097250 DOI: 10.1016/j.mcn.2024.103956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/05/2024] Open
Abstract
Microglia are immune cells that play important roles in the formation of the innate immune response within the central nervous system (CNS). The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is a multiple protein complex that is crucial for innate immunity, and excessive activation of the inflammasome for various reasons contributes to the pathogenesis of neurodegenerative diseases (NDs). β2-adrenoceptor agonists have become the focus of attention in studies on NDs due to the high synthesis of β2-adrenoceptors in the central nervous system (CNS). Promising results have been obtained from these studies targeting anti-inflammatory and neuroprotective effects. Formoterol is an effective, safe for long-term use, and FDA-approved β2-adrenoceptor agonist with demonstrated anti-inflammatory features in the CNS. In this study, we researched the effects of formoterol on LPS/ATP-stimulated NLRP3 inflammasome activation, pyroptosis, NF-κB, autophagy, and ESCRT-III-mediated plasma membrane repair pathways in the N9 microglia cells. The results showed that formoterol, through the IκBα/NF-κB axis, significantly inhibited NLRP3 inflammasome activation, reduced the level of active caspase-1, secretion of IL-1β and IL-18 proinflammatory cytokine levels, and the levels of pyroptosis. Additionally, we showed that formoterol activates autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair, which are significant pathways in the inhibition of NLRP3 inflammasome activation and pyroptosis. Our study suggests that formoterol efficaciously prevents the NLRP3 inflammasome activation and pyroptosis in microglial cells regulation through IκBα/NF-κB, autophagy, autophagosome formation, and ESCRT-III-mediated plasma membrane repair.
Collapse
Affiliation(s)
- Mehmet Erdem
- Department of Medical Biochemistry, Faculty of Medicine, Malatya Turgut Özal University, Malatya 44900, Turkey; Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon 61080, Turkey.
| | - Şeniz Erdem
- Department of Medical Biochemistry, Graduate School of Medical Science, Karadeniz Technical University, Trabzon 61080, Turkey; Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Ahmet Alver
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| | - Tuğba Raika Kıran
- Department of Medical Biochemistry, Faculty of Medicine, Malatya Turgut Özal University, Malatya 44900, Turkey
| | - Süleyman Caner Karahan
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Technical University, Trabzon 61080, Turkey
| |
Collapse
|
2
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
3
|
Ingiosi AM, Frank MG. Noradrenergic Signaling in Astrocytes Influences Mammalian Sleep Homeostasis. Clocks Sleep 2022; 4:332-345. [PMID: 35892990 PMCID: PMC9326550 DOI: 10.3390/clockssleep4030028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Astrocytes influence sleep expression and regulation, but the cellular signaling pathways involved in these processes are poorly defined. We proposed that astrocytes detect and integrate a neuronal signal that accumulates during wakefulness, thereby leading to increased sleep drive. Noradrenaline (NA) satisfies several criteria for a waking signal integrated by astrocytes. We therefore investigated the role of NA signaling in astrocytes in mammalian sleep. We conditionally knocked out (cKO) β2-adrenergic receptors (β2-AR) selectively in astrocytes in mice and recorded electroencephalographic and electromyographic activity under baseline conditions and in response to sleep deprivation (SDep). cKO of astroglial β2-ARs increased active phase siesta duration under baseline conditions and reduced homeostatic compensatory changes in sleep consolidation and non-rapid eye movement slow-wave activity (SWA) after SDep. Overall, astroglial NA β2-ARs influence mammalian sleep homeostasis in a manner consistent with our proposed model of neuronal-astroglial interactions.
Collapse
Affiliation(s)
- Ashley M. Ingiosi
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
| | - Marcos G. Frank
- Department of Translational Medicine and Physiology, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA;
- Gleason Institute for Neuroscience, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
4
|
Yadav D, Kumar P. Restoration and targeting of aberrant neurotransmitters in Parkinson's disease therapeutics. Neurochem Int 2022; 156:105327. [PMID: 35331828 DOI: 10.1016/j.neuint.2022.105327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022]
Abstract
Neurotransmitters are considered as a fundamental regulator in the process of neuronal growth, differentiation and survival. Parkinson's Disease (PD) occurs due to extensive damage of dopamine-producing neurons; this causes dopamine deficits in the midbrain, followed by the alternation of various other neurotransmitters (glutamate, GABA, serotonin, etc.). It has been observed that fluctuation of neurotransmission in the basal ganglia exhibits a great impact on the pathophysiology of PD. Dopamine replacement therapy, such as the use of L-DOPA, can increase the dopamine level, but it majorly ameliorates the motor symptoms and is also associated with long-term complications (for e.g., LID). While the non-dopaminergic system can efficiently target non-motor symptoms, for instance, the noradrenergic system regulates the synthesis of BDNF via the MAPK pathway, which is important in learning and memory. Herein, we briefly discuss the role of different neurotransmitters, implementation of neurotransmitter receptors in PD. We also illustrate the recent advances of neurotransmitter-based drugs, which are currently under in vivo and clinical studies. Reinstating normal neurotransmitter levels has been believed to be advantageous in the treatment of PD. Thus, there is an increasing demand for drugs that can specifically target the neurotransmission system and reinstate the normal levels of neurotransmitters, which might prevent or delay neurodegeneration in PD.
