1
|
The contribution of mamillary body damage to Wernicke's encephalopathy and Korsakoff's syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:455-475. [PMID: 34225949 DOI: 10.1016/b978-0-12-820107-7.00029-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histopathological alterations of the mamillary bodies are the most conspicuous and the most consistent neuropathological features of several disorders that occur after severe thiamine deficiency, such as Wernicke's encephalopathy and Korsakoff's syndrome. Moreover, they are among the few abnormalities that are visible to the naked eye in these disorders. With a lifetime prevalence of approximately 1.3%, Wernicke's encephalopathy is by far the most frequent cause of damage to the mamillary bodies in humans. Still, there is a persisting uncertainty with regard to the development and the clinical consequences of this damage, because it is virtually impossible to study in isolation. As a rule, it always occurs alongside neuropathology in other subcortical gray matter structures, notably the medial thalamus. Converging evidence from other pathologies and animal experiments is needed to assess the clinical impact of mamillary body damage and to determine which functions can be attributed to these structures in healthy subjects. In this chapter, we describe the history and the current state of knowledge with regard to thiamine deficiency disorders and the contribution of mamillary body damage to their clinical presentations.
Collapse
|
2
|
Nagashima H, Tanaka K, Sasayama T, Okamura Y, Taniguchi M, Otani K, Yamasaki T, Itoh T, Kohmura E. A large cavernous malformation of the third ventricle floor: A case report. Neurol Neurochir Pol 2015; 49:446-50. [DOI: 10.1016/j.pjnns.2015.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 05/25/2015] [Accepted: 08/13/2015] [Indexed: 11/28/2022]
|
3
|
Memory Profiles after Unilateral Paramedian Thalamic Stroke Infarction: A Comparative Study. Case Rep Med 2015; 2015:430869. [PMID: 26587026 PMCID: PMC4637464 DOI: 10.1155/2015/430869] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/07/2015] [Indexed: 11/17/2022] Open
Abstract
We performed extensive neuropsychological assessment of two male patients (matched for age and educational level) with similar (localization and size) unilateral paramedian ischemic thalamic lesions (AB on the left and SD on the right). Both patients showed severe memory impairments as well as other cognitive deficits. In comparison to SD, AB showed severe impairment of executive functions and a more severe deficit of episodic/anterograde memory, especially in the verbal modality. The findings of this single case study suggest the possibility that the profile and severity of the executive dysfunction are determinant for the memory deficits and depend on from the side of the lesion. In addition to a material-side-specific (verbal versus visual) deficit hypothesis, the differential diencephalo-prefrontal contributions in mnestic-processing, in case of paramedian thalamic stroke, might also be explained in terms of their stage-specificity (encoding versus retrieval).
Collapse
|
4
|
Squire LR, Dede AJO. Conscious and unconscious memory systems. Cold Spring Harb Perspect Biol 2015; 7:a021667. [PMID: 25731765 DOI: 10.1101/cshperspect.a021667] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The idea that memory is not a single mental faculty has a long and interesting history but became a topic of experimental and biologic inquiry only in the mid-20th century. It is now clear that there are different kinds of memory, which are supported by different brain systems. One major distinction can be drawn between working memory and long-term memory. Long-term memory can be separated into declarative (explicit) memory and a collection of nondeclarative (implicit) forms of memory that include habits, skills, priming, and simple forms of conditioning. These memory systems depend variously on the hippocampus and related structures in the parahippocampal gyrus, as well as on the amygdala, the striatum, cerebellum, and the neocortex. This work recounts the discovery of declarative and nondeclarative memory and then describes the nature of declarative memory, working memory, nondeclarative memory, and the relationship between memory systems.
Collapse
Affiliation(s)
- Larry R Squire
- Veterans Affairs, San Diego Healthcare System, San Diego, La Jolla, California 92161 Departments of Psychiatry and Neurosciences, University of California, San Diego, La Jolla, California 92093 Department of Psychology, University of California, San Diego, La Jolla, California 92093
| | - Adam J O Dede
- Department of Psychology, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
5
|
Dalrymple-Alford JC, Harland B, Loukavenko EA, Perry B, Mercer S, Collings DA, Ulrich K, Abraham WC, McNaughton N, Wolff M. Anterior thalamic nuclei lesions and recovery of function: Relevance to cognitive thalamus. Neurosci Biobehav Rev 2015; 54:145-60. [PMID: 25637779 DOI: 10.1016/j.neubiorev.2014.12.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 11/02/2014] [Accepted: 12/04/2014] [Indexed: 12/01/2022]
Abstract
Injury to the anterior thalamic nuclei (ATN) and their neural connections is the most consistent neuropathology associated with diencephalic amnesia. ATN lesions in rats produce memory impairments that support a key role for this region within an extended hippocampal system of complex overlapping neural connections. Environmental enrichment is a therapeutic tool that produces substantial, although incomplete, recovery of memory function after ATN lesions, even after the lesion-induced deficit has become established. Similarly, the neurotrophic agent cerebrolysin, also counters the negative effects of ATN lesions. ATN lesions substantially reduce c-Fos expression and spine density in the retrosplenial cortex, and reduce spine density on CA1 neurons; only the latter is reversed by enrichment. We discuss the implications of this evidence for the cognitive thalamus, with a proposal that there are genuine interactions among different but allied thalamo-cortical systems that go beyond a simple summation of their separate effects.
