1
|
Desgagné M, Chartier M, Lagard C, Ferková S, Choquette M, Longpré JM, Côté J, Boudreault PL, Sarret P. Development of Macrocyclic Neurotensin Receptor Type 2 (NTS2) Opioid-Free Analgesics. Angew Chem Int Ed Engl 2024; 63:e202405941. [PMID: 39110923 DOI: 10.1002/anie.202405941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/06/2024] [Indexed: 10/15/2024]
Abstract
The opioid crisis has highlighted the urgent need to develop non-opioid alternatives for managing pain, with an effective, safe, and non-addictive pharmacotherapeutic profile. Using an extensive structure-activity relationship approach, here we have identified a new series of highly selective neurotensin receptor type 2 (NTS2) macrocyclic compounds that exert potent, opioid-independent analgesia in various experimental pain models. To our knowledge, the constrained macrocycle in which the Ile12 residue of NT(7-12) was substituted by cyclopentylalanine, Pro7 and Pro10 were replaced by allyl-glycine followed by side-chain to side-chain cyclization is the most selective analog targeting NTS2 identified to date (Ki 2.9 nM), showing 30,000-fold selectivity over NTS1. Of particular importance, this macrocyclic analog is also able to potentiate the analgesic effects of morphine in a dose- and time-dependent manner. Exerting complementary analgesic actions via distinct mechanisms of nociceptive transmission, NTS2-selective macrocycles can therefore be exploited as opioid-free analgesics or as opioid-sparing therapeutics, offering superior pain relief with reduced adverse effects to pain patients.
Collapse
Affiliation(s)
- Michael Desgagné
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Magali Chartier
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Camille Lagard
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Sára Ferková
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Mathieu Choquette
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Jérôme Côté
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Pierre-Luc Boudreault
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, J1H 5N4, Sherbrooke, Québec, Canada
| |
Collapse
|
2
|
Breault É, Desgagné M, Neve JD, Côté J, Barlow TMA, Ballet S, Sarret P. Multitarget ligands that comprise opioid/nonopioid pharmacophores for pain management: Current state of the science. Pharmacol Res 2024; 209:107408. [PMID: 39307212 DOI: 10.1016/j.phrs.2024.107408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Chronic pain, which affects more than one-third of the world's population, represents one of the greatest medical challenges of the 21st century, yet its effective management remains sub-optimal. The 'gold standard' for the treatment of moderate to severe pain consists of opioid ligands, such as morphine and fentanyl, that target the µ-opioid receptor (MOP). Paradoxically, these opioids also cause serious side effects, including constipation, respiratory depression, tolerance, and addiction. In addition, the development of opioid-use disorders, such as opioid diversion, misuse, and abuse, has led to the current opioid crisis, with dramatic increases in addiction, overdoses, and ultimately deaths. As pain is a complex, multidimensional experience involving a variety of pathways and mediators, dual or multitarget ligands that can bind to more than one receptor and exert complementary analgesic effects, represent a promising avenue for pain relief. Indeed, unlike monomodal therapeutic approaches, the modulation of several endogenous nociceptive systems can often result in an additive or even synergistic effect, thereby improving the analgesic-to-side-effect ratio. Here, we provide a comprehensive overview of research efforts towards the development of dual- or multi-targeting opioid/nonopioid hybrid ligands for effective and safer pain management. We reflect on the underpinning discovery rationale by discussing the design, medicinal chemistry, and in vivo pharmacological effects of multitarget antinociceptive compounds.
Collapse
Affiliation(s)
- Émile Breault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Jolien De Neve
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas M A Barlow
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e avenue Nord, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
3
|
Chartier M, Desgagné M, Sousbie M, Rumsby C, Chevillard L, Théroux L, Haroune L, Côté J, Longpré JM, Boudreault PL, Marsault É, Sarret P. Pharmacodynamic and pharmacokinetic profiles of a neurotensin receptor type 2 (NTS2) analgesic macrocyclic analog. Biomed Pharmacother 2021; 141:111861. [PMID: 34229249 DOI: 10.1016/j.biopha.2021.111861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/14/2022] Open
Abstract
The current opioid crisis highlights the urgent need to develop safe and effective pain medications. Thus, neurotensin (NT) compounds represent a promising approach, as the antinociceptive effects of NT are mediated by activation of the two G protein-coupled receptor subtypes (i.e., NTS1 and NTS2) and produce potent opioid-independent analgesia. Here, we describe the synthesis and pharmacodynamic and pharmacokinetic properties of the first constrained NTS2 macrocyclic NT(8-13) analog. The Tyr11 residue of NT(8-13) was replaced with a Trp residue to achieve NTS2 selectivity, and a rationally designed side-chain to side-chain macrocyclization reaction was applied between Lys8 and Trp11 to constrain the peptide in an active binding conformation and limit its recognition by proteolytic enzymes. The resulting macrocyclic peptide, CR-01-64, exhibited high-affinity for NTS2 (Ki 7.0 nM), with a more than 125-fold selectivity over NTS1, as well as an improved plasma stability profile (t1/2 > 24 h) compared with NT (t1/2 ~ 2 min). Following intrathecal administration, CR-01-64 exerted dose-dependent and long-lasting analgesic effects in acute (ED50 = 4.6 µg/kg) and tonic (ED50 = 7.1 µg/kg) pain models as well as strong mechanical anti-allodynic effects in the CFA-induced chronic inflammatory pain model. Of particular importance, this constrained NTS2 analog exerted potent nonopioid antinociceptive effects and potentiated opioid-induced analgesia when combined with morphine. At high doses, CR-01-64 did not cause hypothermia or ileum relaxation, although it did induce mild and short-term hypotension, all of which are physiological effects associated with NTS1 activation. Overall, these results demonstrate the strong therapeutic potential of NTS2-selective analogs for the management of pain.
Collapse
Affiliation(s)
- Magali Chartier
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Michael Desgagné
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Marc Sousbie
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Charles Rumsby
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | | | - Léa Théroux
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Lounès Haroune
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Jérôme Côté
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Jean-Michel Longpré
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Philippe Sarret
- Institut de Pharmacologie de Sherbrooke, Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
4
|
Gonzalez S, Dumitrascuta M, Eiselt E, Louis S, Kunze L, Blasiol A, Vivancos M, Previti S, Dewolf E, Martin C, Tourwé D, Cavelier F, Gendron L, Sarret P, Spetea M, Ballet S. Optimized Opioid-Neurotensin Multitarget Peptides: From Design to Structure-Activity Relationship Studies. J Med Chem 2020; 63:12929-12941. [PMID: 32902268 PMCID: PMC7667639 DOI: 10.1021/acs.jmedchem.0c01376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 01/20/2023]
Abstract
Fusion of nonopioid pharmacophores, such as neurotensin, with opioid ligands represents an attractive approach for pain treatment. Herein, the μ-/δ-opioid agonist tetrapeptide H-Dmt-d-Arg-Aba-β-Ala-NH2 (KGOP01) was fused to NT(8-13) analogues. Since the NTS1 receptor has been linked to adverse effects, selective MOR-NTS2 ligands are preferred. Modifications were introduced within the native NT sequence, particularly a β3-homo amino acid in position 8 and Tyr11 substitutions. Combination of β3hArg and Dmt led to peptide 7, a MOR agonist, showing the highest NTS2 affinity described to date (Ki = 3 pM) and good NTS1 affinity (Ki = 4 nM), providing a >1300-fold NTS2 selectivity. The (6-OH)Tic-containing analogue 9 also exhibited high NTS2 affinity (Ki = 1.7 nM), with low NTS1 affinity (Ki = 4.7 μM), resulting in an excellent NTS2 selectivity (>2700). In mice, hybrid 7 produced significant and prolonged antinociception (up to 8 h), as compared to the KGOP01 opioid parent compound.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Disease Models, Animal
- Drug Design
- Humans
- Male
- Mice
- Oligopeptides/chemistry
- Oligopeptides/metabolism
- Oligopeptides/therapeutic use
- Pain/drug therapy
- Pain/pathology
- Peptides/chemistry
- Peptides/metabolism
- Peptides/therapeutic use
- Protein Binding
- Receptors, Neurotensin/chemistry
- Receptors, Neurotensin/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Simon Gonzalez
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Maria Dumitrascuta
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Emilie Eiselt
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Stevany Louis
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Linda Kunze
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Annalisa Blasiol
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Mélanie Vivancos
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Santo Previti
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Elke Dewolf
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Charlotte Martin
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Dirk Tourwé
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Florine Cavelier
- Institut
des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, ENSCM, 34095 Montpellier, France
| | - Louis Gendron
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Philippe Sarret
- Department
of Pharmacology and Physiology, Faculty of Medicine and Health Sciences,
Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, J1H 5N4 Sherbrooke, Canada
| | - Mariana Spetea
- Department
of Pharmaceutical Chemistry, Institute of Pharmacy and Center for
Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Steven Ballet
- Research
Group of Organic Chemistry, Departments of Chemistry and Bioengineering
Sciences, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| |
Collapse
|
5
|
Apostol CR, Hay M, Polt R. Glycopeptide drugs: A pharmacological dimension between "Small Molecules" and "Biologics". Peptides 2020; 131:170369. [PMID: 32673700 PMCID: PMC7448947 DOI: 10.1016/j.peptides.2020.170369] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/12/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022]
Abstract
Peptides are an important class of molecules with diverse biological activities. Many endogenous peptides, especially neuropeptides and peptide hormones, play critical roles in development and regulating homeostasis. Furthermore, as drug candidates their high receptor selectivity and potent binding leads to reduced off-target interactions and potential negative side effects. However, the therapeutic potential of peptides is severely hampered by their poor stability in vivo and low permeability across biological membranes. Several strategies have been successfully employed over the decades to address these concerns, and one of the most promising strategies is glycosylation. It has been demonstrated in numerous cases that glycosylation is an effective synthetic approach to improve the pharmacokinetic profiles and membrane permeability of peptides. The effects of glycosylation on peptide stability and peptide-membrane interactions in the context of blood-brain barrier penetration will be explored. Numerous examples of glycosylated analogues of endogenous peptides targeting class A and B G-protein coupled receptors (GPCRs) with an emphasis on O-linked glycopeptides will be reviewed. Notable examples of N-, S-, and C-linked glycopeptides will also be discussed. A small section is devoted to synthetic methods for the preparation of glycopeptides and requisite amino acid glycoside building blocks.
