1
|
Untiet V, Verkhratsky A. How astrocytic chloride modulates brain states. Bioessays 2024; 46:e2400004. [PMID: 38615322 DOI: 10.1002/bies.202400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
The way the central nervous system (CNS) responds to diverse stimuli is contingent upon the specific brain state of the individual, including sleep and wakefulness. Despite the wealth of readout parameters and data delineating the brain states, the primary mechanisms are yet to be identified. Here we highlight the role of astrocytes, with a specific emphasis on chloride (Cl-) homeostasis as a modulator of brain states. Neuronal activity is regulated by the concentration of ions that determine excitability. Astrocytes, as the CNS homeostatic cells, are recognised for their proficiency in maintaining dynamic homeostasis of ions, known as ionostasis. Nevertheless, the contribution of astrocyte-driven ionostasis to the genesis of brain states or their response to sleep-inducing pharmacological agents has been overlooked. Our objective is to underscore the significance of astrocytic Cl- homeostasis, elucidating how it may underlie the modulation of brain states. We endeavour to contribute to a comprehensive understanding of the interplay between astrocytes and brain states.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Untiet V. Astrocytic chloride regulates brain function in health and disease. Cell Calcium 2024; 118:102855. [PMID: 38364706 DOI: 10.1016/j.ceca.2024.102855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
Chloride ions (Cl-) play a pivotal role in synaptic inhibition in the central nervous system, primarily mediated through ionotropic mechanisms. A recent breakthrough emphathizes the significant influence of astrocytic intracellular chloride concentration ([Cl-]i) regulation, a field still in its early stages of exploration. Typically, the [Cl-]i in most animal cells is maintained at lower levels than the extracellular chloride [Cl-]o, a critical balance to prevent cell swelling due to osmotic pressure. Various Cl- transporters are expressed differently across cell types, fine-tuning the [Cl-]i, while Cl- gradients are utilised by several families of Cl- channels. Although the passive distribution of ions within cells is governed by basic biophysical principles, astrocytes actively expend energy to sustain [Cl-]i at much higher levels than those achieved passively, and much higher than neuronal [Cl-]i. Beyond the role in volume regulation, astrocytic [Cl-]i is dynamically linked to brain states and influences neuronal signalling in actively behaving animals. As a vital component of brain function, astrocytic [Cl-]i also plays a role in the development of disorders where inhibitory transmission is disrupted. This review synthesises the latest insights into astrocytic [Cl-]i, elucidating its role in modulating brain function and its implications in various pathophysiological conditions.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
3
|
Nguyen TD, Ishibashi M, Sinha AS, Watanabe M, Kato D, Horiuchi H, Wake H, Fukuda A. Astrocytic NKCC1 inhibits seizures by buffering Cl - and antagonizing neuronal NKCC1 at GABAergic synapses. Epilepsia 2023; 64:3389-3403. [PMID: 37779224 DOI: 10.1111/epi.17784] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVE A pathological excitatory action of the major inhibitory neurotransmitter γ-aminobutyric acid (GABA) has been observed in epilepsy. Blocking the Cl- importer NKCC1 with bumetanide is expected to reduce the neuronal intracellular Cl- concentration ([Cl- ]i ) and thereby attenuate the excitatory GABA response. Accordingly, several clinical trials of bumetanide for epilepsy were conducted. Although NKCC1 is expressed in both neurons and glial cells, an involvement of glial NKCC1 in seizures has not yet been reported. Astrocytes maintain high [Cl- ]i with NKCC1, and this gradient promotes Cl- efflux via the astrocytic GABAA receptor (GABAA R). This Cl- efflux buffers the synaptic cleft Cl- concentration to maintain the postsynaptic Cl- gradient during intense firing of GABAergic neurons, thereby sustaining its inhibitory action during seizure. In this study, we investigated the function of astrocytic NKCC1 in modulating the postsynaptic action of GABA in acute seizure models. METHODS We used the astrocyte-specific conditional NKCC1 knockout (AstroNKCC1KO) mice. The seizurelike events (SLEs) in CA1 pyramidal neurons were triggered by tetanic stimulation of stratum radiatum in acute hippocampus slices. The SLE underlying GABAA R-mediated depolarization was evaluated by applying the GABAA R antagonist bicuculline. The pilocarpine-induced seizure in vivo was monitored in adult mice by the Racine scale. The SLE duration and tetanus stimulation intensity threshold and seizure behavior in AstroNKCC1KO mice and wild-type (WT) mice were compared. RESULTS The AstroNKCC1KO mice were prone to seizures with lower threshold and longer duration of SLEs and larger GABAA R-mediated depolarization underlying the SLEs, accompanied by higher Racine-scored seizures. Bumetanide reduced these indicators of seizure in AstroNKCC1KO mice (which still express neuronal NKCC1), but not in the WT, both in vitro and in vivo. SIGNIFICANCE Astrocytic NKCC1 inhibits GABA-mediated excitatory action during seizures, whereas neuronal NKCC1 has the converse effect, suggesting opposing actions of bumetanide on these cells.
Collapse
Affiliation(s)
- Trong Dao Nguyen
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masaru Ishibashi
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Adya Saran Sinha
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Miho Watanabe
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Horiuchi
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
4
|
Marunaka Y. Physiological roles of chloride ions in bodily and cellular functions. J Physiol Sci 2023; 73:31. [PMID: 37968609 PMCID: PMC10717538 DOI: 10.1186/s12576-023-00889-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/31/2023] [Indexed: 11/17/2023]
Abstract
Physiological roles of Cl-, a major anion in the body, are not well known compared with those of cations. This review article introduces: (1) roles of Cl- in bodily and cellular functions; (2) the range of cytosolic Cl- concentration ([Cl-]c); (3) whether [Cl-]c could change with cell volume change under an isosmotic condition; (4) whether [Cl-]c could change under conditions where multiple Cl- transporters and channels contribute to Cl- influx and efflux in an isosmotic state; (5) whether the change in [Cl-]c could be large enough to act as signals; (6) effects of Cl- on cytoskeletal tubulin polymerization through inhibition of GTPase activity and tubulin polymerization-dependent biological activity; (7) roles of cytosolic Cl- in cell proliferation; (8) Cl--regulatory mechanisms of ciliary motility; (9) roles of Cl- in sweet/umami taste receptors; (10) Cl--regulatory mechanisms of with-no-lysine kinase (WNK); (11) roles of Cl- in regulation of epithelial Na+ transport; (12) relationship between roles of Cl- and H+ in body functions.
Collapse
Affiliation(s)
- Yoshinori Marunaka
- Medical Research Institute, Kyoto Industrial Health Association, General Incorporated Foundation, 67 Kitatsuboi-Cho, Nishinokyo, Nakagyo-Ku, Kyoto, 604-8472, Japan.
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, 525-8577, Japan.
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-Ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
5
|
Untiet V, Beinlich FRM, Kusk P, Kang N, Ladrón-de-Guevara A, Song W, Kjaerby C, Andersen M, Hauglund N, Bojarowska Z, Sigurdsson B, Deng S, Hirase H, Petersen NC, Verkhratsky A, Nedergaard M. Astrocytic chloride is brain state dependent and modulates inhibitory neurotransmission in mice. Nat Commun 2023; 14:1871. [PMID: 37015909 PMCID: PMC10073105 DOI: 10.1038/s41467-023-37433-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/15/2023] [Indexed: 04/06/2023] Open
Abstract
Information transfer within neuronal circuits depends on the balance and recurrent activity of excitatory and inhibitory neurotransmission. Chloride (Cl-) is the major central nervous system (CNS) anion mediating inhibitory neurotransmission. Astrocytes are key homoeostatic glial cells populating the CNS, although the role of these cells in regulating excitatory-inhibitory balance remains unexplored. Here we show that astrocytes act as a dynamic Cl- reservoir regulating Cl- homoeostasis in the CNS. We found that intracellular chloride concentration ([Cl-]i) in astrocytes is high and stable during sleep. In awake mice astrocytic [Cl-]i is lower and exhibits large fluctuation in response to both sensory input and motor activity. Optogenetic manipulation of astrocytic [Cl-]i directly modulates neuronal activity during locomotion or whisker stimulation. Astrocytes thus serve as a dynamic source of extracellular Cl- available for GABAergic transmission in awake mice, which represents a mechanism for modulation of the inhibitory tone during sustained neuronal activity.
Collapse
Affiliation(s)
- Verena Untiet
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Felix R M Beinlich
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Peter Kusk
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Ning Kang
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Antonio Ladrón-de-Guevara
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Wei Song
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Celia Kjaerby
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Mie Andersen
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Natalie Hauglund
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Zuzanna Bojarowska
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Björn Sigurdsson
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Saiyue Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P.R. China
| | - Hajime Hirase
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Nicolas C Petersen
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Alexei Verkhratsky
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark.
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Rd, Manchester, M13 9PL, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain.
| | - Maiken Nedergaard
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, University of Copenhagen, 2200, Copenhagen, Denmark.