Collapse
Affiliation(s)
- Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi, India; Delhi Technological University (Formerly Delhi College of Engineering), Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi, India; Delhi Technological University (Formerly Delhi College of Engineering), Delhi, 110042, India.
| |
Collapse
|
5
|
Bioanalytical method development and validation of corynantheidine, a kratom alkaloid, using UPLC-MS/MS, and its application to preclinical pharmacokinetic studies. J Pharm Biomed Anal 2019; 180:113019. [PMID: 31838282 DOI: 10.1016/j.jpba.2019.113019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 11/20/2022]
Abstract
Corynantheidine, a minor alkaloid found in Mitragyna speciosa (Korth.) Havil, has been shown to bind to opioid receptors and act as a functional opioid antagonist, but its unique contribution to the overall properties of kratom remains relatively unexplored. The first validated bioanalytical method for the quantification of corynantheidine in rat plasma is described. The method was linear in the dynamic range from 1-500 ng/mL, requires a small plasma sample volume (25 μL), and a simple protein precipitation method for extraction of the analyte. The separation was achieved with Waters BEH C18 2.1 × 50 mm column and the 3-minute gradient of 10 mM ammonium acetate buffer (pH = 3.5) and acetonitrile as mobile phase. The method was validated in terms of accuracy, precision, selectivity, sensitivity, recovery, stability, and dilution integrity. It was applied to the analysis of the male Sprague Dawley rat plasma samples obtained during pharmacokinetic studies of corynantheidine administered both intravenously (I.V.) and orally (P.O.) (2.5 mg/kg and 20 mg/kg, respectively). The non-compartmental analysis performed in Certara Phoenix® yielded the following parameters: clearance 884.1 ± 32.3 mL/h, apparent volume of distribution 8.0 ± 1.2 L, exposure up to the last measured time point 640.3 ± 24.0 h*ng/mL, and a mean residence time of 3.0 ± 0.2 h with I.V. dose. The maximum observed concentration after a P.O. dose of 213.4 ± 40.4 ng/mL was detected at 4.1 ± 1.3 h with a mean residence time of 8.8 ± 1.8 h. Absolute oral bioavailability was 49.9 ± 16.4 %. Corynantheidine demonstrated adequate oral bioavailability, prolonged absorption and exposure, and an extensive extravascular distribution. In addition, imaging mass spectrometry analysis of the brain tissue was performed to evaluate the distribution of the compound in the brain. Corynantheidine was detected in the corpus callosum and some regions of the hippocampus.
Collapse
|
6
|
Alberini CM, Cruz E, Descalzi G, Bessières B, Gao V. Astrocyte glycogen and lactate: New insights into learning and memory mechanisms. Glia 2018; 66:1244-1262. [PMID: 29076603 PMCID: PMC5903986 DOI: 10.1002/glia.23250] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/05/2017] [Accepted: 10/04/2017] [Indexed: 12/12/2022]
Abstract
Memory, the ability to retain learned information, is necessary for survival. Thus far, molecular and cellular investigations of memory formation and storage have mainly focused on neuronal mechanisms. In addition to neurons, however, the brain comprises other types of cells and systems, including glia and vasculature. Accordingly, recent experimental work has begun to ask questions about the roles of non-neuronal cells in memory formation. These studies provide evidence that all types of glial cells (astrocytes, oligodendrocytes, and microglia) make important contributions to the processing of encoded information and storing memories. In this review, we summarize and discuss recent findings on the critical role of astrocytes as providers of energy for the long-lasting neuronal changes that are necessary for long-term memory formation. We focus on three main findings: first, the role of glucose metabolism and the learning- and activity-dependent metabolic coupling between astrocytes and neurons in the service of long-term memory formation; second, the role of astrocytic glucose metabolism in arousal, a state that contributes to the formation of very long-lasting and detailed memories; and finally, in light of the high energy demands of the brain during early development, we will discuss the possible role of astrocytic and neuronal glucose metabolisms in the formation of early-life memories. We conclude by proposing future directions and discussing the implications of these findings for brain health and disease. Astrocyte glycogenolysis and lactate play a critical role in memory formation. Emotionally salient experiences form strong memories by recruiting astrocytic β2 adrenergic receptors and astrocyte-generated lactate. Glycogenolysis and astrocyte-neuron metabolic coupling may also play critical roles in memory formation during development, when the energy requirements of brain metabolism are at their peak.
Collapse
Affiliation(s)
- Cristina M Alberini
- Center for Neural Science, New York University, New York, New York, 10003
- Associate Investigator, Neuroscience Institute, NYU Langone Medical Center, New York, New York, 10016
| | - Emmanuel Cruz
- Center for Neural Science, New York University, New York, New York, 10003
| | - Giannina Descalzi
- Center for Neural Science, New York University, New York, New York, 10003
| | - Benjamin Bessières
- Center for Neural Science, New York University, New York, New York, 10003
| | - Virginia Gao
- Center for Neural Science, New York University, New York, New York, 10003
| |
Collapse
|
7
|
Xiao LY, Wang XR, Yang JW, Ye Y, Zhu W, Cao Y, Ma SM, Liu CZ. Acupuncture Prevents the Impairment of Hippocampal LTP Through β1-AR in Vascular Dementia Rats. Mol Neurobiol 2018; 55:7677-7690. [PMID: 29435917 DOI: 10.1007/s12035-018-0943-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
It is widely accepted that the synaptic dysfunction and synapse loss contribute to the cognitive deficits of vascular dementia (VD) patients. We have previously reported that acupuncture improved cognitive function in rats with VD. However, the mechanisms involved in acupuncture improving cognitive ability remain to be elucidated. The present study aims to investigate the pathways and molecules involved in the neuroprotective effect of acupuncture. We assessed the effects of acupuncture on hippocampal long-term potentiation (LTP), the most prominent cellular model of memory formation. Acupuncture enhanced LTP and norepinephrine (NE) levels in the hippocampus. Inhibition of the β-adrenergic receptor (AR), but not the α-AR, was able to block the effects of acupuncture on hippocampal LTP. Furthermore, inhibition of β1-AR, not β2-AR, abolished the enhanced LTP induced by acupuncture. The expression analysis revealed a significant upregulation of β1-AR and unchanged β2-AR with acupuncture, which supported the above findings. Specifically, increased β1-ARs in the dentate gyrus were expressed on neurons exclusively. Taken together, the present data supports a beneficial role of acupuncture in synaptic plasticity challenged with VD. A likely mechanism is the increase of NE and activation of β1-AR in the hippocampus.