Collapse
Affiliation(s)
- Christopher R Apostol
- Dept. of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA.
| | - Meredith Hay
- Evelyn F. McKnight Brain Institute, Dept. of Physiology, The University of Arizona, Tucson, AZ 85724, USA
| | - Robin Polt
- Dept. of Chemistry & Biochemistry, BIO5, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Tétreault P, Besserer-Offroy É, Brouillette RL, René A, Murza A, Fanelli R, Kirby K, Parent AJ, Dubuc I, Beaudet N, Côté J, Longpré JM, Martinez J, Cavelier F, Sarret P. Pain relief devoid of opioid side effects following central action of a silylated neurotensin analog. Eur J Pharmacol 2020; 882:173174. [DOI: 10.1016/j.ejphar.2020.173174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/28/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
|
7
|
Bumbak F, Thomas T, Noonan-Williams BJ, Vaid TM, Yan F, Whitehead AR, Bruell S, Kocan M, Tan X, Johnson MA, Bathgate RAD, Chalmers DK, Gooley PR, Scott DJ. Conformational Changes in Tyrosine 11 of Neurotensin Are Required to Activate the Neurotensin Receptor 1. ACS Pharmacol Transl Sci 2020; 3:690-705. [PMID: 32832871 PMCID: PMC7432660 DOI: 10.1021/acsptsci.0c00026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Cell-cell communication via endogenous peptides and their receptors is vital for controlling all aspects of human physiology and most peptides signal through G protein-coupled receptors (GPCRs). Disordered peptides bind GPCRs through complex modes for which there are few representative crystal structures. The disordered peptide neurotensin (NT) is a neuromodulator of classical neurotransmitters such as dopamine and glutamate, through activation of neurotensin receptor 1 (NTS1). While several experimental structures show how NT binds NTS1, details about the structural dynamics of NT during and after binding NTS1, or the role of peptide dynamics on receptor activation, remain obscure. Here saturation transfer difference (STD) NMR revealed that the binding mode of NT fragment NT10-13 is heterogeneous. Epitope maps of NT10-13 at NTS1 suggested that tyrosine 11 (Y11) samples other conformations to those observed in crystal structures of NT-bound NTS1. Molecular dynamics (MD) simulations confirmed that when NT is bound to NTS1, residue Y11 can exist in two χ1 rotameric states, gauche plus (g+) or gauche minus (g-). Since only the g+ Y11 state is observed in all the structures solved to date, we asked if the g- state is important for receptor activation. NT analogues with Y11 replaced with 7-OH-Tic were synthesized to restrain the dynamics of the side chain. P(OH-TIC)IL bound NTS1 with the same affinity as NT10-13 but did not activate NTS1, instead acted as an antagonist. This study highlights that flexibility of Y11 in NT may be required for NT activation of NTS1.
Collapse
Affiliation(s)
- Fabian Bumbak
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Trayder Thomas
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Billy J. Noonan-Williams
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Tasneem M. Vaid
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Fei Yan
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alice R. Whitehead
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Shoni Bruell
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Martina Kocan
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- The School
of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xuan Tan
- Department
of Chemistry, The University of Alabama
at Birmingham, Birmingham, Alabama 35294-1240, United States
| | - Margaret A. Johnson
- Department
of Chemistry, The University of Alabama
at Birmingham, Birmingham, Alabama 35294-1240, United States
| | - Ross A. D. Bathgate
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
| | - David K. Chalmers
- Monash
Institute of Pharmaceutical Sciences, Monash
University, Parkville, Victoria 3052, Australia
| | - Paul R. Gooley
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
- Bio21
Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Daniel J. Scott
- The
Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department
of Biochemistry and Molecular Biology, The
University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
Eiselt E, Gonzalez S, Martin C, Chartier M, Betti C, Longpré JM, Cavelier F, Tourwé D, Gendron L, Ballet S, Sarret P. Neurotensin Analogues Containing Cyclic Surrogates of Tyrosine at Position 11 Improve NTS2 Selectivity Leading to Analgesia without Hypotension and Hypothermia. ACS Chem Neurosci 2019; 10:4535-4544. [PMID: 31589400 DOI: 10.1021/acschemneuro.9b00390] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neurotensin (NT) exerts its analgesic effects through activation of the G protein-coupled receptors NTS1 and NTS2. This opioid-independent antinociception represents a potential alternative for pain management. While activation of NTS1 also induces a drop in blood pressure and body temperature, NTS2 appears to be an analgesic target free of these adverse effects. Here, we report modifications of NT at Tyr11 to increase selectivity toward NTS2, complemented by modifications at the N-terminus to impair proteolytic degradation of the biologically active NT(8-13) sequence. Replacement of Tyr11 by either 6-OH-Tic or 7-OH-Tic resulted in a significant loss of binding affinity to NTS1 and subsequent NTS2 selectivity. Incorporation of the unnatural amino acid β3hLys at position 8 increased the half-life to over 24 h in plasma. Simultaneous integration of both β3hLys8 and 6-OH-Tic11 into NT(8-13) produced a potent and NTS2-selective analogue with strong analgesic action after intrathecal delivery in the rat formalin-induced pain model with an ED50 of 1.4 nmol. Additionally, intravenous administration of this NT analogue did not produce persistent hypotension or hypothermia. These results demonstrate that NT analogues harboring unnatural amino acids at positions 8 and 11 can enhance crucial pharmacokinetic and pharmacodynamic features for NT(8-13) analogues, i.e., proteolytic stability, NTS2 selectivity, and improved analgesic/adverse effect ratio.
Collapse
Affiliation(s)
- Emilie Eiselt
- Département de pharmacologie et physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5H4, Canada
| | - Simon Gonzalez
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Magali Chartier
- Département de pharmacologie et physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5H4, Canada
| | - Cecilia Betti
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Jean-Michel Longpré
- Département de pharmacologie et physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5H4, Canada
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Louis Gendron
- Département de pharmacologie et physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5H4, Canada
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Bioengineering Sciences and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, Brussels 1050, Belgium
| | - Philippe Sarret
- Département de pharmacologie et physiologie, Institut de pharmacologie de Sherbrooke, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec J1H 5H4, Canada
| |
Collapse
|
9
|
Schroeder LE, Furdock R, Quiles CR, Kurt G, Perez-Bonilla P, Garcia A, Colon-Ortiz C, Brown J, Bugescu R, Leinninger GM. [Not Available]. Neuropeptides 2019; 76:101930. [PMID: 31079844 PMCID: PMC7721284 DOI: 10.1016/j.npep.2019.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Neurotensin (Nts) is a neuropeptide implicated in the regulation of many facets of physiology, including cardiovascular tone, pain processing, ingestive behaviors, locomotor drive, sleep, addiction and social behaviors. Yet, there is incomplete understanding about how the various populations of Nts neurons distributed throughout the brain mediate such physiology. This knowledge gap largely stemmed from the inability to simultaneously identify Nts cell bodies and manipulate them in vivo. One means of overcoming this obstacle is to study NtsCre mice crossed onto a Cre-inducible green fluorescent reporter line (NtsCre;GFP mice), as these mice permit both visualization and in vivo modulation of specific populations of Nts neurons (using Cre-inducible viral and genetic tools) to reveal their function. Here we provide a comprehensive characterization of the distribution and relative densities of the Nts-GFP populations observed throughout the male NtsCre;GFP mouse brain, which will pave the way for future work to define their physiologic roles. We also compared the distribution of Nts-GFP neurons with Nts-In situ Hybridization (Nts-ISH) data from the adult mouse brain. By comparing these data sets we can distinguish Nts-GFP populations that may only transiently express Nts during development but not in the mature brain, and hence which populations may not be amenable to Cre-mediated manipulation in adult NtsCre;GFP mice. This atlas of Nts-GFP neurons will facilitate future studies using the NtsCre;GFP line to describe the physiological functions of individual Nts populations and how modulating them may be useful to treat disease.