- Division of Glial Disease and Therapeutics, Center for Translational Neuromedicine, Department of Neurosurgery, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
6
|
Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023; 103:1095-1135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Synaptic inhibition plays a crucial role in regulating neuronal excitability, which is the foundation of nervous system function. This inhibition is largely mediated by the neurotransmitters GABA and glycine that activate Cl--permeable ion channels, which means that the strength of inhibition depends on the Cl- gradient across the membrane. In neurons, the Cl- gradient is primarily mediated by two secondarily active cation-chloride cotransporters (CCCs), NKCC1 and KCC2. CCC-mediated regulation of the neuronal Cl- gradient is critical for healthy brain function, as dysregulation of CCCs has emerged as a key mechanism underlying neurological disorders including epilepsy, neuropathic pain, and autism spectrum disorder. This review begins with an overview of neuronal chloride transporters before explaining the dependent relationship between these CCCs, Cl- regulation, and inhibitory synaptic transmission. We then discuss the evidence for how CCCs can be regulated, including by activity and their protein interactions, which underlie inhibitory synaptic plasticity. For readers who may be interested in conducting experiments on CCCs and neuronal excitability, we have included a section on techniques for estimating and recording intracellular Cl-, including their advantages and limitations. Although the focus of this review is on neurons, we also examine how Cl- is regulated in glial cells, which in turn regulate neuronal excitability through the tight relationship between this nonneuronal cell type and synapses. Finally, we discuss the relatively extensive and growing literature on how CCC-mediated neuronal excitability contributes to neurological disorders.
Collapse
Affiliation(s)
- Jessica C Pressey
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Miranda de Saint-Rome
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Vineeth A Raveendran
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Melanie A Woodin
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Asgharpour-Masouleh N, Rezayof A, Alijanpour S, Delphi L. Pharmacological activation of mediodorsal thalamic GABA-A receptors modulates morphine/cetirizine-induced changes in the prefrontal cortical GFAP expression in a rat model of neuropathic pain. Behav Brain Res 2023; 438:114213. [PMID: 36372242 DOI: 10.1016/j.bbr.2022.114213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The present study investigated the involvement of mediodorsal thalamic (MD) GABA-A receptors in cetirizine/morphine-induced anti-allodynia using a rat model of neuropathic pain. To assess the importance of the prefrontal cortex (PFC) for chronic pain processing, its expression level changes of glial fibrillary acidic protein (GFAP) were measured following drug treatments. Each animal was subjected to chronic constriction of the sciatic nerve surgery simultaneously with the MD cannulation under stereotaxic surgery. The results showed that the administration of morphine (3-5 mg/kg) or cetirizine (1-3 mg/kg) produced significant analgesia in neuropathic rats. Systemic administration of cetirizine (2.5 and 3 mg/kg) potentiated the analgesic response to a low and intolerance dose of morphine (3 mg/kg). Intra-MD microinjection of muscimol, a selective GABA-A receptor agonist (0.005-0.01 μg/rat), increased the cetirizine/morphine-induced anti-allodynia, while muscimol by itself did not affect neuropathic pain. The neuropathic pain was associated with the increased PFC expression level of GFAP, suggesting the impact of chronic pain on PFC glial management. Interestingly, the anti-allodynia was associated with a decrease in the PFC expression level of GFAP under the drugs' co-administration. Thus, cetirizine has a significant potentiating effect on morphine response in neuropathic pain via interacting with the MD GABA-A receptors. It seems that neuropathic pain affects the prefrontal cortex GFAP signaling pathway. In clinical studies, these findings can be considered to create a combination therapy with low doses of GABA-A receptor agonist plus cetirizine and morphine to manage neuropathic pain.
Collapse
Affiliation(s)
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
8
|
Kilb W, Kirischuk S. GABA Release from Astrocytes in Health and Disease. Int J Mol Sci 2022; 23:ijms232415859. [PMID: 36555501 PMCID: PMC9784789 DOI: 10.3390/ijms232415859] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS) mediating a variety of homeostatic functions, such as spatial K+ buffering or neurotransmitter reuptake. In addition, astrocytes are capable of releasing several biologically active substances, including glutamate and GABA. Astrocyte-mediated GABA release has been a matter of debate because the expression level of the main GABA synthesizing enzyme glutamate decarboxylase is quite low in astrocytes, suggesting that low intracellular GABA concentration ([GABA]i) might be insufficient to support a non-vesicular GABA release. However, recent studies demonstrated that, at least in some regions of the CNS, [GABA]i in astrocytes might reach several millimoles both under physiological and especially pathophysiological conditions, thereby enabling GABA release from astrocytes via GABA-permeable anion channels and/or via GABA transporters operating in reverse mode. In this review, we summarize experimental data supporting both forms of GABA release from astrocytes in health and disease, paying special attention to possible feedback mechanisms that might govern the fine-tuning of astrocytic GABA release and, in turn, the tonic GABAA receptor-mediated inhibition in the CNS.
Collapse
|
9
|
Liu J, Feng X, Wang Y, Xia X, Zheng JC. Astrocytes: GABAceptive and GABAergic Cells in the Brain. Front Cell Neurosci 2022; 16:892497. [PMID: 35755777 PMCID: PMC9231434 DOI: 10.3389/fncel.2022.892497] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
Astrocytes, the most numerous glial cells in the brain, play an important role in preserving normal neural functions and mediating the pathogenesis of neurological disorders. Recent studies have shown that astrocytes are GABAceptive and GABAergic astrocytes express GABAA receptors, GABAB receptors, and GABA transporter proteins to capture and internalize GABA. GABAceptive astrocytes thus influence both inhibitory and excitatory neurotransmission by controlling the levels of extracellular GABA. Furthermore, astrocytes synthesize and release GABA to directly regulate brain functions. In this review, we highlight recent research progresses that support astrocytes as GABAceptive and GABAergic cells. We also summarize the roles of GABAceptive and GABAergic astrocytes that serve as an inhibitory node in the intercellular communication in the brain. Besides, we discuss future directions for further expanding our knowledge on the GABAceptive and GABAergic astrocyte signaling.
Collapse
Affiliation(s)
- Jianhui Liu
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xuanran Feng
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yi Wang
- Translational Research Center, Shanghai Yangzhi Rehabilitation Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Xiaohuan Xia
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin C Zheng
- Department of Anesthesiology, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Center for Translational Neurodegeneration and Regenerative Therapy, Tongji Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Shanghai Frontiers Science Center of Nanocatalytic Medicine, Shanghai, China.,Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital affiliated to Tongji University School of Medicine, Shanghai, China.,Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Kovermann P, Engels M, Müller F, Fahlke C. Cellular Physiology and Pathophysiology of EAAT Anion Channels. Front Cell Neurosci 2022; 15:815279. [PMID: 35087380 PMCID: PMC8787812 DOI: 10.3389/fncel.2021.815279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) optimize the temporal resolution and energy demand of mammalian excitatory synapses by quickly removing glutamate from the synaptic cleft into surrounding neuronal and glial cells and ensuring low resting glutamate concentrations. In addition to secondary active glutamate transport, EAATs also function as anion channels. The channel function of these transporters is conserved in all homologs ranging from archaebacteria to mammals; however, its physiological roles are insufficiently understood. There are five human EAATs, which differ in their glutamate transport rates. Until recently the high-capacity transporters EAAT1, EAAT2, and EAAT3 were believed to conduct only negligible anion currents, with no obvious function in cell physiology. In contrast, the low-capacity glutamate transporters EAAT4 and EAAT5 are thought to regulate neuronal signaling as glutamate-gated channels. In recent years, new experimental approaches and novel animal models, together with the discovery of a human genetic disease caused by gain-of-function mutations in EAAT anion channels have enabled identification of the first physiological and pathophysiological roles of EAAT anion channels.
Collapse
|
11
|
Verkhratsky A, Parpura V, Li B, Scuderi C. Astrocytes: The Housekeepers and Guardians of the CNS. ADVANCES IN NEUROBIOLOGY 2021; 26:21-53. [PMID: 34888829 DOI: 10.1007/978-3-030-77375-5_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Astroglia are a diverse group of cells in the central nervous system. They are of the ectodermal, neuroepithelial origin and vary in morphology and function, yet, they can be collectively defined as cells having principle function to maintain homeostasis of the central nervous system at all levels of organisation, including homeostasis of ions, pH and neurotransmitters; supplying neurones with metabolic substrates; supporting oligodendrocytes and axons; regulating synaptogenesis, neurogenesis, and formation and maintenance of the blood-brain barrier; contributing to operation of the glymphatic system; and regulation of systemic homeostasis being central chemosensors for oxygen, CO2 and Na+. Their basic physiological features show a lack of electrical excitability (inapt to produce action potentials), but display instead a rather active excitability based on variations in cytosolic concentrations of Ca2+ and Na+. It is expression of neurotransmitter receptors, pumps and transporters at their plasmalemma, along with transports on the endoplasmic reticulum and mitochondria that exquisitely regulate the cytosolic levels of these ions, the fluctuation of which underlies most, if not all, astroglial homeostatic functions.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Caterina Scuderi
- Department of Physiology and Pharmacology "Vittorio Erspamer", SAPIENZA University of Rome, Rome, Italy
| |
Collapse
|
12
|
van Putten MJ, Fahlke C, Kafitz KW, Hofmeijer J, Rose CR. Dysregulation of Astrocyte Ion Homeostasis and Its Relevance for Stroke-Induced Brain Damage. Int J Mol Sci 2021; 22:5679. [PMID: 34073593 PMCID: PMC8198632 DOI: 10.3390/ijms22115679] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and chronic disability. Either recovery or progression towards irreversible failure of neurons and astrocytes occurs within minutes to days, depending on remaining perfusion levels. Initial damage arises from energy depletion resulting in a failure to maintain homeostasis and ion gradients between extra- and intracellular spaces. Astrocytes play a key role in these processes and are thus central players in the dynamics towards recovery or progression of stroke-induced brain damage. Here, we present a synopsis of the pivotal functions of astrocytes at the tripartite synapse, which form the basis of physiological brain functioning. We summarize the evidence of astrocytic failure and its consequences under ischemic conditions. Special emphasis is put on the homeostasis and stroke-induced dysregulation of the major monovalent ions, namely Na+, K+, H+, and Cl-, and their involvement in maintenance of cellular volume and generation of cerebral edema.