Collapse
Affiliation(s)
- Ling-Yong Xiao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China.,Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Xue-Rui Wang
- Beijing Institute of Traditional Chinese Medicine, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Jing-Wen Yang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Yang Ye
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China
| | - Wen Zhu
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Yan Cao
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Si-Ming Ma
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine affiliated to Capital Medical University, 23 Meishuguanhou Street, Dongcheng District, Beijing, China
| | - Cun-Zhi Liu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, No. 6 Fangxingyuan 1st Block, Fengtai District, Beijing, 100078, China.
| |
Collapse
|
8
|
Mann T, Zilles K, Dikow H, Hellfritsch A, Cremer M, Piel M, Rösch F, Hawlitschka A, Schmitt O, Wree A. Dopamine, Noradrenaline and Serotonin Receptor Densities in the Striatum of Hemiparkinsonian Rats following Botulinum Neurotoxin-A Injection. Neuroscience 2018; 374:187-204. [PMID: 29421436 DOI: 10.1016/j.neuroscience.2018.01.053] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 01/23/2018] [Accepted: 01/26/2018] [Indexed: 11/25/2022]
Abstract
Parkinson's disease (PD) is characterized by a degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) that causes a dopamine (DA) deficit in the caudate-putamen (CPu) accompanied by compensatory changes in other neurotransmitter systems. These changes result in severe motor and non-motor symptoms. To disclose the role of various receptor binding sites for DA, noradrenaline, and serotonin in the hemiparkinsonian (hemi-PD) rat model induced by unilateral 6-hydroxydopamine (6-OHDA) injection, the densities of D1, D2/D3, α1, α2, and 5HT2A receptors were longitudinally visualized and measured in the CPu of hemi-PD rats by quantitative in vitro receptor autoradiography. We found a moderate increase in D1 receptor density 3 weeks post lesion that decreased during longer survival times, a significant increase of D2/D3 receptor density, and 50% reduction in 5HT2A receptor density. α1 receptor density remained unaltered in hemi-PD and α2 receptors demonstrated a slight right-left difference increasing with post lesion survival. In a second step, the possible role of receptors on the known reduction of apomorphine-induced rotations in hemi-PD rats by intrastriatally injected Botulinum neurotoxin-A (BoNT-A) was analyzed by measuring the receptor densities after BoNT-A injection. The application of this neurotoxin reduced D2/D3 receptor density, whereas the other receptors mainly remained unaltered. Our results provide novel data for an understanding of the postlesional plasticity of dopaminergic, noradrenergic and serotonergic receptors in the hemi-PD rat model. The results further suggest a therapeutic effect of BoNT-A on the impaired motor behavior of hemi-PD rats by reducing the interhemispheric imbalance in D2/D3 receptor density.
Collapse
Affiliation(s)
- T Mann
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - K Zilles
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany; JARA - Translational Brain Medicine, and Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, D-52062 Aachen, Germany
| | - H Dikow
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - A Hellfritsch
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - M Cremer
- Institute of Neuroscience and Medicine INM-1, Research Center Jülich, D-52425 Jülich, Germany
| | - M Piel
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - F Rösch
- Institute of Nuclear Chemistry, Johannes Gutenberg University of Mainz, Fritz-Strassmann-Weg 2, D-55128 Mainz, Germany
| | - A Hawlitschka
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - O Schmitt
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany
| | - A Wree
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, D-18057 Rostock, Germany.
| |
Collapse
|
9
|
Guerram M, Zhang LY, Jiang ZZ. G-protein coupled receptors as therapeutic targets for neurodegenerative and cerebrovascular diseases. Neurochem Int 2016; 101:1-14. [PMID: 27620813 DOI: 10.1016/j.neuint.2016.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/01/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022]
Abstract
Neurodegenerative and cerebrovascular diseases are frequent in elderly populations and comprise primarily of dementia (mainly Alzheimer's disease) Parkinson's disease and stroke. These neurological disorders (NDs) occur as a result of neurodegenerative processes and represent one of the most frequent causes of death and disability worldwide with a significant clinical and socio-economic impact. Although NDs have been characterized for many years, the exact molecular mechanisms that govern these pathologies or why they target specific individuals and specific neuronal populations remain unclear. As research progresses, many similarities appear which relate these diseases to one another on a subcellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate the conditions of many diseases simultaneously. G-protein coupled receptors (GPCRs) are the most abundant receptor type in the central nervous system and are linked to complex downstream pathways, manipulation of which may have therapeutic application in many NDs. This review will highlight the potential use of neurotransmitter GPCRs as emerging therapeutic targets for neurodegenerative and cerebrovascular diseases.
Collapse
Affiliation(s)
- Mounia Guerram
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Faculty of Exact Sciences and Nature and Life Sciences, Department of Biology, Larbi Ben M'hidi University, Oum El Bouaghi 04000, Algeria
| | - Lu-Yong Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhen-Zhou Jiang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Astrocytic β2-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc Natl Acad Sci U S A 2016; 113:8526-31. [PMID: 27402767 DOI: 10.1073/pnas.1605063113] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Emotionally relevant experiences form strong and long-lasting memories by critically engaging the stress hormone/neurotransmitter noradrenaline, which mediates and modulates the consolidation of these memories. Noradrenaline acts through adrenergic receptors (ARs), of which β2-adrenergic receptors (βARs) are of particular importance. The differential anatomical and cellular distribution of βAR subtypes in the brain suggests that they play distinct roles in memory processing, although much about their specific contributions and mechanisms of action remains to be understood. Here we show that astrocytic rather than neuronal β2ARs in the hippocampus play a key role in the consolidation of a fear-based contextual memory. These hippocampal β2ARs, but not β1ARs, are coupled to the training-dependent release of lactate from astrocytes, which is necessary for long-term memory formation and for underlying molecular changes. This key metabolic role of astrocytic β2ARs may represent a novel target mechanism for stress-related psychopathologies and neurodegeneration.