Collapse
Affiliation(s)
- Laura E Schroeder
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Ryan Furdock
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Cristina Rivera Quiles
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Patricia Perez-Bonilla
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Angela Garcia
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Crystal Colon-Ortiz
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Juliette Brown
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48114, United States.
| |
Collapse
|
10
|
Silva C, McNaughton N. Are periaqueductal gray and dorsal raphe the foundation of appetitive and aversive control? A comprehensive review. Prog Neurobiol 2019; 177:33-72. [DOI: 10.1016/j.pneurobio.2019.02.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/19/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
|
11
|
The combination of opioid and neurotensin receptor agonists improves their analgesic/adverse effect ratio. Eur J Pharmacol 2019; 848:80-87. [DOI: 10.1016/j.ejphar.2019.01.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/30/2023]
|
12
|
Rouibi K, Bose P, Rompré PP, Warren RA. Ventral Midbrain NTS1 Receptors Mediate Conditioned Reward Induced by the Neurotensin Analog, D-Tyr[11]neurotensin. Front Neurosci 2015; 9:470. [PMID: 26733785 PMCID: PMC4686738 DOI: 10.3389/fnins.2015.00470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/24/2015] [Indexed: 11/13/2022] Open
Abstract
The present study was aimed at characterizing the mechanisms by which neurotensin (NT) is acting within the ventral midbrain to induce a psychostimulant-like effect. In a first experiment, we determine which subtype(s) of NT receptors is/are involved in the reward-inducing effect of ventral midbrain microinjection of NT using the conditioned place-preference (CPP) paradigm. In a second study, we used in vitro patch clamp recording technique to characterize the NT receptor subtype(s) involved in the modulation of glutamatergic neurotransmission (excitatory post-synaptic current, EPSC) in ventral tegmental neurons that expressed (Ih+), or do not express (Ih-), a hyperpolarization-activated cationic current. Behavioral studies were performed with adult male Long-Evans rats while electrophysiological recordings were obtained from brain slices of rat pups aged between 14 and 21 days. Results show that bilateral ventral midbrain microinjections of 1.5 and 3 nmol of D-Tyr[11]NT induced a CPP that was respectively attenuated or blocked by co-injection with 1.2 nmol of the NTS1/NTS2 antagonist, SR142948, and the preferred NTS1 antagonist, SR48692. In electrophysiological experiments, D-Tyr[11]NT (0.01-0.5 μM) attenuated glutamatergic EPSC in Ih+ but enhanced it in Ih- neurons. The attenuation effect (Ih+ neurons) was blocked by SR142948 (0.1 μM) while the enhancement effect (Ih- neurons) was blocked by both antagonists (0.1 μM). These findings suggest that (i) NT is acting on ventral midbrain NTS1 receptors to induce a rewarding effect and (ii) that this psychostimulant-like effect could be due to a direct action of NT on dopamine neurons and/or an enhancement of glutamatergic inputs to non-dopamine (Ih-) neurons.
Collapse
Affiliation(s)
- Khalil Rouibi
- Department of Neurosciences, Université de MontréalMontréal, QC, Canada; FRQ-S Research Group in Behavioral Neurobiology, Department of Psychology, Concordia UniversityMontréal, QC, Canada
| | - Poulomee Bose
- Department of Psychiatry, Faculty of Medicine, Université de Montréal Montréal, QC, Canada
| | - Pierre-Paul Rompré
- Department of Neurosciences, Université de MontréalMontréal, QC, Canada; FRQ-S Research Group in Behavioral Neurobiology, Department of Psychology, Concordia UniversityMontréal, QC, Canada
| | - Richard A Warren
- Department of Psychiatry, Faculty of Medicine, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
13
|
Lee HK, Zhang L, Smith MD, Walewska A, Vellore NA, Baron R, McIntosh JM, White HS, Olivera BM, Bulaj G. A marine analgesic peptide, Contulakin-G, and neurotensin are distinct agonists for neurotensin receptors: uncovering structural determinants of desensitization properties. Front Pharmacol 2015; 6:11. [PMID: 25713532 PMCID: PMC4322620 DOI: 10.3389/fphar.2015.00011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/12/2015] [Indexed: 11/13/2022] Open
Abstract
Neurotensin receptors have been studied as molecular targets for the treatment of pain, schizophrenia, addiction, or cancer. Neurotensin (NT) and Contulakin-G, a glycopeptide isolated from a predatory cone snail Conus geographus, share a sequence similarity at the C-terminus, which is critical for activation of neurotensin receptors. Both peptides are potent analgesics, although affinity and agonist potency of Contulakin-G toward neurotensin receptors are significantly lower, as compared to those for NT. In this work, we show that the weaker agonist properties of Contulakin-G result in inducing significantly less desensitization of neurotensin receptors and preserving their cell-surface density. Structure-activity relationship (SAR) studies suggested that both glycosylation and charged amino acid residues in Contulakin-G or NT played important roles in desensitizing neurotensin receptors. Computational modeling studies of human neurotensin receptor NTS1 and Contulakin-G confirmed the role of glycosylation in weakening interactions with the receptors. Based on available SAR data, we designed, synthesized, and characterized an analog of Contulakin-G in which the glycosylated amino acid residue, Gal-GalNAc-Thr10, was replaced by memantine-Glu10 residue. This analog exhibited comparable agonist potency and weaker desensitization properties as compared to that of Contulakin-G, while producing analgesia in the animal model of acute pain following systemic administration. We discuss our study in the context of feasibility and safety of developing NT therapeutic agents with improved penetration across the blood-brain barrier. Our work supports engineering peptide-based agonists with diverse abilities to desensitize G-protein coupled receptors and further emphasizes opportunities for conotoxins as novel pharmacological tools and drug candidates.
Collapse
Affiliation(s)
- Hee-Kyoung Lee
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| | - Liuyin Zhang
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| | - Misty D Smith
- Department of Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA
| | - Aleksandra Walewska
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA ; Faculty of Chemistry, University of Gdansk Gdansk, Poland
| | - Nadeem A Vellore
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| | - Riccardo Baron
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| | - J Michael McIntosh
- Department of Biology, University of Utah Salt Lake City, UT, USA ; Department of Psychiatry, University of Utah Salt Lake City, UT, USA
| | - H Steve White
- Department of Pharmacology and Toxicology, University of Utah Salt Lake City, UT, USA
| | | | - Grzegorz Bulaj
- Department of Medicinal Chemistry, College of Pharmacy, Skaggs Research Institute, University of Utah Salt Lake City, UT, USA
| |
Collapse
|
14
|
Demeule M, Beaudet N, Régina A, Besserer-Offroy É, Murza A, Tétreault P, Belleville K, Ché C, Larocque A, Thiot C, Béliveau R, Longpré JM, Marsault É, Leduc R, Lachowicz JE, Gonias SL, Castaigne JP, Sarret P. Conjugation of a brain-penetrant peptide with neurotensin provides antinociceptive properties. J Clin Invest 2014; 124:1199-213. [PMID: 24531547 DOI: 10.1172/jci70647] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 12/05/2013] [Indexed: 12/23/2022] Open
Abstract
Neurotensin (NT) has emerged as an important modulator of nociceptive transmission and exerts its biological effects through interactions with 2 distinct GPCRs, NTS1 and NTS2. NT provides strong analgesia when administered directly into the brain; however, the blood-brain barrier (BBB) is a major obstacle for effective delivery of potential analgesics to the brain. To overcome this challenge, we synthesized chemical conjugates that are transported across the BBB via receptor-mediated transcytosis using the brain-penetrant peptide Angiopep-2 (An2), which targets LDL receptor-related protein-1 (LRP1). Using in situ brain perfusion in mice, we found that the compound ANG2002, a conjugate of An2 and NT, was transported at least 10 times more efficiently across the BBB than native NT. In vitro, ANG2002 bound NTS1 and NTS2 receptors and maintained NT-associated biological activity. In rats, i.v. ANG2002 induced a dose-dependent analgesia in the formalin model of persistent pain. At a dose of 0.05 mg/kg, ANG2002 effectively reversed pain behaviors induced by the development of neuropathic and bone cancer pain in animal models. The analgesic properties of ANG2002 demonstrated in this study suggest that this compound is effective for clinical management of persistent and chronic pain and establish the benefits of this technology for the development of neurotherapeutics.
Collapse
|
15
|
Tétreault P, Beaudet N, Perron A, Belleville K, René A, Cavelier F, Martinez J, Stroh T, Jacobi AM, Rose SD, Behlke MA, Sarret P. Spinal NTS2 receptor activation reverses signs of neuropathic pain. FASEB J 2013; 27:3741-52. [DOI: 10.1096/fj.12-225540] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Pascal Tétreault
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Nicolas Beaudet
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Amélie Perron
- Institute for Integrated Cell‐Material SciencesKyoto UniversityKyotoJapan
| | - Karine Belleville
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| | - Adeline René
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Florine Cavelier
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Jean Martinez
- Institut des Biomolécules Max MousseronUnité Mixte de Recherche‐Centre National de la Recherche Scientifique (UMR‐CNRS)‐5247Universités Montpellier I and IIMontpellierFrance
| | - Thomas Stroh
- Department of Neurology and NeurosurgeryMontreal Neurological InstituteMcGill UniversityMontréalQuébecCanada
| | | | | | | | - Philippe Sarret
- Department of Physiology and BiophysicsFaculty of Medicine and Health SciencesUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
16
|
Boules M, Li Z, Smith K, Fredrickson P, Richelson E. Diverse roles of neurotensin agonists in the central nervous system. Front Endocrinol (Lausanne) 2013; 4:36. [PMID: 23526754 PMCID: PMC3605594 DOI: 10.3389/fendo.2013.00036] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 03/06/2013] [Indexed: 01/10/2023] Open
Abstract
Neurotensin (NT) is a tridecapeptide that is found in the central nervous system (CNS) and the gastrointestinal tract. NT behaves as a neurotransmitter in the brain and as a hormone in the gut. Additionally, NT acts as a neuromodulator to several neurotransmitter systems including dopaminergic, sertonergic, GABAergic, glutamatergic, and cholinergic systems. Due to its association with such a wide variety of neurotransmitters, NT has been implicated in the pathophysiology of several CNS disorders such as schizophrenia, drug abuse, Parkinson's disease (PD), pain, central control of blood pressure, eating disorders, as well as, cancer and inflammation. The present review will focus on the role that NT and its analogs play in schizophrenia, endocrine function, pain, psychostimulant abuse, and PD.