Collapse
Affiliation(s)
- Michel J.A.M. van Putten
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christoph Fahlke
- Institut für Biologische Informationsprozesse, Molekular-und Zellphysiologie (IBI-1), Forschungszentrum Jülich, 52425 Jülich, Germany;
| | - Karl W. Kafitz
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Jeannette Hofmeijer
- Department of Clinical Neurophysiology, University of Twente, 7522 NB Enschede, The Netherlands; (M.J.A.M.v.P.); (J.H.)
| | - Christine R. Rose
- Institute of Neurobiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
13
|
Acioglu C, Li L, Elkabes S. Contribution of astrocytes to neuropathology of neurodegenerative diseases. Brain Res 2021; 1758:147291. [PMID: 33516810 DOI: 10.1016/j.brainres.2021.147291] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/10/2020] [Accepted: 01/05/2021] [Indexed: 02/08/2023]
Abstract
Classically, the loss of vulnerable neuronal populations in neurodegenerative diseases was considered to be the consequence of cell autonomous degeneration of neurons. However, progress in the understanding of glial function, the availability of improved animal models recapitulating the features of the human diseases, and the development of new approaches to derive glia and neurons from induced pluripotent stem cells obtained from patients, provided novel information that altered this view. Current evidence strongly supports the notion that non-cell autonomous mechanisms contribute to the demise of neurons in neurodegenerative disorders, and glia causally participate in the pathogenesis and progression of these diseases. In addition to microglia, astrocytes have emerged as key players in neurodegenerative diseases and will be the focus of the present review. Under the influence of pathological stimuli present in the microenvironment of the diseased CNS, astrocytes undergo morphological, transcriptional, and functional changes and become reactive. Reactive astrocytes are heterogeneous and exhibit neurotoxic (A1) or neuroprotective (A2) phenotypes. In recent years, single-cell or single-nucleus transcriptome analyses unraveled new, disease-specific phenotypes beyond A1/A2. These investigations highlighted the complexity of the astrocytic responses to CNS pathology. The present review will discuss the contribution of astrocytes to neurodegenerative diseases with particular emphasis on Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and frontotemporal dementia. Some of the commonalties and differences in astrocyte-mediated mechanisms that possibly drive the pathogenesis or progression of the diseases will be summarized. The emerging view is that astrocytes are potential new targets for therapeutic interventions. A comprehensive understanding of astrocyte heterogeneity and disease-specific phenotypic complexity could facilitate the design of novel strategies to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Cigdem Acioglu
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Lun Li
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| | - Stella Elkabes
- The Reynolds Family Spine Laboratory, Department of Neurological Surgery, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, United States.
| |
Collapse
|
14
|
Verkhratsky A, Semyanov A, Zorec R. Physiology of Astroglial Excitability. FUNCTION (OXFORD, ENGLAND) 2020; 1:zqaa016. [PMID: 35330636 PMCID: PMC8788756 DOI: 10.1093/function/zqaa016] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 01/06/2023]
Abstract
Classic physiology divides all neural cells into excitable neurons and nonexcitable neuroglia. Neuroglial cells, chiefly responsible for homeostasis and defense of the nervous tissue, coordinate their complex homeostatic responses with neuronal activity. This coordination reflects a specific form of glial excitability mediated by complex changes in intracellular concentration of ions and second messengers organized in both space and time. Astrocytes are equipped with multiple molecular cascades, which are central for regulating homeostasis of neurotransmitters, ionostasis, synaptic connectivity, and metabolic support of the central nervous system. Astrocytes are further provisioned with multiple receptors for neurotransmitters and neurohormones, which upon activation trigger intracellular signals mediated by Ca2+, Na+, and cyclic AMP. Calcium signals have distinct organization and underlying mechanisms in different astrocytic compartments thus allowing complex spatiotemporal signaling. Signals mediated by fluctuations in cytosolic Na+ are instrumental for coordination of Na+ dependent astrocytic transporters with tissue state and homeostatic demands. Astroglial ionic excitability may also involve K+, H+, and Cl-. The cyclic AMP signalling system is, in comparison to ions, much slower in targeting astroglial effector mechanisms. This evidence review summarizes the concept of astroglial intracellular excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK,Achucarro Center for Neuroscience, Ikerbasque, 48011 Bilbao, Spain,Address correspondence to A.V. (e-mail: )
| | - Alexey Semyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia,Faculty of Biology, Moscow State University, Moscow, Russia,Sechenov First Moscow State Medical University, Moscow, Russia
| | - Robert Zorec
- Celica Biomedical, Ljubljana 1000, Slovenia,Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
15
|
Verkhratsky A, Parpura V, Vardjan N, Zorec R. Physiology of Astroglia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1175:45-91. [PMID: 31583584 DOI: 10.1007/978-981-13-9913-8_3] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes are principal cells responsible for maintaining the brain homeostasis. Additionally, these glial cells are also involved in homocellular (astrocyte-astrocyte) and heterocellular (astrocyte-other cell types) signalling and metabolism. These astroglial functions require an expression of the assortment of molecules, be that transporters or pumps, to maintain ion concentration gradients across the plasmalemma and the membrane of the endoplasmic reticulum. Astrocytes sense and balance their neurochemical environment via variety of transmitter receptors and transporters. As they are electrically non-excitable, astrocytes display intracellular calcium and sodium fluctuations, which are not only used for operative signalling but can also affect metabolism. In this chapter we discuss the molecules that achieve ionic gradients and underlie astrocyte signalling.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Faculty of Health and Medical Sciences, Center for Basic and Translational Neuroscience, University of Copenhagen, 2200, Copenhagen, Denmark. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Faculty of Medicine, Institute of Pathophysiology, University of Ljubljana, Ljubljana, Slovenia.,Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
16
|
Diverse Actions of Astrocytes in GABAergic Signaling. Int J Mol Sci 2019; 20:ijms20122964. [PMID: 31216630 PMCID: PMC6628243 DOI: 10.3390/ijms20122964] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
An imbalance of excitatory and inhibitory neurotransmission leading to over excitation plays a crucial role in generating seizures, while enhancing GABAergic mechanisms are critical in terminating seizures. In recent years, it has been reported in many studies that astrocytes are deeply involved in synaptic transmission. Astrocytes form a critical component of the “tripartite” synapses by wrapping around the pre- and post-synaptic elements. From this location, astrocytes are known to greatly influence the dynamics of ions and transmitters in the synaptic cleft. Despite recent extensive research on excitatory tripartite synapses, inhibitory tripartite synapses have received less attention, even though they influence inhibitory synaptic transmission by affecting chloride and GABA concentration dynamics. In this review, we will discuss the diverse actions of astrocytic chloride and GABA homeostasis at GABAergic tripartite synapses. We will then consider the pathophysiological impacts of disturbed GABA homeostasis at the tripartite synapse.
Collapse
|
17
|
Verkhratsky A, Untiet V, Rose CR. Ionic signalling in astroglia beyond calcium. J Physiol 2019; 598:1655-1670. [PMID: 30734296 DOI: 10.1113/jp277478] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Astrocytes are homeostatic and protective cells of the central nervous system. Astroglial homeostatic responses are tightly coordinated with neuronal activity. Astrocytes maintain neuronal excitability through regulation of extracellular ion concentrations, as well as assisting and modulating synaptic transmission by uptake and catabolism of major neurotransmitters. Moreover, they support neuronal metabolism and detoxify ammonium and reactive oxygen species. Astroglial homeostatic actions are initiated and controlled by intercellular signalling of ions, including Ca2+ , Na+ , Cl- , H+ and possibly K+ . This review summarises current knowledge on ionic signals mediated by the major monovalent ions, which occur in microdomains, as global events, or as propagating intercellular waves and thereby represent the substrate for astroglial excitability.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PT, Manchester, UK.,Centre for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.,Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
| | - Verena Untiet
- Centre for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
18
|
Verkhratsky A, Chvátal A. NMDA Receptors in Astrocytes. Neurochem Res 2019; 45:122-133. [DOI: 10.1007/s11064-019-02750-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 12/12/2022]
|
19
|
O'Neill N, Sylantyev S. Spontaneously opening GABA A receptors play a significant role in neuronal signal filtering and integration. Cell Death Dis 2018; 9:813. [PMID: 30042389 PMCID: PMC6057890 DOI: 10.1038/s41419-018-0856-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
Abstract
Continuous (tonic) charge transfer through ionotropic receptors of γ-aminobutyric acid (GABAARs) is an important mechanism of inhibitory signalling in the brain. The conventional view has been that tonic GABA-ergic inhibitory currents are mediated by low concentrations of ambient GABA. Recently, however, it was shown that the GABA-independent, spontaneously opening GABAARs (s-GABAARs), may contribute significantly to the tonic GABAAR current. One of the common approaches to temporal lobe epilepsy (TLE) therapy is an increase of GABA concentration in the cerebrospinal fluid to augment tonic current through GABAARs. Such an increase, however, generates multiple side effects, which impose significant limitations on the use of correspondent drugs. In contrast, activation/deactivation of s-GABAARs in a GABA-independent manner may provide a mechanism of regulation of tonic conductance without modification of extracellular GABA concentration, thus avoiding connected side effects. Although s-GABAARs have been detected in our earlier work, it is unclear whether they modulate neural signalling, or, due to their independence from the neurotransmitter, they provide just a stable background effect without much impact on neural crosstalk dynamics. Here, we focused on the causal relationship between s-GABAAR activity and signal integration in the rat's dentate gyrus granule cells to find that s-GABAARs play an important role in neural signal transduction. s-GABAARs shape the dynamics of phasic inhibitory responses, regulate the action potential generation machinery and control the coincidence detection window pertinent to excitatory input summation. Our results demonstrate that tonic inhibition delivered by s-GABAARs contributes to the key mechanisms that ensure implementation of neural signal filtering and integration, in a GABA-independent manner. This makes s-GABAAR a new and important actor in the regulation of long-term neural plasticity and a perspective target for TLE therapy.