Collapse
|
11
|
Hippocampal α-adrenoceptors involve in the effect of histamine on spatial learning. Physiol Behav 2014; 129:17-24. [DOI: 10.1016/j.physbeh.2014.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 02/04/2014] [Indexed: 11/19/2022]
|
12
|
Xu Y, Yan J, Zhou P, Li J, Gao H, Xia Y, Wang Q. Neurotransmitter receptors and cognitive dysfunction in Alzheimer's disease and Parkinson's disease. Prog Neurobiol 2012; 97:1-13. [PMID: 22387368 DOI: 10.1016/j.pneurobio.2012.02.002] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 01/06/2012] [Accepted: 02/15/2012] [Indexed: 12/12/2022]
Abstract
Cognitive dysfunction is one of the most typical characteristics in various neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease (advanced stage). Although several mechanisms like neuronal apoptosis and inflammatory responses have been recognized to be involved in the pathogenesis of cognitive dysfunction in these diseases, recent studies on neurodegeneration and cognitive dysfunction have demonstrated a significant impact of receptor modulation on cognitive changes. The pathological alterations in various receptors appear to contribute to cognitive impairment and/or deterioration with correlation to diversified mechanisms. This article recapitulates the present understandings and concepts underlying the modulation of different receptors in human beings and various experimental models of Alzheimer's disease and Parkinson's disease as well as a conceptual update on the underlying mechanisms. Specific roles of serotonin, adrenaline, acetylcholine, dopamine receptors, and N-methyl-D-aspartate receptors in Alzheimer's disease and Parkinson's disease will be interactively discussed. Complex mechanisms involved in their signaling pathways in the cognitive dysfunction associated with the neurodegenerative diseases will also be addressed. Substantial evidence has suggested that those receptors are crucial neuroregulators contributing to cognitive pathology and complicated correlations exist between those receptors and the expression of cognitive capacities. The pathological alterations in the receptors would, therefore, contribute to cognitive impairments and/or deterioration in Alzheimer's disease and Parkinson's disease. Future research may shed light on new clues for the treatment of cognitive dysfunction in neurodegenerative diseases by targeting specific alterations in these receptors and their signal transduction pathways in the frontal-striatal, fronto-striato-thalamic, and mesolimbic circuitries.
Collapse
Affiliation(s)
- Yunqi Xu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Delaville C, Deurwaerdère PD, Benazzouz A. Noradrenaline and Parkinson's disease. Front Syst Neurosci 2011; 5:31. [PMID: 21647359 PMCID: PMC3103977 DOI: 10.3389/fnsys.2011.00031] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 05/04/2011] [Indexed: 01/28/2023] Open
Abstract
Parkinson's disease (PD) is characterized by the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta, and motor symptoms including bradykinesia, rigidity, and tremor at rest. These symptoms are exhibited when striatal dopamine concentration has decreased by around 70%. In addition to motor deficits, PD is also characterized by the non-motor symptoms. However, depletion of DA alone in animal models has failed to simultaneously elicit both the motor and non-motor deficits of PD, possibly because the disease is a multi-system disorder that features a profound loss in other neurotransmitter systems. There is growing evidence that additional loss of noradrenaline (NA) neurons of the locus coeruleus, the principal source of NA in the brain, could be involved in the clinical expression of motor as well as in non-motor deficits. In the present review, we analyze the latest evidence for the implication of NA in the pathophysiology of PD obtained from animal models of parkinsonism and from parkinsonian patients. Recent studies have shown that NA depletion alone, or combined with DA depletion, results in motor as well as in non-motor dysfunctions. In addition, by using selective agonists and antagonists of noradrenaline alpha receptors we, and others, have shown that α2 receptors are implicated in the control of motor activity and that α2 receptor antagonists can improve PD motor symptoms as well as l-Dopa-induced dyskinesia. In this review we argue that the loss of NA neurons in PD has an impact on all PD symptoms and that the addition of NAergic agents to dopaminergic medication could be beneficial in the treatment of the disease.
Collapse
Affiliation(s)
- Claire Delaville
- UMR 5293, Institut des Maladies Neurodégénératives, Université de Bordeaux Bordeaux, France
| | | | | |
Collapse
|
14
|
Bullido MJ, Ramos MC, Ruiz-Gómez A, Tutor AS, Sastre I, Frank A, Coria F, Gil P, Mayor F, Valdivieso F. Polymorphism in genes involved in adrenergic signaling associated with Alzheimer's. Neurobiol Aging 2004; 25:853-9. [PMID: 15212839 DOI: 10.1016/j.neurobiolaging.2003.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2003] [Revised: 09/23/2003] [Accepted: 10/02/2003] [Indexed: 11/25/2022]
Abstract
To investigate the potential involvement of adrenergic signaling in Alzheimer's disease (AD) pathogenesis, we performed genetic and functional studies of genes initiating the cascade. We chose two functional single-nucleotide polymorphisms (SNPs) in the beta1-adrenergic receptor (ADRB1) and the G protein beta3 subunit (GNB3) genes, respectively, and analyzed their allelic frequencies in a case-control sample of AD. We found that the GNB3 T allele produces a significant risk for AD in individuals homozygous for the ADRB1 C allele, suggesting that the combined effect of both polymorphisms influences AD susceptibility. Interestingly, the co-expression of GNB3 T and ADRB1 C alleles, compared with GNB3 C and ADRB1 G, produced increased cAMP levels and MAPK activation following adrenergic stimulation of transfected human cell lines. Furthermore, the co-expression of these alleles also produced increases in APP expression. These data strongly indicate that the combination of GNB3 and ADRB1 polymorphisms produces AD susceptibility by changing the cell responsiveness to adrenergic stimulation, pointing to the modulation of brain adrenergic receptors as a potential target for novel AD therapeutic strategies.