Collapse
Affiliation(s)
- Mona Boules
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
- *Correspondence: Mona Boules, Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. e-mail:
| | - Zhimin Li
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Kristin Smith
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Paul Fredrickson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| | - Elliott Richelson
- Neuropsychopharmacology Laboratory, Department of Neuroscience, Mayo Clinic FloridaJacksonville, FL, USA
| |
Collapse
|
17
|
Pratsch G, Unfried JF, Einsiedel J, Plomer M, Hübner H, Gmeiner P, Heinrich MR. Radical arylation of tyrosine and its application in the synthesis of a highly selective neurotensin receptor 2 ligand. Org Biomol Chem 2011; 9:3746-52. [DOI: 10.1039/c1ob05292f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Roussy G, Beaudry H, Lafrance M, Belleville K, Beaudet N, Wada K, Gendron L, Sarret P. Altered morphine-induced analgesia in neurotensin type 1 receptor null mice. Neuroscience 2010; 170:1286-94. [PMID: 20727387 DOI: 10.1016/j.neuroscience.2010.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/02/2010] [Accepted: 08/10/2010] [Indexed: 01/09/2023]
Abstract
Both neurotensin (NT) and opioid agonists have been shown to induce antinociception in rodents after central administration. Besides, previous studies have revealed the existence of functional interactions between NT and opioid systems in the regulation of pain processing. We recently demonstrated that NTS1 receptors play a key role in the mediation of the analgesic effects of NT in long-lasting pain. In the present study, we therefore investigated whether NTS1 gene deletion affected the antinociceptive action of mu opioid drugs. To this end, pain behavioral responses to formalin were determined following systemic administration of morphine in both male and female NTS1 knockout mice. Acute injection of morphine (2 or 5 mg/kg) produced strong antinociceptive effects in both male and female wild-type littermates, with no significant sex differences. On the other hand, morphine analgesia was considerably reduced in NTS1-deficient mice of both sexes compared to their respective controls, indicating that the NTS1 receptor actively participates in mu opioid alleviating pain. By examining specifically the flinching, licking and biting nociceptive behaviors, we also showed that the functional crosstalk between NTS1 and mu opioid receptors influences the supraspinally-mediated behaviors. Interestingly, sexual dimorphic action of morphine-induced pain inhibition was found in NTS1 null mice in the formalin test, suggesting that the endogenous NT system interacts differently with the opioid network in male and female mice. Altogether, these results demonstrated that NTS1 receptor activation operates downstream to the opioidergic transmission and that NTS1-selective agonists combined with morphine may act synergistically to reduce persistent pain.
Collapse
Affiliation(s)
- G Roussy
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Involvement of NTS2 receptors in stress-induced analgesia. Neuroscience 2009; 166:639-52. [PMID: 20035838 DOI: 10.1016/j.neuroscience.2009.12.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 12/01/2009] [Accepted: 12/16/2009] [Indexed: 11/20/2022]
Abstract
Stress activates multiple neural systems that suppress pain sensation. This adaptive phenomenon referred as stress-induced analgesia (SIA) is mediated by the activation of endogenous pain inhibitory systems. Both opioid and non-opioid forms of SIA have been elicited in rodents according to stressor parameters and duration. There is accumulating evidence that the endogenous neurotensin (NT) system plays an important role in SIA. Especially, NT-deficient mice were shown to exhibit reduced SIA following water avoidance or restraint stress. Since central NT produces naloxone-insensitive analgesic effects by acting on spinal and supraspinal NTS2 receptors, we hypothesized that NT might mediate non-opioid SIA through NTS2 activation. Here, we evaluated the influence of an opioid-independent severe stress produced by a cold-water swim for 3 min at 15 degrees C on rodent offspring's pain perception. Our results demonstrated that mice lacking NTS2 exhibit significantly reduced SIA following cold-water swim stress. Indeed, NTS2 knockout mice submitted to both acute (plantar test) and tonic (formalin test) pain stimuli show a greater sensitivity to pain in comparison to wild-type littermates. Accordingly, pretreatment with the NT receptor antagonist SR142948A results in a hyperalgesic response to stress induced by cold-water swim. Endogenous NT regulates hypothalamic-pituitary-adrenal axis activity in stress condition by increasing corticosterone plasma levels. Accordingly, the plasma levels of corticosterone measured by radioimmunoassay are significantly reduced in non-stressed and stressed NTS2-deficient mice in comparison with wild-type mice. To further investigate the site of action of NT in mediating SIA, we microinjected NTS2 agonists in lumbar spinal cord and quantified post-stress sensitivity to pain in rats using the plantar test. Exogenously administered NTS2 analogs, JMV-431, beta-lactotensin and NT69L markedly enhance the magnitude and duration of stress antinociception in both 25- and 60-day-old rats. In sum, by using genetic and pharmacological approaches, we demonstrated here that NTS2 receptors mediate non-opioid SIA. Our results also revealed that the release of endogenous NT in response to stress requires the presence of NTS2 to stimulate corticotropin-releasing factor (CRF)-induced elevation of plasma corticosterone, and that NTS2 receptors localized at the lumbar spinal cord participate to the disinhibition of descending pain control pathways. Therefore, these data highlight the significance of NTS2 as a novel target for the treatment of pain and stress-related disorders.
Collapse
|
20
|
Roussy G, Dansereau MA, Baudisson S, Ezzoubaa F, Belleville K, Beaudet N, Martinez J, Richelson E, Sarret P. Evidence for a role of NTS2 receptors in the modulation of tonic pain sensitivity. Mol Pain 2009; 5:38. [PMID: 19580660 PMCID: PMC2714839 DOI: 10.1186/1744-8069-5-38] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Accepted: 07/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Central neurotensin (NT) administration results in a naloxone-insensitive antinociceptive response in animal models of acute and persistent pain. Both NTS1 and NTS2 receptors were shown to be required for different aspects of NT-induced analgesia. We recently demonstrated that NTS2 receptors were extensively associated with ascending nociceptive pathways, both at the level of the dorsal root ganglia and of the spinal dorsal horn. Then, we found that spinally administered NTS2-selective agonists induced dose-dependent antinociceptive responses in the acute tail-flick test. In the present study, we therefore investigated whether activation of spinal NTS2 receptors suppressed the persistent inflammatory pain symptoms observed after intraplantar injection of formalin. RESULTS We first demonstrated that spinally administered NT and NT69L agonists, which bind to both NTS1 and NTS2 receptors, significantly reduced pain-evoked responses during the inflammatory phase of the formalin test. Accordingly, pretreatment with the NTS2-selective analogs JMV-431 and levocabastine was effective in inhibiting the aversive behaviors induced by formalin. With resolution at the single-cell level, we also found that activation of spinal NTS2 receptors reduced formalin-induced c-fos expression in dorsal horn neurons. However, our results also suggest that NTS2-selective agonists and NTS1/NTS2 mixed compounds differently modulated the early (21-39 min) and late (40-60 min) tonic phase 2 and recruited endogenous pain inhibitory mechanisms integrated at different levels of the central nervous system. Indeed, while non-selective drugs suppressed pain-related behaviors activity in both part of phase 2, intrathecal injection of NTS2-selective agonists was only efficient in reducing pain during the late phase 2. Furthermore, assessment of the stereotypic pain behaviors of lifting, shaking, licking and biting to formalin also revealed that unlike non-discriminative NTS1/NTS2 analogs reversing all nociceptive endpoint behaviors, pure NTS2 agonists specifically inhibited paw lifting, supporting a role of NTS2 in spinal modulation of persistent nociception. CONCLUSION The present study provides the first demonstration that activation of NTS2 receptors produces analgesia in the persistent inflammatory pain model of formalin. The dichotomy between these two classes of compounds also indicates that both NTS1 and NTS2 receptors are involved in tonic pain inhibition and implies that these two NT receptors modulate the pain-induced behavioral responses by acting on distinct spinal and/or supraspinal neural circuits. In conclusion, development of NT agonists targeting both NTS1 and NTS2 receptors could be useful for chronic pain management.
Collapse
Affiliation(s)
- Geneviève Roussy
- Department of Physiology and Biophysics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee HK, Zhang L, Smith MD, White HS, Bulaj G. Glycosylated neurotensin analogues exhibit sub-picomolar anticonvulsant potency in a pharmacoresistant model of epilepsy. ChemMedChem 2009; 4:400-5. [PMID: 19173215 DOI: 10.1002/cmdc.200800421] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotensin (NT) is an endogenous neuropeptide involved in a variety of central and peripheral neuromodulatory effects. Herein we show the effects of site-specific glycosylation on the in vitro and in vivo pharmacological properties of this neuropeptide. NT analogues containing O-linked disaccharides (beta-melibiose and alpha-TF antigen) or beta-lactose units linked by a PEG(3) spacer were designed and chemically synthesized using Fmoc chemistry. For the latter analogue, Fmoc-Glu-(beta-Lac-PEG(3)-amide) was prepared. Our results indicate that the addition of the disaccharides does not negatively affect the sub-nanomolar affinity or the low-nanomolar agonist potency for the neurotensin receptor subtype 1 (NTS1). Interestingly, three glycosylated analogues exhibited sub-picomolar potency in the 6 Hz limbic seizure mouse model of pharmacoresistant epilepsy following intracerebroventricular administration. Our results suggest for the first time that chemically modified NT analogues may lead to novel antiepileptic therapies.