Collapse
Affiliation(s)
- Nathanael O'Neill
- CCBS, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sergiy Sylantyev
- CCBS, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
- DCEE, Institute of Neurology, University College London, QSH, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
20
|
Emerging Evidence for a Direct Link between EAAT-Associated Anion Channels and Neurological Disorders. J Neurosci 2018; 37:241-243. [PMID: 28077704 DOI: 10.1523/jneurosci.2947-16.2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
|
21
|
Wilson CS, Mongin AA. The signaling role for chloride in the bidirectional communication between neurons and astrocytes. Neurosci Lett 2018; 689:33-44. [PMID: 29329909 DOI: 10.1016/j.neulet.2018.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/01/2023]
Abstract
It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl-) fluxes via the inhibitory GABAA and glycine receptors. Here, we discuss the putative contribution of Cl- fluxes and intracellular Cl- to other forms of information transfer in the CNS, namely the bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the generic functions of Cl- in cellular physiology, (ii) recaps molecular identities and properties of Cl- transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies implicating Cl- in the modulation of neuroglial communication. The existing literature suggests that neurons can alter astrocytic Cl- levels in a number of ways; via (a) the release of neurotransmitters and activation of glial transporters that have intrinsic Cl- conductance, (b) the metabotropic receptor-driven changes in activity of the electroneutral cation-Cl- cotransporter NKCC1, and (c) the transient, activity-dependent changes in glial cell volume which open the volume-regulated Cl-/anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl-]i through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, which open neuronal GABAA and glycine receptor/Cl- channels, or (b) the gliotransmitter-driven stimulation of NKCC1. The most important recent developments in this area are the identification of the molecular composition and functional heterogeneity of brain VRAC channels, and the discovery of a new cytosolic [Cl-] sensor - the Wnk family protein kinases. With new work in the field, our understanding of the role of Cl- in information processing within the CNS is expected to be significantly updated.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation.
| |
Collapse
|
22
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
23
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 964] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
24
|
Verkhratsky A, Zorec R, Parpura V. Stratification of astrocytes in healthy and diseased brain. Brain Pathol 2017; 27:629-644. [PMID: 28805002 PMCID: PMC5599174 DOI: 10.1111/bpa.12537] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/11/2022] Open
Abstract
Astrocytes, a subtype of glial cells, come in variety of forms and functions. However, overarching role of these cell is in the homeostasis of the brain, be that regulation of ions, neurotransmitters, metabolism or neuronal synaptic networks. Loss of homeostasis represents the underlying cause of all brain disorders. Thus, astrocytes are likely involved in most if not all of the brain pathologies. We tabulate astroglial homeostatic functions along with pathological condition that arise from dysfunction of these glial cells. Classification of astrocytes is presented with the emphasis on evolutionary trails, morphological appearance and numerical preponderance. We note that, even though astrocytes from a variety of mammalian species share some common features, human astrocytes appear to be the largest and most complex of all astrocytes studied thus far. It is then an imperative to develop humanized models to study the role of astrocytes in brain pathologies, which is perhaps most abundantly clear in the case of glioblastoma multiforme.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUnited Kingdom
- Achúcarro Basque Center for NeuroscienceIKERBASQUE, Basque Foundation for Science48011 BilbaoSpain
- Department of NeuroscienceUniversity of the Basque Country UPV/EHU and CIBERNED48940 LeioaSpain
| | - Robert Zorec
- Laboratory of Cell EngineeringCelica BIOMEDICAL, Tehnološki park 24, Ljubljana 1000SloveniaEurope
- Laboratory of Neuroendocrinology‐Molecular Cell PhysiologyInstitute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, Ljubljana 1000SloveniaEurope
| | - Vladimir Parpura
- Department of Neurobiology, Civitan International Research Center and Center for Glial Biology in Medicine, Evelyn F. McKnight Brain Institute, Atomic Force Microscopy & Nanotechnology Laboratories, 1719 6th Avenue South, CIRC 429University of Alabama at BirminghamBirminghamAL 35294‐0021
| |
Collapse
|
25
|
Untiet V, Kovermann P, Gerkau NJ, Gensch T, Rose CR, Fahlke C. Glutamate transporter-associated anion channels adjust intracellular chloride concentrations during glial maturation. Glia 2016; 65:388-400. [PMID: 27859594 DOI: 10.1002/glia.23098] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
Abstract
Astrocytic volume regulation and neurotransmitter uptake are critically dependent on the intracellular anion concentration, but little is known about the mechanisms controlling internal anion homeostasis in these cells. Here we used fluorescence lifetime imaging microscopy (FLIM) with the chloride-sensitive dye MQAE to measure intracellular chloride concentrations in murine Bergmann glial cells in acute cerebellar slices. We found Bergmann glial [Cl- ]int to be controlled by two opposing transport processes: chloride is actively accumulated by the Na+ -K+ -2Cl- cotransporter NKCC1, and chloride efflux through anion channels associated with excitatory amino acid transporters (EAATs) reduces [Cl- ]int to values that vary upon changes in expression levels or activity of these channels. EAATs transiently form anion-selective channels during glutamate transport, and thus represent a class of ligand-gated anion channels. Age-dependent upregulation of EAATs results in a developmental chloride switch from high internal chloride concentrations (51.6 ± 2.2 mM, mean ± 95% confidence interval) during early development to adult levels (35.3 ± 0.3 mM). Simultaneous blockade of EAAT1/GLAST and EAAT2/GLT-1 increased [Cl- ]int in adult glia to neonatal values. Moreover, EAAT activation by synaptic stimulations rapidly decreased [Cl- ]int . Other tested chloride channels or chloride transporters do not contribute to [Cl- ]int under our experimental conditions. Neither genetic removal of ClC-2 nor pharmacological block of K+ -Cl- cotransporter change resting Bergmann glial [Cl- ]int in acute cerebellar slices. We conclude that EAAT anion channels play an important and unexpected role in adjusting glial intracellular anion concentration during maturation and in response to cerebellar activity. GLIA 2017;65:388-400.
Collapse
Affiliation(s)
- Verena Untiet
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Peter Kovermann
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Niklas J Gerkau
- Institute of Neurobiology, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Thomas Gensch
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Christine R Rose
- Institute of Neurobiology, Heinrich-Heine-Universität Düsseldorf, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| |
Collapse
|
26
|
Xiong A, Wesson DW. Illustrated Review of the Ventral Striatum's Olfactory Tubercle. Chem Senses 2016; 41:549-55. [PMID: 27340137 DOI: 10.1093/chemse/bjw069] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Modern neuroscience often relies upon artistic renderings to illustrate key aspects of anatomy. These renderings can be in 2 or even 3 dimensions. Three-dimensional renderings are especially helpful in conceptualizing highly complex aspects of neuroanatomy which otherwise are not visually apparent in 2 dimensions or even intact biological samples themselves. Here, we provide 3 dimensional renderings of the gross- and cellular-anatomy of the rodent olfactory tubercle. Based upon standing literature and detailed investigations into rat brain specimens, we created biologically inspired illustrations of the olfactory tubercle in 3 dimensions as well as its connectivity with olfactory bulb projection neurons, the piriform cortex association fiber system, and ventral pallidum medium spiny neurons. Together, we intend for these illustrations to serve as a resource to the neuroscience community in conceptualizing and discussing this highly complex and interconnected brain system with established roles in sensory processing and motivated behaviors.
Collapse
Affiliation(s)
- Angeline Xiong
- Department of Neuroscience, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| | - Daniel W Wesson
- Department of Neuroscience, Case Western Reserve University, 2109 Adelbert Road, Cleveland, OH 44106, USA
| |
Collapse
|
27
|
Kirischuk S, Héja L, Kardos J, Billups B. Astrocyte sodium signaling and the regulation of neurotransmission. Glia 2015; 64:1655-66. [DOI: 10.1002/glia.22943] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/28/2015] [Indexed: 02/01/2023]
Affiliation(s)
- Sergei Kirischuk
- University Medical Center of the Johannes Gutenberg University Mainz, Institute of Physiology; Mainz Germany
| | - László Héja
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Julianna Kardos
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences; Budapest Hungary
| | - Brian Billups
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, The Australian National University; Acton ACT Australia
| |
Collapse
|
28
|
Losi G, Mariotti L, Carmignoto G. GABAergic interneuron to astrocyte signalling: a neglected form of cell communication in the brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:20130609. [PMID: 25225102 DOI: 10.1098/rstb.2013.0609] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GABAergic interneurons represent a minority of all cortical neurons and yet they efficiently control neural network activities in all brain areas. In parallel, glial cell astrocytes exert a broad control of brain tissue homeostasis and metabolism, modulate synaptic transmission and contribute to brain information processing in a dynamic interaction with neurons that is finely regulated in time and space. As most studies have focused on glutamatergic neurons and excitatory transmission, our knowledge of functional interactions between GABAergic interneurons and astrocytes is largely defective. Here, we critically discuss the currently available literature that hints at a potential relevance of this specific signalling in brain function. Astrocytes can respond to GABA through different mechanisms that include GABA receptors and transporters. GABA-activated astrocytes can, in turn, modulate local neuronal activity by releasing gliotransmitters including glutamate and ATP. In addition, astrocyte activation by different signals can modulate GABAergic neurotransmission. Full clarification of the reciprocal signalling between different GABAergic interneurons and astrocytes will improve our understanding of brain network complexity and has the potential to unveil novel therapeutic strategies for brain disorders.
