1
|
Kozik EM, Marzluff EM, Lindgren CA. Evidence of NAAG-family tripeptide NAAG 2 in the Drosophila nervous system. J Neurochem 2020; 156:38-47. [PMID: 32885844 DOI: 10.1111/jnc.15173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023]
Abstract
N-acetylaspartylglutamate (NAAG) is a common neurotransmitter in the mammalian nervous system; however, it has never been reported in the nervous system of the fruit fly, Drosophila melanogaster. Using antiserum against NAAG, we localized NAAG-like immunoreactivity to neurons in the ventral nerve cord and to type Is glutamatergic nerve terminals in larval neuromuscular junctions. Using liquid chromatography tandem mass spectrometry (LC-MS), we failed to find NAAG but found the related peptide N-acetylaspartylglutamylglutamate (NAAG2 ) in Drosophila CNS and body wall tissue. This is the first report of any NAAG-family peptide in the nervous system of Drosophila and is also the first report of NAAG2 being present in a much higher concentration than NAAG in the nervous system of any species. Thus, the larval fruit fly presents an interesting model for the study of the functional role of NAAG2 of which very little is known-especially in the absence of an abundance of NAAG.
Collapse
Affiliation(s)
- Emily M Kozik
- Biology Department, Grinnell College, Grinnell, IA, USA
| | | | | |
Collapse
|
2
|
Arun P, Madhavarao CN, Moffett JR, Namboodiri MAA. Regulation of N-acetylaspartate and N-acetylaspartylglutamate biosynthesis by protein kinase activators. J Neurochem 2006; 98:2034-42. [PMID: 16945114 DOI: 10.1111/j.1471-4159.2006.04068.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The neuronal dipeptide N-acetylaspartylglutamate (NAAG) is thought to be synthesized enzymatically from N-acetylaspartate (NAA) and glutamate. We used radiolabeled precursors to examine NAA and NAAG biosynthesis in SH-SY5Y human neuroblastoma cells stimulated with activators of protein kinase A (dbcAMP; N6,2'-O-dibutyryl cAMP) and protein kinase C (PMA; phorbol-12-myristate-13-acetate). Differentiation over the course of several days with dbcAMP resulted in increased endogenous NAA levels and NAAG synthesis from l-[(3)H]glutamine, whereas PMA-induced differentiation reduced both. Exogenously applied NAA caused dose dependent increases in intracellular NAA levels, and NAAG biosynthesis from l-[(3)H]glutamine, suggesting precursor-product and mass-action relationships between NAA and NAAG. Incorporation of l-[(3)H]aspartate into NAA and NAAG occurred sequentially, appearing in NAA by 1 h, but not in NAAG until between 6 and 24 h. Synthesis of NAAG from l-[(3)H]aspartate was increased by dbcAMP and decreased by PMA at 24 h. The effects of PMA on l-[(3)H]aspartate incorporation into NAA were temporally biphasic. Using short incubation times (1 and 6 h), PMA increased l-[(3)H]aspartate incorporation into NAA, but with longer incubation (24 h), incorporation was significantly reduced. These results suggest that, while the neuronal production of NAA and NAAG are biochemically related, significant differences exist in the regulatory mechanisms controlling their biosynthesis.
Collapse
Affiliation(s)
- Peethambaran Arun
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
3
|
Tieman SB. Cellular Localization of NAAG. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:289-301; discussion 361-3. [PMID: 16802721 DOI: 10.1007/0-387-30172-0_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Suzannah Bliss Tieman
- Center for Neuroscience Research and Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York, 12222 USA.
| |
Collapse
|
4
|
Moffett JR, Namboodiri AMA. Expression of N-Acetylaspartate and N-Acetylaspartylglutamate in the Nervous System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 576:7-26; discussion 361-3. [PMID: 16802702 DOI: 10.1007/0-387-30172-0_2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- John R Moffett
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda MD, 20814, USA.