Collapse
Affiliation(s)
- Hee-Kyoung Lee
- Department of Medicinal Chemistry, University of Utah, 421 Wakara Way, Suite 360, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
22
|
Chen YL, Li AH, Yeh TH, Chou AH, Wang HL. Nocistatin and nociceptin exert opposite effects on the excitability of central amygdala nucleus-periaqueductal gray projection neurons. Mol Cell Neurosci 2009; 40:76-88. [PMID: 18930828 DOI: 10.1016/j.mcn.2008.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Revised: 09/08/2008] [Accepted: 09/10/2008] [Indexed: 11/29/2022] Open
Abstract
Central amygdala nucleus (CeA)-periaqueductal gray (PAG) pathway is the component of descending antinociceptive circuitry. Nociceptin/orphanin FQ (N/OFQ) and nocistatin (NST) produce supraspinal pronociceptive and antinociceptive effects, respectively. We hypothesized that opposite effects of N/OFQ and NST on supraspinal pain modulation result from their opposing effects on the excitability of CeA-PAG projection neurons. This hypothesis was tested by investigating electrophysiological effects of N/OFQ and NST on medial CeA neurons that project to PAG (CeA(M)-PAG). N/OFQ hyperpolarized CeA(M)-PAG projection neurons by enhancing inwardly rectifying potassium conductance. In contrast, NST depolarized CeA(M)-PAG neurons by causing the opening of TRPC cation channels via G(alphaq/11)-PLC-PKC pathway. CeA(M)-PAG neurons hyperpolarized by N/OFQ express CRF or neurotensin mRNA. NST-responsive CeA(M)-PAG neurons contain CRF or substance P mRNA. Our study provides the evidence that the molecular and cellular basis for opposite effects of N/OFQ and NST on supraspinal pain regulation is their opposing effects on the excitability of peptidergic CeA(M)-PAG neurons.
Collapse
Affiliation(s)
- Ying-Ling Chen
- Department of Physiology, Chang Gung University School of Medicine, Kwei-San, Tao-Yuan, Taiwan, ROC
| | | | | | | | | |
Collapse
|
23
|
Roussy G, Dansereau MA, Doré-Savard L, Belleville K, Beaudet N, Richelson E, Sarret P. Spinal NTS1 receptors regulate nociceptive signaling in a rat formalin tonic pain model. J Neurochem 2008; 105:1100-14. [DOI: 10.1111/j.1471-4159.2007.05205.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Samsam M, Coveñas R, Ahangari R, Yajeya J, Narváez J. Role of neuropeptides in migraine: where do they stand in the latest expert recommendations in migraine treatment? Drug Dev Res 2007. [DOI: 10.1002/ddr.20193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Abstract
Neurotensin (NT) can produce a profound analgesia or enhance pain responses, depending on the circumstances. Recent evidence suggests that this may be due to a dose-dependent recruitment of distinct populations of pain modulatory neurons. NT knockout mice display defects in both basal nociceptive responses and stress-induced analgesia. Stress-induced antinociception is absent in these mice and instead stress induces a hyperalgesic response, suggesting that NT plays a key role in the stress-induced suppression of pain. Cold water swim stress results in increased NT mRNA expression in hypothalamic regions known to project to periaqueductal gray, a key region involved in pain modulation. Thus, stress-induced increases in NT signaling in pain modulatory regions may be responsible for the transition from pain facilitation to analgesia. This review focuses on recent advances that have provided insights into the role of NT in pain modulation.
Collapse
Affiliation(s)
- Paul R Dobner
- Department of Molecular Genetics and Microbiology, Program in Neuroscience, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| |
Collapse
|
26
|
Sarret P, Esdaile MJ, Perron A, Martinez J, Stroh T, Beaudet A. Potent spinal analgesia elicited through stimulation of NTS2 neurotensin receptors. J Neurosci 2006; 25:8188-96. [PMID: 16148226 PMCID: PMC6725526 DOI: 10.1523/jneurosci.0810-05.2005] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Intrathecal administration of the neuropeptide neurotensin (NT) was shown previously to exert antinociceptive effects in a variety of acute spinal pain paradigms including hotplate, tail-flick, and writhing tests. In the present study, we sought to determine whether some of these antinociceptive effects might be elicited via stimulation of low-affinity NTS2 receptors. We first established, using immunoblotting and immunohistochemical techniques, that NTS2 receptors were extensively associated with putative spinal nociceptive pathways, both at the level of the dorsal root ganglia and of the superficial layers of the dorsal horn of the spinal cord. We then examined the effects of intrathecal administration of NT or selective NTS2 agonists on acute thermal pain. Both NT and NTS2 agonists, levocabastine and Boc-Arg-Arg-Pro-Tyrpsi(CH2NH)Ile-Leu-OH (JMV-431), induced dose-dependent antinociceptive responses in the tail-flick test. The effects of levocabastine and of JMV-431 were unaffected by coadministration of the NTS1-specific antagonist 2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-dimethoxy-phenyl)pyrazol-3-yl)carboxylamino]tricyclo)3.3.1.1.(3.7))-decan-2-carboxylic acid (SR48692), confirming that they were NTS2 mediated. In contrast, the antinociceptive effects of NT were partly abolished by coadministration of SR48692, indicating that NTS1 and NTS2 receptors were both involved. These results suggest that NTS2 receptors play a role in the regulation of spinal nociceptive inputs and that selective NTS2 agonists may offer new avenues for the treatment of acute pain.
Collapse
Affiliation(s)
- Philippe Sarret
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
27
|
Gui X, Carraway RE, Dobner PR. Endogenous neurotensin facilitates visceral nociception and is required for stress-induced antinociception in mice and rats. Neuroscience 2004; 126:1023-32. [PMID: 15207335 DOI: 10.1016/j.neuroscience.2004.04.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2004] [Indexed: 10/26/2022]
Abstract
Central neurotensin (NT) administration can both facilitate and inhibit somatic and visceral nociception, depending on the dose and administration site. NT microinjection in the rostroventral medulla facilitates nociception at low doses, while NT antagonist microinjection can markedly attenuate nociception, supporting the hypothesis that endogenous NT facilitates nociception. However, higher doses of NT produce a mu-opioid receptor-independent analgesia, similar to that resulting from various intense stressors. Furthermore, intense stress results in increased NT expression in several hypothalamic nuclei that have been implicated in stress-induced antinociception (SIAN); however, there is little direct evidence that endogenous NT is required for SIAN. We have investigated the role of endogenous NT in both basal visceral nociception and SIAN using both NT knockout mice and pharmacological approaches in rats. Visceral nociception was monitored by measuring visceromotor responses during colorectal distension both prior to and following water avoidance stress. Visceral nociception was significantly attenuated in both NT knockout mice and rats pre-treated with the NT antagonist SR 48692. Disruption of NT signaling also blocked SIAN, revealing a novel stress-induced hyperalgesic response that was significantly greater in female than in male rats. NT was also required for acetic acid-induced hyperalgesia. These results indicate that endogenous NT normally facilitates visceral pain responses, is required for irritant-induced hyperalgesia, and plays a critical role in SIAN.
Collapse
Affiliation(s)
- X Gui
- Department of Physiology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | | | | |
Collapse
|
28
|
Richelson E, Boules M, Fredrickson P. Neurotensin agonists: possible drugs for treatment of psychostimulant abuse. Life Sci 2003; 73:679-90. [PMID: 12801589 DOI: 10.1016/s0024-3205(03)00388-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although many neuropeptides have been implicated in the pathophysiology of psychostimulant abuse, the tridecapeptide neurotensin holds a prominent position in this field due to the compelling literature on this peptide and psychostimulants. These data strongly support the hypothesis that a neurotensin agonist will be clinically useful to treat the abuse of psychostimulants, including nicotine. This paper reviews the evidence for a role for neurotensin in stimulant abuse and for a neurotensin agonist for its treatment.
Collapse
|
29
|
Chapter VI Neurotensin receptors in the central nervous system. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0924-8196(02)80008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
30
|
Li AH, Hwang HM, Tan PP, Wu T, Wang HL. Neurotensin excites periaqueductal gray neurons projecting to the rostral ventromedial medulla. J Neurophysiol 2001; 85:1479-88. [PMID: 11287471 DOI: 10.1152/jn.2001.85.4.1479] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microinjection of neurotensin into the midbrain periaqueductal gray (PAG) produces a potent and naloxone-insensitive analgesic effect. To test the hypothesis that neurotensin induces the analgesic effect by activating the PAG-rostral ventromedial medulla (RVM) descending antinociceptive pathway, PAG neurons that project to RVM (PAG-RVM) were identified by microinjecting DiI(C18), a retrograde tracing dye, into the rat RVM. Subsequently, fluorescently labeled PAG-RVM projection neurons were acutely dissociated and selected for whole cell patch-clamp recordings. During current-clamp recordings, neurotensin depolarized retrogradely labeled PAG-RVM neurons and evoked action potentials. Voltage-clamp recordings indicated that neurotensin excited PAG-RVM neurons by opening the voltage-insensitive and nonselective cation channels. Both SR 48692, a selective NTR-1 antagonist, and SR 142948A, a nonselective antagonist of NTR-1 and NTR-2, failed to prevent neurotensin from exciting PAG-RVM neurons. Neurotensin failed to evoke cationic currents after internally perfusing PAG-RVM projection neurons with GDP-beta-S or anti-G(alpha q/11) antiserum. Cellular Ca(2+) fluorescence measurement using fura-2 indicated that neurotensin rapidly induced Ca(2+) release from intracellular stores of PAG-RVM neurons. Neurotensin-evoked cationic currents were blocked by heparin, an IP(3) receptor antagonist, and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), a fast chelator of Ca(2+). These results suggest that by activating a novel subtype of neurotensin receptors, neurotensin depolarizes and excites PAG-RVM projection neurons through enhancing Ca(2+)-dependent nonselective cationic conductance. The coupling mechanism via G(alpha q/11) proteins is likely to involve the production of IP(3), and subsequent IP(3)-evoked Ca(2+) release leads to the opening of nonselective cation channels.