Collapse
Affiliation(s)
- María Jesús Bullido
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Xu J, Paquet M, Lau AG, Wood JD, Ross CA, Hall RA. beta 1-adrenergic receptor association with the synaptic scaffolding protein membrane-associated guanylate kinase inverted-2 (MAGI-2). Differential regulation of receptor internalization by MAGI-2 and PSD-95. J Biol Chem 2001; 276:41310-7. [PMID: 11526121 DOI: 10.1074/jbc.m107480200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta1-adrenergic receptor (beta1AR) is known to be localized to synapses and to modulate synaptic plasticity in many brain regions, but the molecular mechanisms determining beta1AR subcellular localization are not fully understood. Using overlay and pull-down techniques, we found that the beta1AR carboxyl terminus associates with MAGI-2 (membrane-associated guanylate kinase inverted-2), a protein also known as S-SCAM (synaptic scaffolding molecule). MAGI-2 is a multidomain scaffolding protein that contains nine potential protein-protein interaction modules, including 6 PDZ domains, 2 WW domains, and a guanylate kinase-like domain. The beta1AR carboxyl terminus binds with high affinity to the first PDZ domain of MAGI-2, with the last few amino acids of the beta1AR carboxyl terminus being the key determinants of the interaction. In cells, the association of full-length beta1AR with MAGI-2 occurs constitutively and is enhanced by agonist stimulation of the receptor, as assessed by both co-immunoprecipitation experiments and immunofluorescence co-localization studies. Agonist-induced internalization of the beta1AR is markedly increased by co-expression with MAGI-2. Strikingly, this result is the opposite of the effect of co-expression with PSD-95, a previously reported binding partner of the beta1AR. Further cellular experiments revealed that MAGI-2 has no effect on beta1AR oligomerization but does promote association of beta1AR with the cytoplasmic signaling protein beta-catenin, a known MAGI-2 binding partner. These data reveal that MAGI-2 is a specific beta1AR binding partner that modulates beta1AR function and facilitates the physical association of the beta1AR with intracellular proteins involved in signal transduction and synaptic regulation.
Collapse
Affiliation(s)
- J Xu
- Department of Pharmacology, Rollins Research Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | | | | | | | |
Collapse
|
16
|
Hu LA, Tang Y, Miller WE, Cong M, Lau AG, Lefkowitz RJ, Hall RA. beta 1-adrenergic receptor association with PSD-95. Inhibition of receptor internalization and facilitation of beta 1-adrenergic receptor interaction with N-methyl-D-aspartate receptors. J Biol Chem 2000; 275:38659-66. [PMID: 10995758 DOI: 10.1074/jbc.m005938200] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The beta(1)-adrenergic receptor (beta(1)AR) is the most abundant subtype of beta-adrenergic receptor in the mammalian brain and is known to potently regulate synaptic plasticity. To search for potential neuronal beta(1)AR-interacting proteins, we screened a rat brain cDNA library using the beta(1)AR carboxyl terminus (beta(1)AR-CT) as bait in the yeast two-hybrid system. These screens identified PSD-95, a multiple PDZ domain-containing scaffolding protein, as a specific binding partner of the beta(1)AR-CT. This interaction was confirmed by in vitro fusion protein pull-down and blot overlay experiments, which demonstrated that the beta(1)AR-CT binds specifically to the third PDZ domain of PSD-95. Furthermore, the full-length beta(1)AR associates with PSD-95 in cells, as determined by co-immunoprecipitation experiments and immunofluorescence co-localization studies. The interaction between beta(1)AR and PSD-95 is mediated by the last few amino acids of the beta(1)AR, and mutation of the beta(1)AR carboxyl terminus eliminated the binding and disrupted the co-localization of the beta(1)AR and PSD-95 in cells. Agonist-induced internalization of the beta(1)AR in HEK-293 cells was markedly attenuated by PSD-95 co-expression, whereas co-expression of PSD-95 has no significant effect on either desensitization of the beta(1)AR or beta(1)AR-induced cAMP accumulation. Furthermore, PSD-95 facilitated the formation of a complex between the beta(1)AR and N-methyl-d-aspartate receptors, as assessed by co-immunoprecipitation. These data reveal that PSD-95 is a specific beta(1)AR binding partner that modulates beta(1)AR function and facilitates physical association of the beta(1)AR with synaptic proteins, such as the N-methyl-d-aspartate receptors, which are known to be regulated by beta(1)AR stimulation.