Collapse
Affiliation(s)
- John C Dalrymple-Alford
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand; Department of Medicine, University of Otago, Christchurch, New Zealand.
| | - Bruce Harland
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - Elena A Loukavenko
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - Brook Perry
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - Stephanie Mercer
- New Zealand Brain Research Institute, and Department of Psychology, University of Canterbury, Christchurch 8140, New Zealand
| | - David A Collings
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Katharina Ulrich
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Neil McNaughton
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Mathieu Wolff
- University of Bordeaux, INCIA, UMR 5287, F-33400 Talence, France; CNRS, INCIA, UMR 5287, F-33400 Talence, France
| |
Collapse
|
6
|
Thiamine deficiency induced neurochemical, neuroanatomical, and neuropsychological alterations: a reappraisal. ScientificWorldJournal 2013; 2013:309143. [PMID: 24235882 PMCID: PMC3818926 DOI: 10.1155/2013/309143] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 09/12/2013] [Indexed: 01/31/2023] Open
Abstract
Nutritional deficiency can cause, mainly in chronic alcoholic subjects, the Wernicke encephalopathy and its chronic neurological sequela, the Wernicke-Korsakoff syndrome (WKS). Long-term chronic ethanol abuse results in hippocampal and cortical cell loss. Thiamine deficiency also alters principally hippocampal- and frontal cortical-dependent neurochemistry; moreover in WKS patients, important pathological damage to the diencephalon can occur. In fact, the amnesic syndrome typical for WKS is mainly due to the damage in the diencephalic-hippocampal circuitry, including thalamic nuclei and mammillary bodies. The loss of cholinergic cells in the basal forebrain region results in decreased cholinergic input to the hippocampus and the cortex and reduced choline acetyltransferase and acetylcholinesterase activities and function, as well as in acetylcholine receptor downregulation within these brain regions. In this narrative review, we will focus on the neurochemical, neuroanatomical, and neuropsychological studies shedding light on the effects of thiamine deficiency in experimental models and in humans.
Collapse
|
7
|
Markowitsch HJ. Memory and self-neuroscientific landscapes. ISRN NEUROSCIENCE 2013; 2013:176027. [PMID: 24967303 PMCID: PMC4045540 DOI: 10.1155/2013/176027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/22/2013] [Indexed: 02/07/2023]
Abstract
Relations between memory and the self are framed from a number of perspectives-developmental aspects, forms of memory, interrelations between memory and the brain, and interactions between the environment and memory. The self is seen as dividable into more rudimentary and more advanced aspects. Special emphasis is laid on memory systems and within them on episodic autobiographical memory which is seen as a pure human form of memory that is dependent on a proper ontogenetic development and shaped by the social environment, including culture. Self and episodic autobiographical memory are seen as interlocked in their development and later manifestation. Aside from content-based aspects of memory, time-based aspects are seen along two lines-the division between short-term and long-term memory and anterograde-future-oriented-and retrograde-past-oriented memory. The state dependency of episodic autobiographical is stressed and implications of it-for example, with respect to the occurrence of false memories and forensic aspects-are outlined. For the brain level, structural networks for encoding, consolidation, storage, and retrieval are discussed both by referring to patient data and to data obtained in normal participants with functional brain imaging methods. It is elaborated why descriptions from patients with functional or dissociative amnesia are particularly apt to demonstrate the facets in which memory, self, and personal temporality are interwoven.