Collapse
Affiliation(s)
- Gabriele Losi
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| | - Letizia Mariotti
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| | - Giorgio Carmignoto
- Department of Biomedical Science, Consiglio Nazionale delle Ricerche, Neuroscience Institute and University of Padova, Padova, Italy
| |
Collapse
|
29
|
Martens-Mantai T, Speckmann EJ, Gorji A. Propagation of cortical spreading depression into the hippocampus: The role of the entorhinal cortex. Synapse 2014; 68:574-584. [PMID: 25049108 DOI: 10.1002/syn.21769] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/03/2014] [Accepted: 07/16/2014] [Indexed: 12/27/2022]
Abstract
Propagation of cortical spreading depression (CSD) to the subcortical structures could be the underlying mechanism of some neurological deficits in migraine with aura. The entorhinal cortex (EC) as a gray matter bridge between the neocortex and subcortical regions plays an important role in this propagation. In vitro combined neocortex-hippocampus brain slices were used to study the propagation pattern of CSD between the neocortex and the hippocampus. The effects of different compounds as well as tetanic electrical stimulations in the EC on propagation of CSD to the hippocampus were investigated. Repetitive induction of CSD by KCl injection in the somatosensory cortex enhanced the probability of CSD entrance to the hippocampus via EC. Local application of AMPA receptor blocker CNQX and cannabinoid receptor agonist WIN 55212-2 in EC facilitated the propagation of CSD to the hippocampus, whereas application of NMDA receptor blocker APV and GABAA receptor blocker bicuculline in this region reduced the probability of CSD penetration to the hippocampus. Application of tetanic stimulation in EC also facilitated the propagation of CSD entrance to the hippocampus. Our data suggest the importance of synaptic plasticity of EC in filtering the propagation of CSD into subcortical structures and possibly the occurrence of concomitant neurological deficits. Synapse 68:574-584, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tanja Martens-Mantai
- Institute of Neurophysiology, Westfälische Wilhelms-Universität Münster, Germany
| | | | - Ali Gorji
- Institute of Neurophysiology, Westfälische Wilhelms-Universität Münster, Germany.,Department of Neurosurgery and Neurology, Epilepsy Research Center, Westfälische Wilhelms-Universität Münster, Germany.,Shefa Neuroscience Research Center, Tehran, Iran
| |
Collapse
|
30
|
Benfenati V, Martino N, Antognazza MR, Pistone A, Toffanin S, Ferroni S, Lanzani G, Muccini M. Photostimulation of whole-cell conductance in primary rat neocortical astrocytes mediated by organic semiconducting thin films. Adv Healthc Mater 2014; 3:392-9. [PMID: 23966220 DOI: 10.1002/adhm.201300179] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 12/19/2022]
Abstract
Astroglial ion channels are fundamental molecular targets in the study of brain physiology and pathophysiology. Novel tools and devices intended for stimulation and control of astrocytes ion channel activity are therefore highly desirable. The study of the interactions between astrocytes and biomaterials is also essential to control and minimize reactive astrogliosis, in view of the development of implantable functional devices. Here, the growth of rat primary neocortical astrocytes on the top of a light sensitive, organic polymer film is reported; by means of patch-clamp analyses, the effect of the visible light stimulation on membrane conductance is then determined. Photoexcitation of the active material causes a significant depolarization of the astroglial resting membrane potential: the effect is associated to an increase in whole-cell conductance at negative potentials. The magnitude of the evoked inward current density is proportional to the illumination intensity. Biophysical and pharmacological characterization suggests that the ion channel mediating the photo-transduction mechanism is a chloride channel, the ClC-2 channel. These results open interesting perspectives for the selective manipulation of astrocyte bioelectrical activity by non-invasive, label-free, organic-based, photostimulation approaches.
Collapse
Affiliation(s)
- Valentina Benfenati
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF); Via Gobetti 101 40129 Bologna Italy
| | - Nicola Martino
- Center for Nanoscience and Technology @PoliMi, Istituto Italiano di Tecnologia; Via Pascoli 70/3 20133 Milano Italy
- Politecnico di Milano, Dip. di Fisica; Piazza L. Da Vinci 32 20133 Milano Italy
| | - Maria Rosa Antognazza
- Center for Nanoscience and Technology @PoliMi, Istituto Italiano di Tecnologia; Via Pascoli 70/3 20133 Milano Italy
| | - Assunta Pistone
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Sintesi Organica e la Fotoreattività (ISOF); Via Gobetti 101 40129 Bologna Italy
| | - Stefano Toffanin
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN); Via P. Gobetti 101 40129 Bologna Italy
| | - Stefano Ferroni
- Department of Pharmacy and Biotechnology; University of Bologna; Via S. Donato, 19/2 40127 Bologna Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and Technology @PoliMi, Istituto Italiano di Tecnologia; Via Pascoli 70/3 20133 Milano Italy
- Politecnico di Milano, Dip. di Fisica; Piazza L. Da Vinci 32 20133 Milano Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche (CNR), Istituto per lo Studio dei Materiali Nanostrutturati (ISMN); Via P. Gobetti 101 40129 Bologna Italy
- E. T. C. s.r.l.; via P. Gobetti 101 I-40129 Bologna Italy
| |
Collapse
|
31
|
Egawa K, Yamada J, Furukawa T, Yanagawa Y, Fukuda A. Cl⁻ homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses. J Physiol 2013; 591:3901-17. [PMID: 23732644 PMCID: PMC3764636 DOI: 10.1113/jphysiol.2013.257162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The electrophysiological properties and functional role of GABAergic signal transmission from neurons to the gap junction-coupled astrocytic network are still unclear. GABA-induced astrocytic Cl− flux has been hypothesized to affect the driving force for GABAergic transmission by modulating [Cl−]o. Thus, revealing the properties of GABA-mediated astrocytic responses will deepen our understanding of GABAergic signal transmission. Here, we analysed the Cl− dynamics of neurons and astrocytes in CA1 hippocampal GABAergic tripartite synapses, using Cl− imaging during GABA application, and whole cell recordings from interneuron–astrocyte pairs in the stratum lacunosum-moleculare. Astrocytic [Cl−]i was adjusted to physiological conditions (40 mm). Although GABA application evoked bidirectional Cl− flux via GABAA receptors and mouse GABA transporter 4 (mGAT4) in CA1 astrocytes, a train of interneuron firing induced only GABAA receptor-mediated inward currents in an adjacent astrocyte. A GAT1 inhibitor increased the interneuron firing-induced currents and induced bicuculline-insensitive, mGAT4 inhibitor-sensitive currents, suggesting that synaptic spillover of GABA predominantly induced the astrocytic Cl− efflux because GABAA receptors are localized near the synaptic clefts. This GABA-induced Cl− efflux was accompanied by Cl− siphoning via the gap junctions of the astrocytic network because gap junction inhibitors significantly reduced the interneuron firing-induced currents. Thus, Cl− efflux from astrocytes is homeostatically maintained within astrocytic networks. A gap junction inhibitor enhanced the activity-dependent depolarizing shifts of reversal potential of neuronal IPSCs evoked by repetitive stimulation to GABAergic synapses. These results suggest that Cl− conductance within the astrocytic network may contribute to maintaining GABAergic synaptic transmission by regulating [Cl−]o.
Collapse
Affiliation(s)
- Kiyoshi Egawa
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | | | | | | | | |
Collapse
|
32
|
Direct and glia-mediated effects of GABA on development of central olfactory neurons. ACTA ACUST UNITED AC 2012; 7:143-61. [PMID: 22874585 DOI: 10.1017/s1740925x12000075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Previously studied for its role in processing olfactory information in the antennal lobe, GABA also may shape development of the olfactory pathway, acting either through or on glial cells. Early in development, the dendrites of GABAergic neurons extend to the glial border that surrounds the nascent olfactory lobe neuropil. These neuropil glia express both GABAA and GABAB receptors, about half of the glia in acute cultures responded to GABA with small outward currents, and about a third responded with small transient increases in intracellular calcium. The neuronal classes that express GABA in vivo, the local interneurons and a subset of projection neurons, also do so in culture. Exposure to GABA in culture increased the size and complexity of local interneurons, but had no effect on glial morphology. The presence of glia alone did not affect neuronal morphology, but in the presence of both glia and GABA, the growth-enhancing effects of GABA on cultured antennal lobe neurons were eliminated. Contact between the glial cells and the neurons was not necessary. Operating in vivo, these antagonistic effects, one direct and one glia mediated, could help to sculpt the densely branched, tufted arbors that are characteristic of neurons innervating olfactory glomeruli.