Collapse
Affiliation(s)
- A H Li
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kwei-San, Tao-Yuan, Taiwan, R.O.C
| | | | | | | | | |
Collapse
|
31
|
Tyler-McMahon BM, Boules M, Richelson E. Neurotensin: peptide for the next millennium. REGULATORY PEPTIDES 2000; 93:125-36. [PMID: 11033059 DOI: 10.1016/s0167-0115(00)00183-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Neurotensin is an endogenous tridecapeptide neurotransmitter (pGlu-Leu-Tyr-Glu-Asn-Lys-Pro-Arg-Arg-Pro-Try-Ile-Leu-OH) that was discovered by Carraway and Leeman in bovine hypothalami in the early 1970s. Since then this peptide has been the subject of a multitude of articles detailing discoveries related to its activity, receptors, localization, synthesis, and interactions with other systems. This review article does not intend to summarize again all the history of this fascinating peptide and its receptors, since this has been done quite well by others. The reader will be directed to these other reviews, where appropriate. Instead, this review attempts to provide a summary of current knowledge about neurotensin, why it is an important peptide to study, and where the field is heading. Special emphasis is placed on the behavioral studies, particularly with reference to agonists, antagonists, and antisense studies, as well as, the interaction of neurotensin with other neurotransmitters.
Collapse
Affiliation(s)
- B M Tyler-McMahon
- Laboratory of Neuropharmacology, Mayo Foundation for Medical and Educational Research, 4500 San Pablo Rd., 32224, Jacksonville, FL, USA.
| | | | | |
Collapse
|
32
|
Sotty F, Brun P, Leonetti M, Steinberg R, Soubrié P, Renaud B, Suaud-Chagny MF. Comparative effects of neurotensin, neurotensin(8-13) and [D-Tyr(11)]neurotensin applied into the ventral tegmental area on extracellular dopamine in the rat prefrontal cortex and nucleus accumbens. Neuroscience 2000; 98:485-92. [PMID: 10869842 DOI: 10.1016/s0306-4522(00)90023-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ejections of 10(-5)-10(-3)M neurotensin into the ventral tegmental area increased dopamine efflux measured by electrochemical approaches in the prefrontal cortex of anaesthetized rats. In the same conditions, the effects evoked on dopamine efflux by 10(-5)M neurotensin(8-13) and [D-Tyr(11)]neurotensin were different from each other and depended on the explored area: the prefrontal cortex and the caudal and rostral nucleus accumbens. In the prefrontal cortex, neurotensin(8-13) was as potent as neurotensin, whereas [D-Tyr(11)]neurotensin was ineffective. In the caudal nucleus accumbens, when considering the initial intensity of the effect, neurotensin(8-13) and neurotensin appeared more potent than [D-Tyr(11)]neurotensin. In contrast, in the rostral nucleus accumbens, neurotensin(8-13) was less potent than [D-Tyr(11)]neurotensin and neurotensin. These results support the differential involvement of two pharmacologically distinct neurotensin receptor entities on ventral tegmental area neurons in the modulation of mesolimbic and mesocortical dopaminergic activity.
Collapse
Affiliation(s)
- F Sotty
- Laboratoire de Neuropharmacologie et Neurochimie, INSERM U 512, Faculté de Pharmacie, Université Claude Bemard-Lyon I, 8 avenue Rockefeller, 69373 Cedex 08, Lyon, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Tershner SA, Helmstetter FJ. Antinociception produced by mu opioid receptor activation in the amygdala is partly dependent on activation of mu opioid and neurotensin receptors in the ventral periaqueductal gray. Brain Res 2000; 865:17-26. [PMID: 10814729 DOI: 10.1016/s0006-8993(00)02179-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to stressful or fear-inducing environmental stimuli activates descending antinociceptive systems resulting in a decreased pain response to peripheral noxious stimuli. Stimulating mu opioid receptors in the basolateral nucleus of the amygdala (BLA) in anesthetized rats produces antinociception that is similar to environmentally induced antinociception in awake rats. Recent evidence suggests that both forms of antinociception are mediated via projections from the amygdala to the ventral periaqueductal gray (PAG). In the present study, we examined the types of neurochemicals released in the ventral PAG that may be important in the expression of antinociception produced by amygdala stimulation in anesthetized rats. Microinjection of a mu opioid receptor agonist into the BLA resulted in a time dependent increase in tail flick latency that was attenuated by preadministration of a mu opioid receptor or a neurotensin receptor antagonist into the ventral PAG. Microinjection of a delta(2) opioid receptor antagonist or an NMDA receptor antagonist into the ventral PAG was ineffective. These findings suggest that amygdala stimulation produces antinociception that is mediated in part by opioid and neurotensin release within the ventral PAG.
Collapse
MESH Headings
- Amygdala/cytology
- Amygdala/drug effects
- Amygdala/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Neural Pathways/cytology
- Neural Pathways/drug effects
- Neural Pathways/metabolism
- Neurons/cytology
- Neurons/drug effects
- Neurons/metabolism
- Neurotensin/analogs & derivatives
- Neurotensin/pharmacology
- Nociceptors/cytology
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/drug therapy
- Pain/physiopathology
- Peptides/pharmacology
- Periaqueductal Gray/cytology
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/metabolism
- Rats
- Rats, Long-Evans
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/metabolism
- Receptors, Neurotensin/antagonists & inhibitors
- Receptors, Neurotensin/drug effects
- Receptors, Neurotensin/metabolism
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/drug effects
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/drug effects
- Receptors, Opioid, mu/metabolism
- Time Factors
- Valine/analogs & derivatives
- Valine/pharmacology
Collapse
Affiliation(s)
- S A Tershner
- Department of Psychology, Western New England College, Springfield, MA 01119, USA.
| | | |
Collapse
|
34
|
Tyler-McMahon BM, Stewart JA, Farinas F, McCormick DJ, Richelson E. Highly potent neurotensin analog that causes hypothermia and antinociception. Eur J Pharmacol 2000; 390:107-11. [PMID: 10708713 DOI: 10.1016/s0014-2999(99)00877-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The tridecapeptide neurotensin has long been proposed as an endogenous neuroleptic. However, for neurotensin [or neurotensin(8-13) [NT(8-13)], the active fragment] to cause its effects, it must be administered centrally. Here, we report on an analog of NT(8-13), (N-methyl-Arg),Lys,Pro,L-neo-Trp,tert-Leu,Leu (NT69L), which contains a novel amino acid, L-neo5 degrees C (rectal), with a significant effect persisting for over 7 h. NT69L also caused a rapid (within 15 min) and persistent (for over 5 h) antinociceptive effect, as determined by the hot plate test. NT69L was overall the most potent and longest lasting neurotensin analog that has been reported. These studies provide the background for further testing of a stable, potent and long lasting neurotensin analog as a potential neuroleptic.
Collapse
Affiliation(s)
- B M Tyler-McMahon
- Laboratories of Neuropsychopharmacology, Mayo Foundation for Medical and Educational Research, Jacksonville, FL 32224, USA.
| | | | | | | | | |
Collapse
|
35
|
Tyler BM, Douglas CL, Fauq A, Pang YP, Stewart JA, Cusack B, McCormick DJ, Richelson E. In vitro binding and CNS effects of novel neurotensin agonists that cross the blood-brain barrier. Neuropharmacology 1999; 38:1027-34. [PMID: 10428421 DOI: 10.1016/s0028-3908(99)00011-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Animal studies with neurotensin (NT) directly injected into brain suggest that it has pharmacological properties similar to those of antipsychotic drugs. Here, we present radioligand binding data for some novel hexapeptide analogs of NT(8-13) at the molecularly cloned rat and human neurotensin receptors (NTR-1), along with behavioral and physiological effects of several of these peptides after intraperitoneal (i.p.) administration in rats. One unique analog, NT66L, which had high affinity (0.85 nM) for the molecularly cloned rat neurotensin receptor (NTR-1), caused a drop in body temperature and antinociception at doses as low as 0.1 mg/kg after i.p. injection. At 30 min post-injection, the ED50 for NT66L-induced hypothermia (rectal temperature) and antinociception (hot plate test) was 0.5 and 0.07 mg/kg, respectively. At a dose of 1 mg/kg i.p., NT66L caused 100% of the maximum possible effect for antinociception for up to 2 h after administration. At this dose body temperature lowering was greater than -2.5 degrees C from 20 to 120 min after i.p. administration. These results in animals suggest that NT66L has agonist properties at NTR-1 in vivo after extracranial administration and provide support for its further study in behavioral tests predictive of neuroleptic activity.
Collapse
Affiliation(s)
- B M Tyler
- Neuropsychopharmacology, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Tyler BM, Jansen K, McCormick DJ, Douglas CL, Boules M, Stewart JA, Zhao L, Lacy B, Cusack B, Fauq A, Richelson E. Peptide nucleic acids targeted to the neurotensin receptor and administered i.p. cross the blood-brain barrier and specifically reduce gene expression. Proc Natl Acad Sci U S A 1999; 96:7053-8. [PMID: 10359837 PMCID: PMC22053 DOI: 10.1073/pnas.96.12.7053] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/1999] [Accepted: 04/14/1999] [Indexed: 11/18/2022] Open
Abstract
Intraperitoneal injection of an unmodified antisense peptide nucleic acid (PNA) complementary to mRNA of the rat neurotensin (NT) receptor (NTR1) was demonstrated by a gel shift assay to be present in brain, thus indicating that the PNA had in fact crossed the blood-brain barrier. An i.p. injection of this antisense PNA specifically inhibited the hypothermic and antinociceptive activities of NT microinjected into brain. These results were associated with a reduction in binding sites for NT both in brain and the small intestine. Additionally, the sense-NTR1 PNA, targeted to DNA, microinjected directly into the brain specifically reduced mRNA levels by 50% and caused a loss of response to NT. To demonstrate the specificity of changes in behavioral, binding, and mRNA studies, animals treated with NTR1 PNA were tested for behavioral responses to morphine and their mu receptor levels were determined. Both were found to be unaffected in these NTR1 PNA-treated animals. The effects of both the antisense and sense PNAs were completely reversible. This work provides evidence that any antisense strategy targeted to brain proteins can work through i. p. delivery by crossing the normal blood-brain barrier. Equally important was that an antigene strategy, the sense PNA, was shown in vivo to be a potentially effective therapeutic treatment.