Collapse
Affiliation(s)
- Hans J. Markowitsch
- Physiological Psychology, University of Bielefeld, Universitaetsstraße 25, 33615 Bielefeld, Germany
- Center of Excellence “Cognitive Interaction Technology” (CITEC), University of Bielefeld, 33615 Bielefeld, Germany
- Hanse Institute of Advanced Science, P. O. Box 1344, 27733 Delmenhorst, Germany
| |
Collapse
|
8
|
Staniloiu A, Markowitsch HJ. Towards solving the riddle of forgetting in functional amnesia: recent advances and current opinions. Front Psychol 2012; 3:403. [PMID: 23125838 PMCID: PMC3485580 DOI: 10.3389/fpsyg.2012.00403] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 09/27/2012] [Indexed: 01/24/2023] Open
Abstract
Remembering the past is a core feature of human beings, enabling them to maintain a sense of wholeness and identity and preparing them for the demands of the future. Forgetting operates in a dynamic neural connection with remembering, allowing the elimination of unnecessary or irrelevant information overload and decreasing interference. Stress and traumatic experiences could affect this connection, resulting in memory disturbances, such as functional amnesia. An overview of clinical, epidemiological, neuropsychological, and neurobiological aspects of functional amnesia is presented, by preponderantly resorting to own data from patients with functional amnesia. Patients were investigated medically, neuropsychologically, and neuroradiologically. A detailed report of a new case is included to illustrate the challenges posed by making an accurate differential diagnosis of functional amnesia, a condition that may encroach on the boundaries between psychiatry and neurology. Several mechanisms may play a role in "forgetting" in functional amnesia, such as retrieval impairments, consolidating defects, motivated forgetting, deficits in binding and reassembling details of the past, deficits in establishing a first person autonoetic connection with personal events, and loss of information. In a substantial number of patients, we observed a synchronization abnormality between a frontal lobe system, important for autonoetic consciousness, and a temporo-amygdalar system, important for evaluation and emotions, which provides empirical support for an underlying mechanism of dissociation (a failure of integration between cognition and emotion). This observation suggests a mnestic blockade in functional amnesia that is triggered by psychological or environmental stress and is underpinned by a stress hormone mediated synchronization abnormality during retrieval between processing of affect-laden events and fact-processing.
Collapse
Affiliation(s)
| | - Hans J. Markowitsch
- Physiological Psychology, University of BielefeldBielefeld, Germany
- Center of Excellence Cognitive Interaction Technology, University of BielefeldBielefeld, Germany
- Hanse Institute for Advanced StudyDelmenhorst, Germany
| |
Collapse
|
9
|
The remains of the day in dissociative amnesia. Brain Sci 2012; 2:101-29. [PMID: 24962768 PMCID: PMC4061789 DOI: 10.3390/brainsci2020101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/29/2012] [Accepted: 03/22/2012] [Indexed: 02/06/2023] Open
Abstract
Memory is not a unity, but is divided along a content axis and a time axis, respectively. Along the content dimension, five long-term memory systems are described, according to their hierarchical ontogenetic and phylogenetic organization. These memory systems are assumed to be accompanied by different levels of consciousness. While encoding is based on a hierarchical arrangement of memory systems from procedural to episodic-autobiographical memory, retrieval allows independence in the sense that no matter how information is encoded, it can be retrieved in any memory system. Thus, we illustrate the relations between various long-term memory systems by reviewing the spectrum of abnormalities in mnemonic processing that may arise in the dissociative amnesia—a condition that is usually characterized by a retrieval blockade of episodic-autobiographical memories and occurs in the context of psychological trauma, without evidence of brain damage on conventional structural imaging. Furthermore, we comment on the functions of implicit memories in guiding and even adaptively molding the behavior of patients with dissociative amnesia and preserving, in the absence of autonoetic consciousness, the so-called “internal coherence of life”.