Collapse
|
33
|
Cesetti T, Ciccolini F, Li Y. GABA Not Only a Neurotransmitter: Osmotic Regulation by GABA(A)R Signaling. Front Cell Neurosci 2012; 6:3. [PMID: 22319472 PMCID: PMC3268181 DOI: 10.3389/fncel.2012.00003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 01/10/2012] [Indexed: 12/05/2022] Open
Abstract
Mature macroglia and almost all neural progenitor types express γ-aminobutyric (GABA) A receptors (GABAARs), whose activation by ambient or synaptic GABA, leads to influx or efflux of chloride (Cl−) depending on its electro-chemical gradient (ECl). Since the flux of Cl− is indissolubly associated to that of osmotically obliged water, GABAARs regulate water movements by modulating ion gradients. In addition, since water movements also occur through specialized water channels and transporters, GABAAR signaling could affect the movement of water by regulating the function of the channels and transporters involved, thereby affecting not only the direction of the water fluxes but also their dynamics. We will here review recent observations indicating that in neural cells GABAAR-mediated osmotic regulation affects the cellular volume thereby activating multiple intracellular signaling mechanisms important for cell proliferation, maturation, and survival. In addition, we will discuss evidence that the osmotic regulation exerted by GABA may contribute to brain water homeostasis in physiological and in pathological conditions causing brain edema, in which the GABAergic transmission is often altered.
Collapse
Affiliation(s)
- Tiziana Cesetti
- Department of Physiology and Pathophysiology, Interdisciplinary Center for Neurosciences, University of Heidelberg Heidelberg, Germany
| | | | | |
Collapse
|
34
|
Zhu H, Chen MF, Yu WJ, Wang WJ, Li F, Liu WC, Wo Y, Xia R, Ding WL. Time-dependent changes in BDNF expression of pentylenetetrazole-induced hippocampal astrocytes in vitro. Brain Res 2011; 1439:1-6. [PMID: 22265706 DOI: 10.1016/j.brainres.2011.12.035] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 12/23/2022]
Abstract
Pentylenetetrazole (PTZ), a γ-aminobutyric acid (GABA(A)) receptor antagonist, has been used extensively to induce seizures in animal models of epilepsy. The aim of the present study was to investigate the effects of PTZ on hippocampal astrocytes. Cells were incubated with 10, 20, or 40 mM PTZ for 24h and viability and apoptosis were examined using an MTT assay and Hoechst staining. The high concentration of PTZ (20 and 40 mM) resulted in a significant decrease in viability (MTT: 83.6 ± 7.8% and 69.3 ± 4.2%, respectively) (P<0.01), whereas the lower concentration of PTZ (10mM) did not induce cell apoptosis or reduce viability. When cells were treated with 10mM PTZ for 0, 0.5, 2, 4, 8, 12, or 24h, the level of brain-derived neurotrophic factor (BDNF), both protein and mRNA, was significantly reduced at 2 to 12h of culture (P<0.01), with maximal reduction detected at 8h; expression was restored to near control levels after 24h. Collectively, our results suggest that astrocytes may participate in epilepsy through a marked, but transient decrease in BDNF expression.
Collapse
Affiliation(s)
- Hao Zhu
- Department of Anatomy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Jeon SJ, Rhee SY, Seo JE, Bak HR, Lee SH, Ryu JH, Cheong JH, Shin CY, Kim GH, Lee YS, Ko KH. Oroxylin A increases BDNF production by activation of MAPK–CREB pathway in rat primary cortical neuronal culture. Neurosci Res 2011; 69:214-22. [DOI: 10.1016/j.neures.2010.11.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 01/12/2023]
|
36
|
Faroni A, Magnaghi V. The neurosteroid allopregnanolone modulates specific functions in central and peripheral glial cells. Front Endocrinol (Lausanne) 2011; 2:103. [PMID: 22654838 PMCID: PMC3356145 DOI: 10.3389/fendo.2011.00103] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 12/05/2011] [Indexed: 12/15/2022] Open
Abstract
Since the first observations on the existence of "neurosteroids" in the 1980s, our understanding of the importance of these endogenous steroids in the control of the central and peripheral nervous system (PNS) has increased progressively. Although most of the observations were made in neuronal cells, equally important are the effects that neurosteroids exert on glial cells. Among the different classes of neurosteroids acting on glial cells, the progesterone 5α-3α metabolite, allopregnanolone, displays a particular mechanism of action involving primarily the modulation of classic GABA receptors. In this review, we focus our attention on allopregnanolone because its effects on the physiology of glial cells of the central and PNS are intriguing and could potentially lead to the development of new strategies for neuroprotection and/or regeneration of injured nervous tissues.
Collapse
Affiliation(s)
- Alessandro Faroni
- Blond McIndoe Laboratories, Regenerative Biomedicine, School of Medicine, The University of ManchesterManchester, UK
- Department of Endocrinology, Physiopathology, Applied Biology, University of MilanMilan, Italy
| | - Valerio Magnaghi
- Department of Endocrinology, Physiopathology, Applied Biology, University of MilanMilan, Italy
- *Correspondence: Valerio Magnaghi, Department of Endocrinology, Physiopathology, Applied Biology, University of Milan, Via G. Balzaretti 9, 20133 Milan, Italy. e-mail:
| |
Collapse
|
37
|
Ionotropic receptors in neuronal-astroglial signalling: what is the role of "excitable" molecules in non-excitable cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:992-1002. [PMID: 20869992 DOI: 10.1016/j.bbamcr.2010.09.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Revised: 09/13/2010] [Accepted: 09/16/2010] [Indexed: 01/02/2023]
Abstract
Astroglial cells were long considered to serve merely as the structural and metabolic supporting cast and scenery against which the shining neurones perform their illustrious duties. Relatively recent evidence, however, indicates that astrocytes are intimately involved in many of the brain's functions. Astrocytes possess a diverse assortment of ionotropic transmitter receptors, which enable these glial cells to respond to many of the same signals that act on neurones. Ionotropic receptors mediate neurone-driven signals to astroglial cells in various brain areas including neocortex, hippocampus and cerebellum. Activation of ionotropic receptors trigger rapid signalling events in astroglia; these events, represented by local Ca(2+) or Na(+) signals provide the mechanism for fast neuronal-glial signalling at the synaptic level. Since astrocytes can detect chemical transmitters that are released from neurones and can release their own extracellular signals, gliotransmitters, they are intricately involved in homocellular and heterocellular signalling mechanisms in the nervous system. This article is part of a Special Issue entitled: 11th European Symposium on Calcium.
Collapse
|
38
|
Haas BR, Sontheimer H. Inhibition of the Sodium-Potassium-Chloride Cotransporter Isoform-1 reduces glioma invasion. Cancer Res 2010; 70:5597-606. [PMID: 20570904 DOI: 10.1158/0008-5472.can-09-4666] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Malignant gliomas metastasize throughout the brain by infiltrative cell migration into peritumoral areas. Invading cells undergo profound changes in cell shape and volume as they navigate extracellular spaces along blood vessels and white matter tracts. Volume changes are aided by the concerted release of osmotically active ions, most notably K(+) and Cl(-). Their efflux through ion channels along with obligated water causes rapid cell shrinkage. Suitable ionic gradients must be established and maintained through the activity of ion transport systems. Here, we show that the Sodium-Potassium-Chloride Cotransporter Isoform-1 (NKCC1) provides the major pathway for Cl(-) accumulation in glioma cells. NKCC1 localizes to the leading edge of invading processes, and pharmacologic inhibition using the loop diuretic bumetanide inhibits in vitro Transwell migration by 25% to 50%. Short hairpin RNA knockdowns of NKCC1 yielded a similar inhibition and a loss of bumetanide-sensitive cell volume regulation. A loss of NKCC1 function did not affect cell motility in two-dimensional assays lacking spatial constraints but manifested only when cells had to undergo volume changes during migration. Intracranial implantation of human gliomas into severe combined immunodeficient mice showed a marked reduction in cell invasion when NKCC1 function was disrupted genetically or by twice daily injection of the Food and Drug Administration-approved NKCC1 inhibitor Bumex. These data support the consideration of Bumex as adjuvant therapy for patients with high-grade gliomas.
Collapse
Affiliation(s)
- Brian R Haas
- Department of Neurobiology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
39
|
den Eynden JV, Ali SS, Horwood N, Carmans S, Brône B, Hellings N, Steels P, Harvey RJ, Rigo JM. Glycine and glycine receptor signalling in non-neuronal cells. Front Mol Neurosci 2009; 2:9. [PMID: 19738917 PMCID: PMC2737430 DOI: 10.3389/neuro.02.009.2009] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 07/23/2009] [Indexed: 11/13/2022] Open
Abstract
Glycine is an inhibitory neurotransmitter acting mainly in the caudal part of the central nervous system. Besides this neurotransmitter function, glycine has cytoprotective and modulatory effects in different non-neuronal cell types. Modulatory effects were mainly described in immune cells, endothelial cells and macroglial cells, where glycine modulates proliferation, differentiation, migration and cytokine production. Activation of glycine receptors (GlyRs) causes membrane potential changes that in turn modulate calcium flux and downstream effects in these cells. Cytoprotective effects were mainly described in renal cells, hepatocytes and endothelial cells, where glycine protects cells from ischemic cell death. In these cell types, glycine has been suggested to stabilize porous defects that develop in the plasma membranes of ischemic cells, leading to leakage of macromolecules and subsequent cell death. Although there is some evidence linking these effects to the activation of GlyRs, they seem to operate in an entirely different mode from classical neuronal subtypes.