Collapse
Affiliation(s)
- L A Hu
- Howard Hughes Medical Institute, Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Arango V, Ernsberger P, Sved AF, Mann JJ. Quantitative autoradiography of alpha 1- and alpha 2-adrenergic receptors in the cerebral cortex of controls and suicide victims. Brain Res 1993; 630:271-82. [PMID: 8118693 DOI: 10.1016/0006-8993(93)90666-b] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alterations in both serotonergic and noradrenergic indices have been found in the brain of suicide victims. In order to better understand the role of the noradrenergic system in suicide, we carried out quantitative autoradiography of alpha 1- and alpha 2-adrenergic receptors using [3H]prazosin and [3H]-p-aminoclonidine respectively. We compared the distribution and relative density of these receptors in the prefrontal (PFC) and alpha 1-adrenergic receptors in the temporal cortex (TC) of suicide victims and controls matched for postmortem delay, age, side of brain and sex. We found that: (1) the laminar patterns of alpha 1-adrenergic receptors in the PFC (n = 20) and the TC (n = 16) were different (P = 0.022); (2) there was a 37% increase in alpha 1-adrenergic binding corresponding to layers IV-V of PFC of suicide victims compared to controls (P = 0.029); (3) the TC had a greater density of alpha 1-adrenergic binding sites than the PFC across all cortical layers (P = 0.006); (4) alpha 2-adrenergic binding sites had a specific laminar distribution in the PFC (n = 24) which did not differ in controls and suicide victims; (5) binding to alpha 2-adrenergic sites in the PFC of suicide victims did not differ from controls; and (6) norepinephrine concentrations in the same brain areas were elevated in the suicide group compared to controls, but did not correlate with binding to alpha 1- or alpha 2-adrenergic sites. The increase in [3H]prazosin (to alpha 1-adrenergic receptors) but not in [3H]-p-aminoclonidine (to alpha 2-adrenergic receptors), and in norepinephrine concentrations in the brain of suicide victims provides further evidence for an association between suicide and altered brain noradrenergic function. Future studies must determine whether these changes in brain noradrenergic function indicate increased or decreased transmission.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Aging/metabolism
- Autoradiography
- Cerebral Cortex/chemistry
- Cerebral Cortex/metabolism
- Chromatography, High Pressure Liquid
- Female
- Humans
- Male
- Middle Aged
- Norepinephrine/analysis
- Norepinephrine/metabolism
- Postmortem Changes
- Receptors, Adrenergic, alpha-1/analysis
- Receptors, Adrenergic, alpha-1/metabolism
- Receptors, Adrenergic, alpha-2/analysis
- Receptors, Adrenergic, alpha-2/metabolism
- Reference Values
- Sex Characteristics
- Suicide
Collapse
Affiliation(s)
- V Arango
- Laboratories of Neuropharmacology, Western Psychiatric Institute and Clinic University of Pittsburgh, PA 15213
| | | | | | | |
Collapse
|
18
|
Lafarga M, Berciano MT, Del Olmo E, Andres MA, Pazos A. Osmotic stimulation induces changes in the expression of beta-adrenergic receptors and nuclear volume of astrocytes in supraoptic nucleus of the rat. Brain Res 1992; 588:311-6. [PMID: 1327410 DOI: 10.1016/0006-8993(92)91592-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The influence of osmotic stimulation on the density of beta-adrenoceptor binding sites in the rat supraoptic nucleus (SON) was studied by quantitative autoradiography using 125I-cyanopindolol (ICYP). Increased density of beta-adrenoceptor binding sites was observed in osmotically stimulated rats and also after the suppression of neuronal activation by rehydration of animals. This was mainly due to a significant increase in the concentration of beta 2 binding sites. The overexpression of beta-adrenoceptors occurred concomitantly with nuclear expansion in SON astrocytes. Moreover, the higher concentration of beta-adrenoceptors observed in the ventral portion of the SON largely coincided with the area that showed intense GFAP-immunostaining. These results provide indirect evidence of an astrocytic location of beta-adrenoceptors and also of beta-adrenergic mediation in the structural and functional changes of SON astrocytes.
Collapse
Affiliation(s)
- M Lafarga
- Department of Anatomy and Cell Biology, Faculty of Medicine, Santander, Spain
| | | | | | | | | |
Collapse
|
19
|
Vogt BA, Crino PB, Jensen EL. Multiple heteroreceptors on limbic thalamic axons: M2 acetylcholine, serotonin1B, beta 2-adrenoceptors, mu-opioid, and neurotensin. Synapse 1992; 10:44-53. [PMID: 1311129 DOI: 10.1002/syn.890100107] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ligand binding to many transmitter receptors is much higher in layer Ia of rat posterior cingulate cortex than it is in other layers, and this is where most axons from the anterior thalamus terminate. The present study explores the possibility that a number of receptors may be expressed on axons from limbic thalamic nuclei that terminate in layer Ia. Unilateral thalamic lesions were placed in rats and, 2 weeks later, five ligand binding protocols, coverslip autoradiography, and single grain counting techniques were used to quantify binding in control and ablated hemispheres. Binding to the following receptor subtypes was analyzed: M2 acetylcholine, 3H-oxotremorine-M, or 3H-AF-DX 116 with 50 nM pirenzepine; serotonin1B, 125I-(-)-cyanopindolol with 30 microM isoproterenol; beta 2-adrenoceptors, 125I-(-)-cyanopindolol with 1 microM serotonin and 10 microM atenolol; mu-opioid, 3H-T[r-D-Ala-Gly-MePhe-Gly-ol; neurotensin, 3H-neurotensin. Thalamic lesions reduced binding in two laminar patterns. In one pattern, there was a major reduction in binding in most superficial layers with that in layer Ia ranging from 50 to 70% for binding to M2 muscarinic and serotonin1B receptors. Binding to beta 2-adrenoceptors was also reduced in most superficial layers but to a lesser extent. In the second pattern, reductions were limited to layer I with losses in layer Ia of 20-30% for mu-opioid and neurotensin receptors. In no instance was layer Ia binding completely abolished (i.e., postlesion peaks remained). Since the transmitters for each of the five receptors analyzed in this study are not synthesized by anterior or laterodorsal thalamic neurons, these receptors are heteroreceptors. The greatest postlesion reduction in M2 binding was for AF-DX 116 and so most M2 heteroreceptors are of the "cardiac" subtype. Finally, the diverse population of heteroreceptors on limbic thalamic axons provides for presynaptic modulation by a wide range of transmitter systems and suggests that thalamocortical transmission may not be a simple, unmodulated event.
Collapse
MESH Headings
- Atenolol/pharmacology
- Autoradiography
- Axons/drug effects
- Axons/physiology
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-
- Enkephalins/metabolism
- Ethanolamines/pharmacology
- Limbic System/anatomy & histology
- Limbic System/drug effects
- Limbic System/physiology
- Neurotensin/metabolism
- Oxotremorine/metabolism
- Pindolol/analogs & derivatives
- Pindolol/metabolism
- Pirenzepine/analogs & derivatives
- Pirenzepine/metabolism
- Receptors, Adrenergic, beta/metabolism
- Receptors, Muscarinic/metabolism
- Receptors, Neurotensin
- Receptors, Neurotransmitter/metabolism
- Receptors, Opioid/metabolism
- Receptors, Opioid, mu
- Receptors, Serotonin/metabolism
- Thalamus/anatomy & histology
- Thalamus/drug effects
- Thalamus/physiology
- Tritium
Collapse
Affiliation(s)
- B A Vogt
- Department of Physiology and Pharmacology, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27103
| | | | | |
Collapse
|
20
|
Waeber C, Rigo M, Chinaglia G, Probst A, Palacios JM. Beta-adrenergic receptor subtypes in the basal ganglia of patients with Huntington's chorea and Parkinson's disease. Synapse 1991; 8:270-80. [PMID: 1656540 DOI: 10.1002/syn.890080405] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The density of [125I]iodo-cyanopindolol binding to beta-1 and beta-2 adrenergic receptors was studied in post mortem basal ganglia samples of Huntington's chorea and Parkinson's disease patients using autoradiography. Whereas no significant changes were observed in sections from Parkinson's and Huntington's chorea grade 2 patients, a nearly complete loss of beta-1 binding sites was observed in the basal ganglia of Huntington patients at later stages of the disease. The concentration of beta-2 receptors was increased by a factor 2 in the posterior putamen of all choreic cases. These results are consistent with the view that beta-1 receptors are predominantly located on a subpopulation of neurons which degenerate at late stages of Huntington's chorea, while beta-2 receptors are present mainly on glial elements.