Collapse
|
10
|
Vetreno RP, Ramos RL, Anzalone S, Savage LM. Brain and behavioral pathology in an animal model of Wernicke's encephalopathy and Wernicke-Korsakoff Syndrome. Brain Res 2012; 1436:178-92. [PMID: 22192411 PMCID: PMC3266665 DOI: 10.1016/j.brainres.2011.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 01/24/2023]
Abstract
Animal models provide the opportunity for in-depth and experimental investigation into the anatomical and physiological underpinnings of human neurological disorders. Rodent models of thiamine deficiency have yielded significant insight into the structural, neurochemical and cognitive deficits associated with thiamine deficiency as well as proven useful toward greater understanding of memory function in the intact brain. In this review, we discuss the anatomical, neurochemical and behavioral changes that occur during the acute and chronic phases of thiamine deficiency and describe how rodent models of Wernicke-Korsakoff Syndrome aid in developing a more detailed picture of brain structures involved in learning and memory.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902
| | - Raddy L. Ramos
- Department of Neuroscience & Histology, New York College of Osteopathic Medicine, New York Institute of Technology, Old Westbury NY 11568
| | - Steven Anzalone
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902
| | - Lisa M. Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton, NY 13902
| |
Collapse
|
11
|
Vetreno RP, Hall JM, Savage LM. Alcohol-related amnesia and dementia: animal models have revealed the contributions of different etiological factors on neuropathology, neurochemical dysfunction and cognitive impairment. Neurobiol Learn Mem 2011; 96:596-608. [PMID: 21256970 PMCID: PMC3086968 DOI: 10.1016/j.nlm.2011.01.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/09/2010] [Accepted: 01/04/2011] [Indexed: 12/21/2022]
Abstract
Chronic alcoholism is associated with impaired cognitive functioning. Over 75% of autopsied chronic alcoholics have significant brain damage and over 50% of detoxified alcoholics display some degree of learning and memory impairment. However, the relative contributions of different etiological factors to the development of alcohol-related neuropathology and cognitive impairment are questioned. One reason for this quandary is that both alcohol toxicity and thiamine deficiency result in brain damage and cognitive problems. Two alcohol-related neurological disorders, alcohol-associated dementia and Wernicke-Korsakoff syndrome have been modeled in rodents. These pre-clinical models have elucidated the relative contributions of ethanol toxicity and thiamine deficiency to the development of dementia and amnesia. What is observed in these models--from repeated and chronic ethanol exposure to thiamine deficiency--is a progression of both neural and cognitive dysregulation. Repeated binge exposure to ethanol leads to changes in neural plasticity by reducing GABAergic inhibition and facilitating glutamatergic excitation, long-term chronic ethanol exposure results in hippocampal and cortical cell loss as well as reduced hippocampal neurotrophin protein content critical for neural survival, and thiamine deficiency results in gross pathological lesions in the diencephalon, reduced neurotrophic protein levels, and neurotransmitters levels in the hippocampus and cortex. Behaviorally, after recovery from repeated or chronic ethanol exposure there is impairment in working or episodic memory that can recover with prolonged abstinence. In contrast, after thiamine deficiency there is severe and persistent spatial memory impairments and increased perseverative behavior. The interaction between ethanol and thiamine deficiency does not produce more behavioral or neural pathology, with the exception of reduction of white matter, than long-term thiamine deficiency alone.
Collapse
Affiliation(s)
- Ryan P. Vetreno
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton NY, 13902
| | - Joseph M. Hall
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton NY, 13902
| | - Lisa M. Savage
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Binghamton, Binghamton NY, 13902
| |
Collapse
|
12
|
Vetreno RP, Klintsova A, Savage LM. Stage-dependent alterations of progenitor cell proliferation and neurogenesis in an animal model of Wernicke-Korsakoff syndrome. Brain Res 2011; 1391:132-46. [PMID: 21440532 PMCID: PMC3087287 DOI: 10.1016/j.brainres.2011.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 02/19/2011] [Accepted: 03/18/2011] [Indexed: 10/18/2022]
Abstract
Alcohol-induced Wernicke-Korsakoff syndrome (WKS) culminates in bilateral diencephalic lesion and severe amnesia. Using the pyrithiamine-induced thiamine deficiency (PTD) animal paradigm of WKS, our laboratory has demonstrated hippocampal dysfunction in the absence of gross anatomical pathology. Extensive literature has revealed reduced hippocampal neurogenesis following a neuropathological insult, which might contribute to hippocampus-based learning and memory impairments. Thus, the current investigation was conducted to determine whether PTD treatment altered hippocampal neurogenesis in a stage-dependent fashion. Male Sprague-Dawley rats were assigned to one of 4 stages of thiamine deficiency based on behavioral symptoms: pre-symptomatic stage, ataxic stage, early post-opisthotonus stage, or the late post-opisthotonus stage. The S-phase mitotic marker 5'-bromo-2'-deoxyuridine (BrdU) was administered at the conclusion of each stage following thiamine restoration and subjects were perfused 24 hours or 28 days after BrdU to assess cellular proliferation or neurogenesis and survival, respectively. Dorsal hippocampal sections were immunostained for BrdU (proliferating cell marker), NeuN (neurons), GFAP (astrocytes), Iba-1 (microglia), and O4 (oligodendrocytes). The PTD treatment increased progenitor cell proliferation and survival during the early post-opisthotonus stage. However, levels of neurogenesis were reduced during this stage as well as the late post-opisthotonus stage where there was also an increase in astrocytogenesis. The diminished numbers of newly generated neurons (BrdU/NeuN co-localization) was paralleled by increased BrdU cells that did not co-localize with any of the phenotypic markers during these later stages. These data demonstrate that long-term alterations in neurogenesis and gliogenesis might contribute to the observed hippocampal dysfunction in the PTD model and human WKS.