Collapse
Affiliation(s)
- Jimmy Van den Eynden
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Sheen Saheb Ali
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Nikki Horwood
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College London, Charing Cross CampusLondon, UK
| | - Sofie Carmans
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Bert Brône
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Niels Hellings
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Paul Steels
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| | - Robert J. Harvey
- Department of Pharmacology, School of Pharmacy, University of LondonLondon, UK
| | - Jean-Michel Rigo
- Institute of Biomedical Research, Hasselt University and transnationale Universiteit LimburgDiepenbeek, Belgium
| |
Collapse
|
40
|
Cheung G, Kann O, Kohsaka S, Făerber K, Kettenmann H. GABAergic activities enhance macrophage inflammatory protein-1alpha release from microglia (brain macrophages) in postnatal mouse brain. J Physiol 2008; 587:753-68. [PMID: 19047202 DOI: 10.1113/jphysiol.2008.163923] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Microglial cells (brain macrophages) invade the brain during embryonic and early postnatal development, migrate preferentially along fibre tracts to their final position and transform from an amoeboid to a ramified morphology. Signals by which the invading microglia communicate with other brain cells are largely unknown. Here, we studied amoeboid microglia in postnatal corpus callosum obtained from 6- to 8-day-old mice. These cells accumulated on the surface of acute brain slices. Whole-cell patch-clamp recordings revealed that the specific GABA(A) receptor agonist muscimol triggered a transient increase in conductance typical for inward rectifying potassium channels in microglia. This current increase was not mediated by microglial GABA(A) receptors since microglial cells removed from the slice surface no longer reacted and cultured microglia only responded when a brain slice was placed in their close vicinity. Muscimol triggered a transient increase in extracellular potassium concentration ([K(+)](o)) in brain slices and an experimental elevation of [K(+)](o) mimicked the muscimol response in microglial cells. Moreover, in adult brain slices, muscimol led only to a minute increase in [K(+)](o) and microglial cells failed to respond to muscimol. In turn, an increase in [K(+)](o) stimulated the release of chemokine macrophage inflammatory protein-1alpha (MIP1-alpha) from brain slices and from cultures of microglia but not astrocytes. Our observations indicate that invading microglia in early postnatal development sense GABAergic activities indirectly via sensing changes in [K(+)](o) which results in an increase in MIP1-alpha release.
Collapse
Affiliation(s)
- Giselle Cheung
- Cellular Neurosciences, Max-Delbrueck-Center for Molecular Medicine, Berlin, Germany
| | | | | | | | | |
Collapse
|
41
|
Meier SD, Kafitz KW, Rose CR. Developmental profile and mechanisms of GABA-induced calcium signaling in hippocampal astrocytes. Glia 2008; 56:1127-37. [PMID: 18442094 DOI: 10.1002/glia.20684] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
GABA (gamma-aminobutyric acid) is a transmitter with dual action. Whereas it excites neurons during the first week of postnatal development, it represents the major inhibitory transmitter in the mature brain. GABA also activates astrocytes by binding to ionotropic (GABA(A)) and metabotropic (GABA(B)) receptors. This results in glial calcium transients which can induce the release of gliotransmitters, rendering GABA an important mediator of neuron-glia interaction. Using whole-cell patch-clamp and ratiometric calcium imaging in hippocampal slices from rats at postnatal days 3-34, we have analyzed the developmental profile as well as the cellular mechanisms of calcium signals induced by GABA(A) and GABA(B) receptor activation in astrocytes. We found that GABA-evoked glial calcium transients are mediated by both GABA(A) and GABA(B) receptors. Throughout development, GABA(A)-receptor activation resulted in immediate calcium transients in the vast majority of astrocytes, most likely by influx of calcium through voltage-gated calcium channels. GABA(B) receptor activation, in contrast, resulted in delayed calcium transients, which were blocked following depletion of intracellular calcium stores and during persistent activation of heterotrimeric G-proteins. GABA(B) receptor-mediated calcium signals exhibited a clear developmental profile with less than 10% of astrocytes responding at P3 or P32-34, and about 60% of cells between P11 and P15. Our data thus indicate that GABA(B) receptor-mediated calcium transients are due to calcium release from intracellular stores following G-protein activation. Moreover, GABA(B) receptor-mediated calcium signaling in astrocytes preferentially occurs at a period during postnatal development when hippocampal networks are established.
Collapse
Affiliation(s)
- Silke D Meier
- Institute for Neurobiology, Heinrich-Heine-University of Duesseldorf, Universitaetsstrasse 1, Duesseldorf, Germany
| | | | | |
Collapse
|
42
|
Enigmatic GABAergic networks in adult neurogenic zones. ACTA ACUST UNITED AC 2006; 53:124-34. [PMID: 16949673 DOI: 10.1016/j.brainresrev.2006.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2006] [Revised: 06/08/2006] [Accepted: 07/28/2006] [Indexed: 01/03/2023]
Abstract
The discovery and description of complex GABAergic networks in adult neurogenic zones suggest the intriguing possibility of information transfer from neuronal activity to immature cells. New questions also emerge regarding the mode of GABAergic signaling and the temporal pattern of receptor activation. Non-synaptic (paracrine) signaling communicates information on population size to control the proliferation and migration of progenitor cells in the subventricular zone. How this signaling relates to olfactory bulb network activity, however, remains largely unknown. This review argues that paracrine signaling precedes and then co-exists with synaptic GABAergic signaling, which provides the timing and instruction for cells to properly differentiate and synaptically integrate into an existing network. The evidence examined in this review indicates that the commonly cited mechanism of GABA's action (i.e., depolarization leading to voltage-gated calcium channel activation and calcium entry) needs to be re-examined in the context of the unique cellular properties and organization of the adult neurogenic regions.
Collapse
|
43
|
Makara JK, Rappert A, Matthias K, Steinhäuser C, Spät A, Kettenmann H. Astrocytes from mouse brain slices express ClC-2-mediated Cl- currents regulated during development and after injury. Mol Cell Neurosci 2003; 23:521-30. [PMID: 12932434 DOI: 10.1016/s1044-7431(03)00080-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Chloride channels are important for astrocytic volume regulation and K+ buffering. We demonstrate functional expression of a hyperpolarization-activated Cl- current in a subpopulation of astrocytes in acute slices or after fresh isolation from adult brain of GFAP/EGFP transgenic animals in which astrocytes are selectively labeled. When Na+ and K+ were substituted with NMDG+ and Cs+ in extra- and intracellular solutions, an inward current was observed at negative membrane potentials. The current displayed features as described for a Cl- current characterized in cultured astrocytes: it activated time dependently at potentials negative to -40 mV, displayed no inactivation within 1 s, and was inhibited reversibly by submicromolar concentrations of Cd2+. The current was not detectable in astrocytes from ClC-2 knockout mice, indicating that the ClC-2 chloride channel generated the conductance. Current density was significantly lower in a corresponding population of astrocytes isolated from immature brain and in reactive astrocytes within a lesion site.
Collapse
Affiliation(s)
- Judit K Makara
- Department of Physiology and Laboratory of Cellular and Molecular Physiology, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Application of the GABA(A) receptor agonist muscimol to astrocytes in situ or in vitro results in a receptor-mediated Cl(-) current with a concomitant block of outward K(+) currents. The effect on K(+) current is largely selective for the inactivating A-type current. Parallel experiments with various Cl(-) pipette concentrations show a significant reduction in A-type current under low Cl(-) conditions with minimal effect on delayed current. In addition, lower Cl(-) conditions caused a depolarizing shift of steady-state inactivation (V(1/2), -68 to -57 mV) and activation (V(1/2), -5.8 to 34 mV) kinetics of A-type current only. Cl(-) had no effect on the time course of inactivation or reactivation kinetics, suggesting the Cl(-)-mediated effect is largely on activation kinetics, indirectly affecting steady-state inactivation. Muscimol application to astrocytes under perforated patch control (gramicidin) displayed a similar block of A-type current to that of conventional whole cell patch at 40 or 20 mM pipette Cl(-) concentrations. With barium application under perforated patch conditions, the study of muscimol-mediated Cl(-) current in isolation of the effect on K(+) currents was possible. This allowed estimation of intracellular Cl(-) concentration from receptor current reversal information. The average intracellular Cl(-) concentration was found to be 29 +/- 3.2 mM. The effect on activation kinetics and lack of effect on time course of inactivation or reactivation suggest that intracellular anion concentrations have an effect on the K(+) channel voltage sensor region. Cl(-) may modulate K(+) currents by altering membrane field potentials surrounding K(+) channel proteins.
Collapse
Affiliation(s)
- Lane K Bekar
- Department of Physiology, University of Saskatchewan, Saskatoon, Canada
| | | |
Collapse
|
45
|
Von Blankenfeld G, Trotter J, Kettenmann H. Expression and Developmental Regulation of a GABAA Receptor in Cultured Murine Cells of the Oligodendrocyte Lineage. Eur J Neurosci 2002; 3:310-316. [PMID: 12106188 DOI: 10.1111/j.1460-9568.1991.tb00817.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The inhibitory neurotransmitter GABA activated Cl- currents in oligodendrocytes and their precursor cells. Most of the pharmacological features of these GABA-evoked currents matched those described for the neuronal GABAA/benzodiazepine receptor complex, such as the blockade by picrotoxin and bicuculline and the enhancement by barbiturates and benzodiazepines. In contrast to the astrocytic GABA receptor, but similar to the neuronal GABAA receptor, the inverse benzodiazepine agonist DMCM decreased GABA-induced current responses. A further similarity to the neuronal receptor is the strong run-down of the current in the absence of ATP in the pipette. A difference between oligodendroglial receptors and receptors expressed on neurons and astrocytes was revealed by the dose - response curve, which indicated only one binding site for GABA or weak allosterical interactions between two putative binding sites. Thus, GABAA receptors of precursor cells and oligodendrocytes might represent a third class of GABAA receptors, in addition to those expressed by neurons and astrocytes. The density of these receptors in the membrane, as calculated on the basis of whole cell currents and membrane capacitance, decreased by a factor of 100 when cells matured along the oligodendrocyte lineage, indicating a developmental regulation of the expression of the GABA receptor.