Collapse
Affiliation(s)
- B M Tyler
- Laboratory of Neuropsychopharmacology, Mayo Foundation for Medical and Educational Research, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The neuropeptide neurotensin (NT) elicits hypothermic and naloxone-insensitive analgesic responses after brain injection. Recent pharmacological evidence obtained with NT agonists and antagonists suggests that these effects are mediated by a receptor distinct from the initially cloned high-affinity NT receptor (NTR1). The recent cloning of a second NT receptor (NTR2) prompted us to evaluate its role in NT-induced analgesia. Intracerebroventricular injections in mice of two different antisense oligodeoxynucleotides from the NTR2 markedly decreased NTR2 mRNA and protein and reduced NT-induced analgesia. This effect was specific, because NTR1 levels were unaffected, and sense or scramble oligodeoxynucleotides had no effect. Structure-activity studies revealed a close correlation between the analgesic potency of NT analogs and their affinity for the NTR2 and disclosed potent and selective agonists of this receptor. These data confirm that NTR1 is involved in the NT-elicited turning behavior and demonstrate that the NTR2 mediates NT-induced analgesia.
Collapse
|
38
|
Holmes BB, Rady JJ, Smith DJ, Fujimoto JM. Supraspinal neurotensin-induced antianalgesia in mice is mediated by spinal cholecystokinin. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 79:141-9. [PMID: 10202849 DOI: 10.1254/jjp.79.141] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Intracerebral injection of neurotensin into specific brain loci in rats produces hyperalgesia due to the release of cholecystokinin (CCK) in the spinal cord. The present purpose was to show in another species that neurotensin can antagonize the antinociceptive action of morphine through the spinal CCK mechanism in mice. Neurotensin given intracerebroventricularly (i.c.v.) at doses higher than 100 ng produced antinociception in the tail flick test. However, at lower doses between 1 pg to 25 ng, neurotensin antagonized the antinociceptive action of morphine given intrathecally (i.t.), thus demonstrating the antianalgesic activity of neurotensin. The rightward shift in the morphine dose-response curve produced by i.c.v. neurotensin was eliminated by an i.t. pretreatment with CCK8 antibody (5 microl of antiserum solution diluted 1:1000). I.t. administration of lorglumide, a CCK(A)-receptor antagonist (10-1000 ng), and PD135,158, a CCK(B)-receptor antagonist (250-500 ng), also eliminated the antianalgesic action of neurotensin. Thus, the mechanism of the antianalgesic action of neurotensin given i.c.v. involved spinal CCK. This mode of action is similar to that for the antianalgesic action of supraspinal pentobarbital which also involves spinal CCK.
Collapse
Affiliation(s)
- B B Holmes
- Department of Pharmacology and Toxicology, Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| | | | | | | |
Collapse
|
39
|
Walker N, Lepee-Lorgeoux I, Fournier J, Betancur C, Rostene W, Ferrara P, Caput D. Tissue distribution and cellular localization of the levocabastine-sensitive neurotensin receptor mRNA in adult rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 57:193-200. [PMID: 9675417 DOI: 10.1016/s0169-328x(98)00074-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine the regional and cellular distribution of the neurotensin type 2 receptor (NT-2R) mRNA in the rat brain. Using a radioactive in situ hybridization approach, the distribution of NT-2R transcripts was quantified from autoradiograms, and the cellular localization was examined in liquid emulsions. In rat brain, NT-2R mRNAs, are more widespread than the neurotensin type 1 receptor mRNA. NT-2R transcripts are diffusely distributed throughout the brain, with higher quantities found in the pia mater, the ventricles, the subfornical organ, the subiculum, the substantia nigra, the ventral tegmental area, the superior colliculus, the periaqueductal gray matter, the Purkinje cells and certain hypothalamic and brainstem nuclei. At the cellular level, silver grains appear to be concentrated on glia, neurons and ependymal cells, such as cell bodies of the glia-rich corpus callosum, Purkinje neurons in the cerebellum and ependymal cells lining the ventricles. In contrast, the thalamus and the amygdala contain low amounts of NT-2R mRNA. We discuss the anatomical location of NT-2R mRNA in relation to possible roles for this new receptor subtype.
Collapse
Affiliation(s)
- N Walker
- Sanofi Recherche, Labege, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Sarret P, Beaudet A, Vincent JP, Mazella J. Regional and cellular distribution of low affinity neurotensin receptor mRNA in adult and developing mouse brain. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980511)394:3<344::aid-cne6>3.0.co;2-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Tyler BM, Cusack B, Douglas CL, Souder T, Richelson E. Evidence for additional neurotensin receptor subtypes: neurotensin analogs that distinguish between neurotensin-mediated hypothermia and antinociception. Brain Res 1998; 792:246-52. [PMID: 9593920 DOI: 10.1016/s0006-8993(98)00150-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurotensin (NT), a tridecapeptide, is a neurotransmitter that elicits potent effects including hypothermia and antinociception in mice and rats. To date, there are two types of the neurotensin receptor (NTR) that have been molecularly cloned from the rat. However, several lines of evidence suggest the presence of additional NTR subtypes. We have identified a NT analog of the NT(8-13) fragment, NT27, that selectively causes only the hypothermic response in vivo, when microinjected into the periaqueductal gray (PAG) of rats. A dose of 18 nmol of NT or NT27 caused a body temperature lowering of 1.8 and 1.2 degrees C, respectively. This same dose of NT or NT27 yielded a hotplate maximum physiological effect of 75% and 25%, respectively. Interestingly, despite its high KD (620 nM) at the cloned NTR-1, NT27-I (the iodinated form of NT27) exerted a potent hypothermic effect even at a very low dose (0.6 nmol). Equally intriguing, was that NT24, a sterioisomer of NT27, with a much higher affinity (KD=0. 5 nM) at NTR-1, did not selectively induce hypothermia in mice, but did selectively induce hypothermia in rats.
Collapse
Affiliation(s)
- B M Tyler
- Neuropsychopharmacology Research, Mayo Foundation for Medical and Educational Research, Jacksonville, FL 32224, USA.
| | | | | | | | | |
Collapse
|
42
|
Tyler BM, Groshan K, Cusack B, Richelson E. In vivo studies with low doses of levocabastine and diphenhydramine, but not pyrilamine, antagonize neurotensin-mediated antinociception. Brain Res 1998; 787:78-84. [PMID: 9518559 DOI: 10.1016/s0006-8993(97)01479-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present study describes in vivo experiments in the rat addressing the role of levocabastine, and two other specific histamine H1 antagonists, diphenhydramine and pyrilamine, at neurotensin (NT)-mediated hypothermia and antinociception (hotplate). Levocabastine given i.p. or microinjected directly into the periaqueductal gray (PAG) did not cause antinociception or hypothermia. This indicates that despite the results with the recently-cloned levocabastine-sensitive NT receptors (NTR) in the rat (NTR-2) and mouse (NTRL), levocabastine by itself does not mediate either hypothermia or antinociception at NT receptors. However, pretreatment with 5 or 50 microg/kg of levocabastine or 5 microg/kg diphenhydramine all caused over a three-fold reduction in NT-mediated antinociception. Higher doses (500 or 5000 microg/kg) of levocabastine did not cause any antagonism of NT-mediated antinociception. All three antihistamines did not affect NT-mediated hypothermia. In addition, histamine H1 pathways are not involved in NT-mediated antinociception, as pretreatment with the much more potent histamine H1 antagonist pyrilamine did not affect antinociception mediated by NT. Therefore, these data may suggest the presence of yet unidentified NTR subtypes responsible for NT-mediated hypothermia and antinociception.
Collapse
Affiliation(s)
- B M Tyler
- Neuropsychopharmacology Research, Mayo Foundation for Medical and Educational Research, Jacksonville, FL 32224, USA.
| | | | | | | |
Collapse
|
43
|
Tyler BM, McCormick DJ, Hoshall CV, Douglas CL, Jansen K, Lacy BW, Cusack B, Richelson E. Specific gene blockade shows that peptide nucleic acids readily enter neuronal cells in vivo. FEBS Lett 1998; 421:280-4. [PMID: 9468323 DOI: 10.1016/s0014-5793(97)01575-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peptide nucleic acids (PNAs) are DNA analogs that can hybridize to complementary sequences with high affinity and stability. Here, we report the first evidence of intracellular delivery of PNAs in vivo. Two CNS receptors, an opioid (mu) and a neurotensin (NTR-1), were targeted independently by repeated microinjection of PNAs into the periaqueductal gray. Behavioral responses to neurotensin (antinociception and hypothermia) and morphine (antinociception) were lost in a specific manner. Binding studies confirmed a large reduction in receptor sites. The loss of behavioral responses was long lasting but did fully recover. The implications of specifically and readily turning off gene expression in vivo are profound.