Collapse
Affiliation(s)
- Ryan P Vetreno
- Department of Psychology, Behavioral Neuroscience, State University of New York at Binghamton, Vestal, NY 13902, USA.
| | | | | |
Collapse
|
13
|
Markowitsch HJ. Autobiographical memory: a biocultural relais between subject and environment. Eur Arch Psychiatry Clin Neurosci 2008; 258 Suppl 5:98-103. [PMID: 18985304 DOI: 10.1007/s00406-008-5021-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Autobiographical memory is described as integrated part of a number of memory systems which serve different functions in human information processing. These systems are regarded to be build-up onto each other both phylo- and ontogenetically and are named 'procedural memory', 'priming', 'perceptual memory', 'semantic memory (or knowledge system)' and episodic-autobiographical memory (EAM)'. Of these, EAM requires an established self and autonoetic consciousness and processes events or personal episodes. On the brain level, EAM is based on the synchronous activation of cognitive fact-processing and emotional, evaluating structures (e.g., hippocampal formation, amygdaloid body). Retrieval from EAM requires the activation of fronto-temporal areas and of limbic regions, particularly of the right hemisphere. Damage to these structures or their functional disengagement due to traumatic, stressful events selectively blocks the retrieval of EAM, though that of facts remains unimpaired ('mnestic block syndrome'). Consequently, both brain tissue damage and an altered hormonal status can have the same consequences, namely severe retrograde amnesia, which is either named organic or dissociative amnesia.
Collapse
|
14
|
Vetreno RP, Anzalone SJ, Savage LM. Impaired, spared, and enhanced ACh efflux across the hippocampus and striatum in diencephalic amnesia is dependent on task demands. Neurobiol Learn Mem 2008; 90:237-44. [PMID: 18472286 DOI: 10.1016/j.nlm.2008.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 04/01/2008] [Accepted: 04/02/2008] [Indexed: 11/30/2022]
Abstract
Diencephalic amnesia manifests itself through a host of neurological and memory impairments. A commonly employed animal model of diencephalic amnesia, pyrithiamine-induced thiamine deficiency (PTD), results in brain lesions and impairments similar in nature and distribution to those observed in humans with Wernicke-Korsakoff syndrome (WKS). In the current investigation, 2 separate experiments were conducted in which acetylcholine (ACh) efflux was assessed in the hippocampus and striatum of PTD-treated and pair-fed (PF) control male Sprague-Dawley rats. The goal was to determine under what behavioral conditions and in which brain structures ACh efflux was spared, impaired, or adaptively enhanced. In Experiment 1, rats were assessed on a spontaneous alternation task; in Experiment 2, rats were tested on a T-maze discrimination task that could be learned via a hippocampal- or striatal-based strategy. In Experiment 1, PTD-treated rats were impaired on the spontaneous alternation task and ACh efflux in the hippocampus during testing was significantly reduced, but spared in the striatum. In Experiment 2, PTD- and PF-treated rats did not differ in the number of trials to criterion, but PTD-treated rats demonstrated greater reliance upon egocentric cues to solve the task. Furthermore, ACh efflux in the striatum was greater during maze learning in the PTD-treated animals when compared to the PF animals. These results suggest that there is behavioral and systems level plasticity that can facilitate the use of alternative strategies to solve a task following diencephalic damage and WKS.
Collapse
Affiliation(s)
- Ryan P Vetreno
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY 13902, USA
| | | | | |
Collapse
|
15
|
Abstract
The most useful information about the anatomy of human memory comes from cases where there has been extensive neuropsychological testing followed by detailed post-mortem neurohistological analysis. To our knowledge, only eight such cases have been reported (four with medial temporal lobe damage and four with diencephalic damage). Here we present neuropsychological and post-mortem neurohistological findings for one patient (NC) with bilateral damage to the medial temporal lobe and two patients (MG, PN) with diencephalic damage due to bilateral thalamic infarction and Korsakoff's syndrome, respectively. All three patients exhibited a similar phenotype of amnesia with markedly impaired declarative memory (anterograde and retrograde) but normal performance on tests of nondeclarative memory (e.g., priming and adaptation-level effects) as well as on tests of other cognitive functions. Patient NC had damage to the hippocampus (dentate gyrus and the CA1 and CA3 fields) and layer III of the entorhinal cortex, but with relative sparing of the CA2 field and the subiculum. Patient MG had damage to the internal medullary lamina and mediodorsal thalamic nuclei. Patient PN had damage to the mammillary nuclei, mammillothalamic tracts, and the anterior thalamic nuclei. These findings illuminate several issues regarding the relation between diencephalic and medial temporal lobe amnesia, the status of recognition memory in amnesia, and the neuroanatomy of memory.