Collapse
Affiliation(s)
- C Waeber
- Preclinical Research, Sandoz Pharma Ltd., Basel, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Chamba G, Weissmann D, Rousset C, Renaud B, Pujol JF. Distribution of alpha-1 and alpha-2 binding sites in the rat locus coeruleus. Brain Res Bull 1991; 26:185-93. [PMID: 1672831 DOI: 10.1016/0361-9230(91)90225-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Precise anatomical distribution of alpha-1 and alpha-2 adrenergic binding sites has been investigated in the rat locus coeruleus (LC) using quantitative radioautography of brain sections incubated with 3H-prazosin or 3H-idazoxan. Distribution patterns of 3H-prazosin (alpha-1 sites) and 3H-idazoxan (alpha-2 sites) were heterogeneous and different along a postero-anterior axis in the LC. Comparison between distribution of alpha-2 binding sites and noradrenergic (NA) cellular density suggests that at least a fraction of these sites might be localized on NA perikarya or dendrites in this structure. Quantitative estimations of the binding parameters along this postero-anterior axis in the LC have revealed that the heterogeneous distributions of alpha-1 and alpha-2 binding sites are due not only to variations in the maximal densities of sites but also to variations in the affinities of these sites for their respective ligand.
Collapse
Affiliation(s)
- G Chamba
- Laboratoire de Neuropharmacologie Moléculaire CNRS-UCB UMR 105, Institut des Sciences Pharmaceutiques et Biologiques, Faculté de Pharmacie, Lyon, France
| | | | | | | | | |
Collapse
|
22
|
Hertz L. Is Alzheimer's disease an anterograde degeneration, originating in the brainstem, and disrupting metabolic and functional interactions between neurons and glial cells? BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1989; 14:335-53. [PMID: 2696574 DOI: 10.1016/0165-0173(89)90017-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A novel hypothesis is suggested for the pathogenesis of Alzheimer's disease, i.e. that a degeneration of adrenergic neurons in locus coeruleus and/or of serotonergic neurons in the raphe nuclei leads to impairment in metabolic and functional interactions between neurons and astrocytes (in the cerebral cortex and hippocampus as well as in nucleus basalis magnocellularis), and that a resulting deficient supply of substrates and failing energy metabolism in both neurons and astrocytes causes neuronal cell death in these areas and thus interference with additional transmitter systems. The hypothesis is based on (1) the topographical distribution of ascending pathways from locus coeruleus and the raphe nuclei; (2) the peculiar termination of many of these fibres in varicosities, from which released transmitter molecules reach their targets by diffusion, rather than in genuine synapses, suggesting a partly non-neuronal target; (3) the effects of locus coeruleus lesions in experimental animals; (4) the emergence of new knowledge in cellular neurobiology, indicating profound metabolic and functional interactions between neurons and astrocytes; and (5) the effects of adrenergic and serotonergic agonists upon metabolism and function in rodent astrocytes and neurons. These compounds influence energy metabolism, membrane transport of potassium and production of growth factors in astrocytes, and glutamate release from glutamatergic neurons. They thus influence essential metabolic interactions between neurons and astrocytes, as well as neuronal-astrocytic interactions in potassium homeostasis at the cellular level. Obviously, neither the individual findings alone, nor their combination into a conceptual framework, prove the correctness of the hypothesis. However, they do provide a basis for further experimental work, using postmortem brain tissue from Alzheimer's patients and lesion studies in rodents, which can confirm or refute the hypothesis.
Collapse
Affiliation(s)
- L Hertz
- Department of Pharmacology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
23
|
Lidow MS, Goldman-Rakic PS, Gallager DW, Geschwind DH, Rakic P. Distribution of major neurotransmitter receptors in the motor and somatosensory cortex of the rhesus monkey. Neuroscience 1989; 32:609-27. [PMID: 2557559 DOI: 10.1016/0306-4522(89)90283-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The in vitro quantitative autoradiographic technique was used to characterize the distributions of alpha 1, alpha 2, beta 1 and beta 2 adrenergic, D1 and D2 dopaminergic, 5-HT1 and 5-HT2 serotonergic, M1 and M2 cholinergic, GABAA and benzodiazepine receptors in the motor (Brodmann's area 4) and somatosensory (Brodmann's areas 3, 1 and 2) cortex of the adult rhesus monkey. All receptor subtypes studied were present throughout all layers of both areas. In the somatosensory cortex, each receptor had its own laminar distribution. Some subtypes of the same receptor (5-HT1 and 5-HT2; alpha 1 and alpha 2) had complementary distributions while others (beta 1 and beta 2; D1 and D2; M1 and M2) had largely overlapping distributions. In contrast, different receptors had remarkably coincidental distributions in the motor cortex. In this area, they all tended to concentrate in layers I, II and the upper part of layer III. However, such coextensive distribution of many types of neurotransmitter receptors is not observed in motor cortex of rats and humans and therefore may be a distinctive feature of motor cortex in the rhesus monkey. The findings described in this paper indicate that somatosensory and motor areas are distinct in their receptor architecture and that receptor autoradiography provides a useful complement to classical histological techniques in elucidating areal differences in the cortex.