Collapse
Affiliation(s)
- G. Von Blankenfeld
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 345, 6900 Heidelberg, FRG
| | | | | |
Collapse
|
46
|
Berger T, Schnitzer J, Orkand PM, Kettenmann H. Sodium and Calcium Currents in Glial Cells of the Mouse Corpus Callosum Slice. Eur J Neurosci 2002; 4:1271-1284. [PMID: 12106391 DOI: 10.1111/j.1460-9568.1992.tb00153.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We studied Na+ and Ca2+ currents in glial cells during the development of the corpus callosum in situ. Glioblasts and oligodendrocytes from frontal brain slices of postnatal day (P) 3 to P18 mice were identified based on morphological and ultrastructural features after characterization of the currents with the patch-clamp technique. Slices from P3 - P8 mice contained predominantly glioblasts with immature morphological features. These cells showed Na+ and Ca2+ currents, but the population with these currents decreased between P3 and P8. Na+ currents were blocked in Na+-free bathing solution and in the presence of tetrodotoxin, Ca2+ currents were only observed when a high concentration of extracellular Ba2+ was present. The cells from the corpus callosum of P10 - P18 mice predominantly had morphological features of oligodendrocytes. In these cells, which in some cases were shown to form myelin, neither Na+ nor Ca2+ currents were detected. To compare these in situ results with those from the electrophysiologically and immunocytochemically well-characterized cultured glial cells, we determined the expression pattern of stage-specific antigens in the corpus callosum in situ. The first O4 antigen-positive glial precursors were observed at P1, the earliest stage examined. The oligodendrocytic antigens O7 and O10 appeared at P6 and P14, respectively, and prominent labelling with the corresponding markers was seen at P12 and P18, respectively. Despite the existence of numerous mature, O10-positive oligodendrocytes at P18, which expressed Ca2+ channels in vitro, we failed to detect Ca2+ currents in situ at this stage.
Collapse
Affiliation(s)
- Thomas Berger
- Department of Neurobiology, University of Heidelberg, Im Neuenheimer Feld 345, W-6900 Heidelberg, Germany
| | | | | | | |
Collapse
|
47
|
Su G, Kintner DB, Flagella M, Shull GE, Sun D. Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am J Physiol Cell Physiol 2002; 282:C1147-60. [PMID: 11940530 DOI: 10.1152/ajpcell.00538.2001] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We reported previously that inhibition of Na(+)-K(+)-Cl(-) cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K(+) concentration ([K(+)](o))-induced swelling and intracellular Cl(-) accumulation in rat cortical astrocytes. In this report, we extended our study by using cortical astrocytes from NKCC1-deficient (NKCC1(-/-)) mice. NKCC1 protein and activity were absent in NKCC1(-/-) astrocytes. [K(+)](o) of 75 mM increased NKCC1 activity approximately fourfold in NKCC1(+/+) cells (P < 0.05) but had no effect in NKCC1(-/-) astrocytes. Intracellular Cl(-) was increased by 70% in NKCC1(+/+) astrocytes under 75 mM [K(+)](o) (P < 0.05) but remained unchanged in NKCC1(-/-) astrocytes. Baseline intracellular Na(+) concentration ([Na(+)](i)) in NKCC1(+/+) astrocytes was 19.0 +/- 0.5 mM, compared with 16.9 +/- 0.3 mM [Na(+)](i) in NKCC1(-/-) astrocytes (P < 0.05). Relative cell volume of NKCC1(+/+) astrocytes increased by 13 +/- 2% in 75 mM [K(+)](o), compared with a value of 1.0 +/- 0.5% in NKCC1(-/-) astrocytes (P < 0.05). Regulatory volume increase after hypertonic shrinkage was completely impaired in NKCC1(-/-) astrocytes. High-[K(+)](o)-induced (14)C-labeled D-aspartate release was reduced by approximately 30% in NKCC1(-/-) astrocytes. Our study suggests that stimulation of NKCC1 is required for high-[K(+)](o)-induced swelling, which contributes to glutamate release from astrocytes under high [K(+)](o).
Collapse
Affiliation(s)
- Gui Su
- Department of Neurosurgery, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA
| | | | | | | | | |
Collapse
|
48
|
Kimura S, Kawasaki S, Takashima K, Sasaki K. Physiological and pharmacological characteristics of quisqualic acid-induced K(+)-current response in the ganglion cells of Aplysia. THE JAPANESE JOURNAL OF PHYSIOLOGY 2001; 51:511-21. [PMID: 11564288 DOI: 10.2170/jjphysiol.51.511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The extracellular application of either quisqualic acid (QA) or Phe-Met-Arg-Phe-NH2 (FMRFamide) induces an outward current in identified neurons of Aplysia ganglion under voltage clamp. The time course of the QA-induced response is significantly slower than that induced by FMRFamide. The reversal potential for both responses was -92 mV and was shifted 17 mV in a positive direction for a twofold increase in the extracellular K(+) concentration. The QA-induced response was markedly depressed in the presence of Ba(2+), a blocker of inward rectifier K(+)-channel, whereas TEA, a Ca(2+)-activated K(+)-channel (BK(Ca)) blocker, or 4-AP, a transient K(+) (A)-channel blocker, had no effect on the response. The QA-induced K(+)-current was significantly suppressed by CNQX and GYKI52466, antagonists of non-NMDA receptors. However, the application of either kainate or AMPA, agonists for non-NMDA receptors, produced no type of response in the same neurons. The QA-induced K(+)-current response was not depressed at all by an intracellular injection of either guanosine 5'-O-(2-thiodiphosphate) (GDP-betaS) or guanosine 5'-O-(3-thiotriphosphate) (GTP-gammaS), but the FMRFamide-induced response was markedly blocked by both GDP-betaS and GTP-gammaS in the same cell. Furthermore, the QA- and FMRFamide-induced K(+)-current responses were both decreased markedly when the temperature was lowered to 15 degrees C, from 23 degrees C. These results suggested that the QA-induced K(+)-current response is produced by an activation of a novel type of QA-receptor and that this response is not produced by an activation of the G protein.
Collapse
Affiliation(s)
- S Kimura
- Department of Physiology and Advanced Medical Science Research Center, School of Medicine, Iwate Medical University, Morioka, 020-8505, Japan.
| | | | | | | |
Collapse
|
49
|
Abstract
Functional and molecular analysis of glial voltage- and ligand-gated ion channels underwent tremendous boost over the last 15 years. The traditional image of the glial cell as a passive, structural element of the nervous system was transformed into the concept of a plastic cell, capable of expressing a large variety of ion channels and neurotransmitter receptors. These molecules might enable glial cells to sense neuronal activity and to integrate it within glial networks, e.g., by means of spreading calcium waves. In this review we shall give a comprehensive summary of the main functional properties of ion channels and ionotropic receptors expressed by macroglial cells, i.e., by astrocytes, oligodendrocytes and Schwann cells. In particular we will discuss in detail glial sodium, potassium and anion channels, as well as glutamate, GABA and ATP activated ionotropic receptors. A majority of available data was obtained from primary cell culture, these results have been compared with corresponding studies that used acute tissue slices or freshly isolated cells. In view of these data, an active glial participation in information processing seems increasingly likely and a physiological role for some of the glial channels and receptors is gradually emerging.
Collapse
Affiliation(s)
- A Verkhratsky
- School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, UK.
| | | |
Collapse
|
50
|
Frings S, Reuter D, Kleene SJ. Neuronal Ca2+ -activated Cl- channels--homing in on an elusive channel species. Prog Neurobiol 2000; 60:247-89. [PMID: 10658643 DOI: 10.1016/s0301-0082(99)00027-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ca2+ -activated Cl- channels control electrical excitability in various peripheral and central populations of neurons. Ca2+ influx through voltage-gated or ligand-operated channels, as well as Ca2+ release from intracellular stores, have been shown to induce substantial Cl- conductances that determine the response to synaptic input, spike rate, and the receptor current of various kinds of neurons. In some neurons, Ca2+ -activated Cl- channels are localized in the dendritic membrane, and their contribution to signal processing depends on the local Cl- equilibrium potential which may differ considerably from those at the membranes of somata and axons. In olfactory sensory neurons, the channels are expressed in ciliary processes of dendritic endings where they serve to amplify the odor-induced receptor current. Recent biophysical studies of signal transduction in olfactory sensory neurons have yielded some insight into the functional properties of Ca2+ -activated Cl- channels expressed in the chemosensory membrane of these cells. Ion selectivity, channel conductance, and Ca2+ sensitivity have been investigated, and the role of the channels in the generation of receptor currents is well understood. However, further investigation of neuronal Ca2+ -activated Cl- channels will require information about the molecular structure of the channel protein, the regulation of channel activity by cellular signaling pathways, as well as the distribution of channels in different compartments of the neuron. To understand the physiological role of these channels it is also important to know the Cl- equilibrium potential in cells or in distinct cell compartments that express Ca2+ -activated Cl- channels. The state of knowledge about most of these aspects is considerably more advanced in non-neuronal cells, in particular in epithelia and smooth muscle. This review, therefore, collects results both from neuronal and from non-neuronal cells with the intent of facilitating research into Ca2+ -activated Cl- channels and their physiological functions in neurons.
Collapse
Affiliation(s)
- S Frings
- Institut für Biologische Informationsverarbeitung, Forschungszentrum Jülich, Germany.
| | | | | |
Collapse
|