Collapse
Affiliation(s)
- Jeffrey J. Gold
- Department of Neurosciences, University of California–San Diego, La Jolla, California 92093, USA
| | - Larry R. Squire
- Veterans Affairs Medical Center, San Diego, California 92161, USA
- Department of Psychiatry, University of California–San Diego, La Jolla, California 92093, USA
- Department of Neurosciences, University of California–San Diego, La Jolla, California 92093, USA
- Department of Psychology, University of California–San Diego, La Jolla, California 92093, USA
- Corresponding author.E-mail ; fax (858) 552-7457
| |
Collapse
|
16
|
Conejo NM, González-Pardo H, Vallejo G, Arias JL. Involvement of the mammillary bodies in spatial working memory revealed by cytochrome oxidase activity. Brain Res 2004; 1011:107-14. [PMID: 15140650 DOI: 10.1016/j.brainres.2004.03.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2004] [Indexed: 10/26/2022]
Abstract
In view of the inconclusive findings relating the nuclei of the mammillary bodies (MB) with spatial memory, we evaluated the oxidative metabolic activity of the medial and lateral nuclei of the mammillary bodies (MB) after training young rats (30 days) of both sexes in the Morris water maze. Different groups were trained in spatial working (WM) or reference memory (RM) tasks, respectively. The corresponding naïve groups swam for the same amount of time as the trained groups but without the escape platform. Control groups were added that had not been manipulated in any way. No sex-related differences were detected in the working memory task although males exhibited better reference memory than females. Cytochrome oxidase (CO) activity, an endogenous metabolic marker for neuronal activity, was measured in all the groups. CO activity increased significantly in both MB nuclei of male and female rats only in the spatial working memory group. In addition, high CO activity in the lateral nucleus of the MB was linearly correlated with lower escape latencies in both sexes after training in the working memory task. No CO activity changes were found in the basolateral amygdala (BL) in any of the experimental groups. This nucleus was used as a control brain region because of its participation in emotional behavior. The results suggest a specific role of the MB nuclei in spatial working memory in both sexes.
Collapse
Affiliation(s)
- Nélida M Conejo
- Laboratory of Psychobiology, Faculty of Psychology, University of Oviedo, Plaza Feijoo, s/n E-33003, Oviedo, Asturias, Spain.
| | | | | | | |
Collapse
|
17
|
Zoppelt D, Koch B, Schwarz M, Daum I. Involvement of the mediodorsal thalamic nucleus in mediating recollection and familiarity. Neuropsychologia 2003; 41:1160-70. [PMID: 12753956 DOI: 10.1016/s0028-3932(03)00019-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The mediodorsal (MD) thalamic nucleus is thought to play an important role in memory processes. Distinct hippocampal-thalamic-prefrontal connections have been described as the potential neural substrate for both, recollection and familiarity. The aim of this study was to investigate whether the MD is part of the circuits underlying these two memory components. We assessed the effects of ischemic thalamic lesions with or without MD involvement on performance in a word list discrimination task and standard tests of memory and executive function. Estimates of recollection and familiarity were derived using the dual-process signal-detection model (DPSD). The results revealed impairments in both, recollection and familiarity, after unilateral thalamic damage, with recollection being more affected than familiarity. There were no significant differences in the memory performance of patients with MD lesions compared to patients with ventrolateral-thalamic lesions except for familiarity estimates, which were lower for the latter group. Lesions involving the MD led to recollection deficits, although inspection of individual cases suggested a decrease in both memory components after damage in the medial part of this nucleus. Executive dysfunction was associated with lateral MD lesions and also ventrolateral-thalamic damage. The findings suggest that MD contributes to recollection, with some preliminary evidence of a contribution of the medial MD to familiarity. The small sample size does, however, not yet allow any clear conclusions in this regard. Since damage in the ventrolateral thalamus leads to memory and executive dysfunction, further research is needed to elucidate the role of this thalamic region in cognition.
Collapse
Affiliation(s)
- Diana Zoppelt
- Department of Neuropsychology, Faculty of Psychology, Ruhr-University Bochum, D-44780, Bochum, Germany
| | | | | | | |
Collapse
|
18
|
Savage LM, Chang Q, Gold PE. Diencephalic damage decreases hippocampal acetylcholine release during spontaneous alternation testing. Learn Mem 2003; 10:242-6. [PMID: 12888541 DOI: 10.1101/lm.60003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A rodent model of diencephalic amnesia, pyrithiamine-induced thiamine deficiency (PTD), was used to investigate diencephalic-hippocampal interactions. Acetylcholine (ACh) release, a marker of memory-related activation, was measured in the hippocampus of PTD-treated and control rats prior to, during, and after spontaneous alternation test. During behavioral testing, all animals displayed increases in ACh release. However, both the percent increase of ACh release during spontaneous alternation testing and the alternation scores were higher in control rats relative to PTD-treated rats. Thus, when rats are tested on a task with demands dependent on the hippocampus, it appears that the hippocampus is not fully activated after diencephalic damage.