Collapse
Affiliation(s)
- B M Tyler
- Neuropsychopharmacology, Mayo Clinic, Jacksonville, FL 32224, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Stiller CO, Gustafsson H, Fried K, Brodin E. Opioid-induced release of neurotensin in the periaqueductal gray matter of freely moving rats. Brain Res 1997; 774:149-58. [PMID: 9452203 DOI: 10.1016/s0006-8993(97)81698-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The midbrain periaqueductal gray matter (PAG) is an important region for endogenous pain suppression. Nerve terminals containing opioid peptides and neurotensin (NT), as well as high densities of opioid- and NT-receptors, have been demonstrated in the ventromedial PAG. Local administration of opioids or NT in this region induces antinociception in experimental animals. In the present microdialysis study, the effect of opioids on the release of NT in the ventromedial PAG was investigated. Perfusion of the microdialysis probe with 10 microM morphine induced a significant increase (P < 0.05; n = 5) of the extracellular level of NT-like immunoreactivity (NT-LI), while perfusion with a 10-fold higher concentration of morphine had no significant effect on the NT-LI release in the PAG. Also perfusion of the dialysis probe with the mu-opioid receptor-specific agonist [D-Ala2-N-Me-Phe4-Gly5-ol]-enkephaline (DAGO) (1 or 100 microM) induced a significant (P < 0.05; n = 7-9) increase of the NT-LI level. The increase in NT-LI release in response to 1 microM DAGO was both calcium-dependent and naloxone-reversible. Since opioid agonists generally inhibit neuronal activity, an indirect mechanism, involving inhibition of tonically active inhibitory neurons, e.g. gamma-aminobutyric acid (GABA) neurons, could be of importance for the opioid induced release of NT. However, local administration in the PAG of the GABA(A) antagonist bicuculline (0.1-10 microM) or the GABA(A) agonist muscimol (1-100 microM) had no significant effect on the extracellular NT-LI level in the PAG, suggesting that GABAergic mechanisms are not involved in the opioid-induced release of NT-LI. In conclusion, the present data provide in vivo evidence that mu-opioid receptors mediate stimulation of neurotensin release in the PAG.
Collapse
Affiliation(s)
- C O Stiller
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|
45
|
Vincent B, Jiracek J, Noble F, Loog M, Roques B, Dive V, Vincent JP, Checler F. Contribution of endopeptidase 3.4.24.15 to central neurotensin inactivation. Eur J Pharmacol 1997; 334:49-53. [PMID: 9346327 DOI: 10.1016/s0014-2999(97)01209-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The tridecapeptide, neurotensin elicits naloxone-insensitive analgesia after its intracebroventricular administration in mice. We used this central pharmacological effect to assess the putative contribution of the endopeptidase 3.4.24.15 to central inactivation of the peptide. By means of combinatorial chemistry, we previously designed the first potent endopeptidase 3.4.24.15 inhibitor. This agent, Z-(L,D)Phe psi(PO2CH2)(L,D)Ala-Lys-Met (phosphodiepryl 21), is shown here to behave as a fully specific endopeptidase 3.4.24.15 inhibitor, as demonstrated by the absence of effect on a series of other exo- and endopeptidases belonging to various classes of proteolytic activities present in murine brain membranes. Furthermore, central administration of phosphodiepryl 21 drastically prolongs the forepaw licking latency of mice tested on the hot plate and injected with sub-maximally active doses of neurotensin. Altogether, our results demonstrated that, in addition to endopeptidase 3.4.24.16, endopeptidase 3.4.24.15 likely contributes to the physiological termination of the neurotensinergic message in murine brain.
Collapse
Affiliation(s)
- B Vincent
- Institut de pharmacologie moléculaire et Cellulaire du CNRS, UPR411, Valbonne, France
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mongeau R, Marsden CA. Effect of central and peripheral administrations of cholecystokinin-tetrapeptide on panic-like reactions induced by stimulation of the dorsal periaqueductal grey area in the rat. Biol Psychiatry 1997; 42:335-44. [PMID: 9276073 DOI: 10.1016/s0006-3223(96)00407-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Administration of cholecystokinin-tetrapeptide (CCK-4) triggers panic attacks in humans, but it is not known whether CCK-4 acts in the brain to produce this effect. Panic-like reactions (flight and tachycardia) induced in rats by injecting D, L-homocysteic acid (DLH) into the dorsal periaqueductal grey area (DPAG), were used as an animal model to investigate this issue. CCK-4 (2 micrograms) infused into the DPAG did not change these panic-like reactions. The DLH-induced tachycardia was prolonged by intracerebroventricular injection of CCK-4 (40 or 4 micrograms); however, the DLH-induced flight behavior was not changed by similar central injections of CCK-4 (40, 4, or 0.4 micrograms). Peripheral injection of t-butoxycarbonyl (BOC)-CCK-4 (40 micrograms) potentiated the flight behavior, but did not alter the tachycardia response. It was concluded that CCK tetrapeptide potentiates panic-like behaviors by acting on a peripheral target or on a circumventricular area of the brain. In contrast, increased brain CCK-4 prolongs tachycardia by acting in the brain at a level distinct from the DPAG.
Collapse
Affiliation(s)
- R Mongeau
- Department of Physiology and Pharmacology, Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| | | |
Collapse
|
47
|
Abstract
The serotonergic system, because of very diffuse projections throughout the central nervous system, has been implicated in numerous functions including nociception, analgesia, sleep-wakefulness and autonomic regulation. Despite an abundant literature indicating the presence of neurotensin-containing (neurotensinergic) neurons, fibres and terminals in most areas containing serotonergic neurons, little is known about the possible relationship between serotonergic and neurotensinergic systems. The purpose of this review is (i) to summarize current knowledge on the anatomical relation between neurotensinergic and serotonergic system, (ii) to summarize current knowledge on the action of neurotensin on serotonergic neurons and (iii) to discuss the possible physiological relevance of this action. Neurotensin-containing cell bodies can be found in the most rostral raphe nuclei. There are neurotensin-containing fibres and terminals in all raphe nuclei. Raphe nuclei have also been shown to contain neurotensin-receptor binding sites. In the dorsal raphe nucleus, neurotensin induces a concentration-dependent increase in the firing rate of a subpopulation of serotonergic neurons. The neurotensin-induced excitation, which is selectively blocked by the non-peptide neurotensin receptor antagonist SR 48692, is observed mainly in the ventral part of the nucleus. Most serotonergic neurons show marked desensitization to neurotensin, even at low concentrations. In intracellular experiments, neurotensin induces an inward current, associated in some cases with a decrease in apparent input conductance, which is occluded by supramaximal concentrations of the alpha 1-adrenoceptor agonist phenylephrine. In rare cases, neurotensin induces an excitation of GABAergic or glutamatergic neurons. Since the neurotensinergic system has also been implicated in nociception, analgesia, sleep-wakefulness, and autonomic regulation, the review discusses the possibility that part of this regulation could involve the activation of the serotonergic system.
Collapse
Affiliation(s)
- T Jolas
- Department of Psychiatry, Yale University School of Medicine, Connecticut Mental Health Center, New Haven 06508, USA
| | | |
Collapse
|
48
|
Rostene W, Azzi M, Boudin H, Lepee I, Souaze F, Mendez-Ubach M, Betancur C, Gully D. Use of nonpeptide antagonists to explore the physiological roles of neurotensin. Focus on brain neurotensin/dopamine interactions. Ann N Y Acad Sci 1997; 814:125-41. [PMID: 9160965 DOI: 10.1111/j.1749-6632.1997.tb46151.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- W Rostene
- INSERM U.339, Hôpital St. Antoine, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
More than two decades of research indicate that the peptide neurotensin (NT) and its cognate receptors participate to a remarkable extent in the regulation of mammalian neuroendocrine systems, potentially at multiple levels in a given system. NT-synthesizing neurons appear to exert a direct or indirect stimulatory influence on neurosecretory cells that synthesize gonadotropin-releasing hormone, dopamine (DA), somatostatin, and corticotropin-releasing hormone (CRH). In addition, context-specific synthesis of NT occurs in hypothalamic neurosecretory cells located in the arcuate nucleus and parvocellular paraventricular nucleus, including distinct subsets of cells which release DA, CRH, or growth hormone-releasing hormone into the hypophysial portal circulation. At the level of the anterior pituitary, NT stimulates secretion of prolactin and occurs in subsets of gonadotropes and thyrotropes. Moreover, circulating hormones influence NT synthesis in the hypothalamus and anterior pituitary, raising the possibility that NT mediates certain feedback effects of the hormones on neuroendocrine cells. Gonadal steroids alter NT levels in the preoptic area, arcuate nucleus, and anterior pituitary; adrenal steroids alter NT levels in the hypothalamic periventricular nucleus and arcuate nucleus; and thyroid hormones alter NT levels in the hypothalamus and anterior pituitary. Finally, clarification of the specific neuroendocrine roles subserved by NT should be greatly facilitated by the use of newly developed agonists and antagonists of the peptide.
Collapse
Affiliation(s)
- W H Rostène
- INSERM U.339, Hôpital St. Antoine, Paris, France.
| | | |
Collapse
|
50
|
Structure, functional expression, and cerebral localization of the levocabastine-sensitive neurotensin/neuromedin N receptor from mouse brain. J Neurosci 1996. [PMID: 8795617 DOI: 10.1523/jneurosci.16-18-05613.1996] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This work describes the cloning and expression of the levocabastine-sensitive neurotensin (NT) receptor from mouse brain. The receptor protein comprises 417 amino acids and bears the characteristics of G-protein-coupled receptors. This new NT receptor (NTR) type is 39% homologous to, but pharmacologically distinct from, the only other NTR cloned to date from the rat brain and the human HT29 cell line. When the receptor is expressed in Xenopus laevis oocytes, the H1 antihistaminic drug levocabastine, like NT and neuromedin N, triggers an inward current. The pharmacological properties of this receptor correspond to those of the low-affinity, levocabastine-sensitive NT binding site described initially in membranes prepared from rat and mouse brain. It is expressed maximally in the cerebellum, hippocampus, piriform cortex, and neocortex of adult mouse brain.
Collapse
|