Collapse
Affiliation(s)
- M S Lidow
- Yale University of Medicine, Section of Neuroanatomy, New Haven, CT 06510
| | | | | | | | | |
Collapse
|
24
|
Slesinger PA, Lowenstein PR, Singer HS, Walker LC, Casanova MF, Price DL, Coyle JT. Development of beta 1 and beta 2 adrenergic receptors in baboon brain: an autoradiographic study using [125I]iodocyanopindolol. J Comp Neurol 1988; 273:318-29. [PMID: 2850303 DOI: 10.1002/cne.902730304] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
[125I]iodocyanopindolol (ICYP) autoradiography was used to investigate the temporal development and distribution of beta 1 and beta 2 receptors in brains of baboons at ages embryonic day 100 (E100), full-term gestation (El80), and 3 years. In all brain regions examined, with the exception of the hippocampus, binding to beta 1 receptors exceeded that to beta 2 receptors. The highest densities of beta 1 receptors were found in the caudate nucleus, putamen, globus pallidus, substantia nigra, and cerebral cortex; intermediate receptor densities were observed in most nuclei of thalamus, and the lowest concentrations were in the hippocampus. At E100, beta receptors were identified in the striatum, globus pallidus, and thalamus. During maturation, the number of beta 1 receptors declined in cortical areas but increased in the head of the caudate and putamen. Significant differences in the developmental distribution of beta receptors during development were also detected: at E100 and E180 beta 1 receptors appeared as patches in the caudate and putamen, but by 3 years of age they were more homogeneously distributed in both regions; changes also occurred in the distribution of binding within cortical layers. Autoradiograms of [125I]ICYP and [3H]mazindol binding show overlapping patches of labeling in the E180 striatum, suggesting a possible developmental association between beta receptors and dopamine high-affinity uptake carrier sites. This study demonstrates that noradrenergic receptors in the primate forebrain undergo significant developmental reorganization with regional variations.
Collapse
Affiliation(s)
- P A Slesinger
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | | | | | | | | | | | | |
Collapse
|
25
|
Lanfumey L, Adrien J. Adaptive changes of beta-adrenergic receptors after neonatal locus coeruleus lesion: regulation of serotoninergic unit activity. Synapse 1988; 2:644-9. [PMID: 2850635 DOI: 10.1002/syn.890020611] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Spontaneous activity of 5-hydroxytryptamine (5-HT) neurons in the dorsal raphe nucleus (DRN) was recorded in adult rats that had undergone a bilateral locus coeruleus (LC) lesion during the neonatal period. The susceptibility of this neuronal firing to beta-adrenergic manipulation was tested. Microiontophoretic application of the beta-blockers d,l-propranolol and acebutolol inhibited the firing of DRN cells in lesioned rats but not in control animals. This effect was specific to beta-receptors since the effects of pharmacological manipulation of other receptors--5-HT, gamma-aminobutyric acid (GABA), alpha-adrenoceptors--were identical in lesioned and control animals. The present data demonstrate that a neonatal noradrenergic lesion allowed the persistence of a beta-regulation of DRN neuronal firing, which in young rats is normally only transient.
Collapse
Affiliation(s)
- L Lanfumey
- INSERM U288, CHU Pitié-Salpêtrière, Paris, France
| | | |
Collapse
|
26
|
Herkenham M. Mismatches between neurotransmitter and receptor localizations in brain: observations and implications. Neuroscience 1987; 23:1-38. [PMID: 2891080 DOI: 10.1016/0306-4522(87)90268-5] [Citation(s) in RCA: 442] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- M Herkenham
- Unit on Functional Neuroanatomy, National Institute of Mental Health, Bethesda, MD 20892
| |
Collapse
|
27
|
Schoenen J. Central Effects Of Beta-Blocking Drugs In Migraineurs. Cephalalgia 1987. [DOI: 10.1177/03331024870070s6236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
|
29
|
Yamanaka K, Muramatsu I, Kigoshi S. Effect of chronic nicotine treatment against repeated immobilization stress. Pharmacol Biochem Behav 1987; 26:259-63. [PMID: 3033696 DOI: 10.1016/0091-3057(87)90115-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Alpha 2 and beta adrenoceptors, and muscarinic cholinoceptors in 2 brain regions (cerebral cortex and hippocampus) were measured in rats which received either tap water or nicotine added to the drinking water (5-8 mg/kg/day) for 4 weeks, and immobilization stress (daily 2 hr) for the last 5 days. The repeated stress induced a reduction in the maximum number of binding sites (Bmax) for (3H)dihydroalprenolol (DHA) in the cerebral cortex of rats with tap water, without affecting (3H)clonidine binding. Nicotine-treatment also caused a decrease in the Bmax of cortical (3H)DHA binding comparable to the case of stress, and increased the (3H)clonidine binding. However, the combination of nicotine- and stress-treatments failed to induce further no changes in the 2 radioligands binding. The binding of (3H)quinuclidinyl benzilate in the cerebral cortex and of the 3 radioligands in the hippocampus was unaltered by nicotine- and/or stress-treatments. These results indicate that long-term administration of nicotine induces down-regulation of cortical beta adrenoceptors and seemingly attenuates the receptor alteration by repeated stress.
Collapse
MESH Headings
- Animals
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Clonidine/metabolism
- Dihydroalprenolol/metabolism
- Hippocampus/drug effects
- Hippocampus/metabolism
- Kinetics
- Male
- Nicotine/pharmacology
- Organ Specificity
- Quinuclidinyl Benzilate/metabolism
- Rats
- Rats, Inbred Strains
- Receptors, Adrenergic, alpha/drug effects
- Receptors, Adrenergic, alpha/metabolism
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/metabolism
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/metabolism
- Restraint, Physical
- Stress, Psychological/metabolism
Collapse
|