Collapse
Affiliation(s)
- Lisa M Savage
- Department of Psychology, Binghamton University, State University of New York, Binghamton, New York 13902, USA.
| | | | | |
Collapse
|
19
|
Duff J, Meyer FB, Ilstrup DM, Laws ER, Schleck CD, Scheithauer BW. Long-term outcomes for surgically resected craniopharyngiomas. Neurosurgery 2000; 46:291-302; discussion 302-5. [PMID: 10690718 DOI: 10.1097/00006123-200002000-00007] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE This retrospective study critically analyzed the long-term functional outcomes and tumor recurrence rates for surgically treated craniopharyngiomas. METHODS This study used an outcome classification system that included functioning vision, independent versus dependent living, Karnofsky Performance Scale scores, academic levels, work status, and psychological status. Tumor recurrence rates were analyzed with respect to the extent of surgical resection and adjunctive radiotherapy. RESULTS For 121 patients, with a mean follow-up period of 10 years, the overall "good outcome" rate was 60.3%. Factors associated with poor outcomes included lethargy at presentation, visual deterioration, papilledema, tumor calcification, hydrocephalus, and tumor adhesiveness at surgery. Gross total resection was associated with good outcomes (P = 0.017) and decreased risk of recurrence (P = 0.024). Subtotal resection was associated with increased risk of tumor recurrence (P = 0.0235). The highest risk of recurrence was in the subtotal resection/no radiation group (P = 0.0001). There were no differences in outcomes or recurrence rates between pediatric and adult patients. There were also no differences in outcomes or recurrence rates between papillary and adamantinous tumors. Approximately one-third of patients exhibited morbid obesity, and permanent diabetes insipidus was observed for 25 patients. CONCLUSION A rigorous evaluation of outcomes for tumors such as craniopharyngiomas must consider not only the extent of resection, as judged by postoperative imaging, but also the long-term physical, intellectual, and psychological functioning of the patients.
Collapse
Affiliation(s)
- J Duff
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
20
|
Goldenberg G, Schuri U, Grömminger O, Arnold U. Basal forebrain amnesia: does the nucleus accumbens contribute to human memory? J Neurol Neurosurg Psychiatry 1999; 67:163-8. [PMID: 10406982 PMCID: PMC1736481 DOI: 10.1136/jnnp.67.2.163] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To analyse amnesia caused by basal forebrain lesions. METHODS A single case study of a patient with amnesia after bleeding into the anterior portion of the left basal ganglia. Neuropsychological examination included tests of attention, executive function, working memory, recall, and recognition of verbal and non-verbal material, and recall from remote semantic and autobiographical memory. The patient's MRI and those of other published cases of basal forebrain amnesia were reviewed to specify which structures within the basal forebrain are crucial for amnesia. RESULTS Attention and executive function were largely intact. There was anterograde amnesia for verbal material which affected free recall and recognition. With both modes of testing the patient produced many false positive responses and intrusions when lists of unrelated words had been memorised. However, he confabulated neither on story recall nor in day to day memory, nor in recall from remote memory. The lesion affected mainly the nucleus accumbens, but encroached on the inferior limb of the capsula interna and the most ventral portion of the nucleus caudatus and globus pallidus, and there was evidence of some atrophy of the head of the caudate nucleus. The lesion spared the nucleus basalis Meynert, the diagnonal band, and the septum, which are the sites of cholinergic cell concentrations. CONCLUSIONS It seems unlikely that false positive responses were caused by insufficient strategic control of memory retrieval. This speaks against a major role of the capsular lesion which might disconnect the prefrontal cortex from the thalamus. It is proposed that the lesion of the nucleus accumbens caused amnesia.
Collapse
Affiliation(s)
- G Goldenberg
- Neuropsychological Department, Bogenhausen Hospital, Munich, Germany.
| | | | | | | |
Collapse
|
21
|
Abstract
Patient RB (Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus, S. Zola-Morgan, L. R. Squire, and D. G. Amaral, 1986, J Neurosci 6:2950-2967) was the first reported case of human amnesia in which detailed neuropsychological analyses and detailed postmortem neuropathological analyses demonstrated that damage limited to the hippocampal formation was sufficient to produce anterograde memory impairment. Neuropsychological and postmortem neuropathological findings are described here for three additional amnesic patients with bilateral damage limited to the hippocampal formation. Findings from these patients, taken together with the findings from patient RB and other amnesic patients, make three important points about memory. (1) Bilateral damage limited primarily to the CA1 region of the hippocampal formation is sufficient to produce moderately severe anterograde memory impairment. (2) Bilateral damage beyond, the CA1 region, but still limited to the hippocampal formation, can produce more severe anterograde memory impairment. (3) Extensive, temporally graded retrograde amnesia covering 15 years or more can occur after damage limited to the hippocampal formation. Findings from studies with experimental animals are consistent with the findings from amnesic patients. The present results substantiate the idea that severity of memory impairment is dependent on locus and extent of damage within the hippocampal formation and that damage to the hippocampal formation can cause temporally graded retrograde amnesia.
Collapse
|
22
|
Loesch DV, Gilman S, Del Dotto J, Rosenblum ML. Cavernous malformation of the mammillary bodies: neuropsychological implications. Case report. J Neurosurg 1995; 83:354-8. [PMID: 7616285 DOI: 10.3171/jns.1995.83.2.0354] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The authors present the first documented case of a cavernous malformation of the mammillary bodies. A 34-year-old woman presented with a 2-month history of headaches and acute memory changes. Magnetic resonance imaging studies demonstrated a retrochiasmatic interpeduncular lesion that was initially thought to be a craniopharyngioma. Operative resection confirmed the diagnosis of a cavernous malformation. This particular case is unique in its destruction of the mammillary bodies and presents further evidence of the relationship of these regions to memory. This report is also the first to document results of pre- and postoperative neuropsychological evaluations that specifically address the memory deficits created by destruction of the mammillary bodies.
Collapse
Affiliation(s)
- D V Loesch
- Department of Neurological Surgery, Henry Ford Hospital, Detroit, Michigan, USA
| | | | | | | |
Collapse
|
23
|
Sodeyama N, Tamaki M, Sugishita M. Persistent pure verbal amnesia and transient aphasia after left thalamic infarction. J Neurol 1995; 242:289-94. [PMID: 7643136 DOI: 10.1007/bf00878870] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A 57-year-old right-handed man suffered persistent pure verbal amnesia (PPVA) and transient aphasia after left thalamic infarction. A neuroanatomical study with magnetic resonance imaging to identify the site of the lesion showed destruction of the internal medullary lamina (IML), mammillothalamic tract (MTT), the ventrolateral nucleus (VL) and the lower one-third of the medial nucleus. As regions critical for PPVA are unknown, we reviewed the cases of PPVA after left thalamic infarction reported in the literature. These suggest that confined destruction of the IML, MTT and VL in the left thalamus can produce PPVA.
Collapse
Affiliation(s)
- N Sodeyama
- Department of Neurology, School of Medicine, Tokyo Medical and Dental University, Japan
| | | | | |
Collapse
|
24
|
Clarke S, Assal G, Bogousslavsky J, Regli F, Townsend DW, Leenders KL, Blecic S. Pure amnesia after unilateral left polar thalamic infarct: topographic and sequential neuropsychological and metabolic (PET) correlations. J Neurol Neurosurg Psychiatry 1994; 57:27-34. [PMID: 8301301 PMCID: PMC485036 DOI: 10.1136/jnnp.57.1.27] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
A 54-year-old patient who had an isolated small polar thalamic infarct and acute global amnesia with slight frontal type dysfunction but without other neurological dysfunction was studied. Memory improved partially within 8 months. At all stages the impairment was more severe for verbal than non-verbal memory. Autobiographic recollections and newly acquired information tended to be disorganised with respect to temporal order. Procedural memory was unaffected. Both emotional involvement and pleasure in reading were lost. On MRI, the infarct was limited to the left anterior thalamic nuclei and the adjacent mamillothalamic tract. The regional cerebral metabolic rate of glucose (measured with PET) was decreased on the left in the thalamus, amygdala, and posterior cingulate cortex 2 weeks after the infarct, and in the thalamus and posterior cingulate cortex 9 months later. These findings stress the specific role of the left anterior thalamic region in memory and confirm that longlasting amnesia from a thalamic lesion can occur without significant structural damage to the dorsomedial nucleus. Furthermore, they suggest that the anterior thalamic nuclei and possibly their connections with the posterior cingulate cortex play a role in emotional involvement linked to ipsilateral hemispheric functions.
Collapse
Affiliation(s)
- S Clarke
- Division autonome de Neuropsychologie, CHUV, Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|