| | | |
Collapse
|
5
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
6
|
Moffett JR. Reductions in N-acetylaspartylglutamate and the 67 kDa form of glutamic acid decarboxylase immunoreactivities in the visual system of albino and pigmented rats after optic nerve transections. J Comp Neurol 2003; 458:221-39. [PMID: 12619078 DOI: 10.1002/cne.10570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study compares the immunohistochemical distributions of N-acetylaspartylglutamate (NAAG) and the large isoform of the gamma-aminobutyric acid (GABA)-synthesizing enzyme glutamic acid decarboxylase (GAD(67)) in the visual system of albino and pigmented rats. Most retinal ganglion cells and their axons were strongly immunoreactive for NAAG, whereas GAD(67) immunoreactivity was very sparse in these cells and projections. In retinorecipient zones, NAAG and GAD(67) immunoreactivities occurred in distinct populations of neurons and in dense networks of strongly immunoreactive fibers and synapses. Dual-labeling immunohistochemistry indicated that principal neurons were stained for NAAG, whereas local interneurons were stained for GAD(67). In contrast to the distribution observed in retinorecipient zones, most or all neurons were doubly stained for NAAG and GAD(67) in the thalamic reticular nucleus. Ten days after unilateral optic nerve transection, NAAG-immunoreactive fibers and synapses were substantially reduced in all contralateral retinal terminal zones. The posttransection pattern of NAAG-immunoreactive synaptic loss demarcated the contralateral and ipsilateral divisions of the retinal projections. In addition, an apparent transynaptic reduction in GAD(67) immunoreactivity was observed in some deafferented areas, such as the lateral geniculate. These findings suggest a complicated picture in which NAAG and GABA are segregated in distinct neuronal populations in primary visual targets, yet they are colocalized in neurons of the thalamic reticular nucleus. This is consistent with NAAG acting as a neurotransmitter release modulator that is coreleased with a variety of classical transmitters in specific neural pathways.
Collapse
Affiliation(s)
- John R Moffett
- Department of Biology, Georgetown University, Washington, DC 20057-1229, USA.
| |
Collapse
|
7
|
Greene R. Circuit analysis of NMDAR hypofunction in the hippocampus, in vitro, and psychosis of schizophrenia. Hippocampus 2002; 11:569-77. [PMID: 11732709 DOI: 10.1002/hipo.1072] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
NMDA antagonists provide the best pharmacological model of psychosis-related schizophrenia. Data from circuit analysis of the effects of the antagonism of NMDA receptors in the CA1 region of the hippocampus of rats in vitro suggest a hypothesis concerning cortical circuit dysfunction responsible for NMDA antagonist-dependent psychosis, relevant to the psychosis associated with schizophrenia. The NMDA antagonists may act by causing a selective, partial, disinhibition of cortical projection cells. The effects are partially due to the partial role of NMDA-dependent transmission in the excitatory glutamate drive of interneurons. Characterization of the selectivity is incomplete, but includes disinhibition of the recurrent inhibitory circuit and is concentration-sensitive. It may result from differences in NMDA receptors (NMDARs) on interneurons. At higher concentrations, antagonism of all NMDA-dependent transmission results in anesthesia. At low concentration, selective blockade of NMDA-dependent LTP of the recurrent inhibitory circuit may disrupt particular aspects of information processing involving learning and/or memory, consistent with the generation of abnormal associations. An endogenous peptide, NAAG, is shown to antagonize NMDARs in a manner similar to known psychotogenic agents like ketamine or phencyclidine. Finally, mechanisms that could enhance NMDAR function are discussed as possible therapeutic strategies for psychosis.
Collapse
Affiliation(s)
- R Greene
- Department of Psychiatry, Harvard Medical School and VAMC, Brockton, Massachusetts, USA.
| |
Collapse
|
8
|
Abstract
The superior colliculus (SC) is one of the most ancient regions of the vertebrate central sensory system. In this hub afferents from several sensory pathways converge, and an extensive range of neural circuits enable primary sensory processing, multi-sensory integration and the generation of motor commands for orientation behaviours. The SC has a laminar structure and is usually considered in two parts; the superficial visual layers and the deep multi-modal/motor layers. Neurones in the superficial layers integrate visual information from the retina, cortex and other sources, while the deep layers draw together data from many cortical and sub-cortical sensory areas, including the superficial layers, to generate motor commands. Functional studies in anaesthetized subjects and in slice preparations have used pharmacological tools to probe some of the SC's interacting circuits. The studies reviewed here reveal important roles for ionotropic glutamate receptors in the mediation of sensory inputs to the SC and in transmission between the superficial and deep layers. N-methyl-D-aspartate receptors appear to have special responsibility for the temporal matching of retinal and cortical activity in the superficial layers and for the integration of multiple sensory data-streams in the deep layers. Sensory responses are shaped by intrinsic inhibitory mechanisms mediated by GABA(A) and GABA(B) receptors and influenced by nicotinic acetylcholine receptors. These sensory and motor-command activities of SC neurones are modulated by levels of arousal through extrinsic connections containing GABA, serotonin and other transmitters. It is possible to naturally stimulate many of the SC's sensory and non-sensory inputs either independently or simultaneously and this brain area is an ideal location in which to study: (a) interactions between inputs from the same sensory system; (b) the integration of inputs from several sensory systems; and (c) the influence of non-sensory systems on sensory processing.
Collapse
Affiliation(s)
- K E Binns
- Department of Visual Science, Institute of Ophthalmology, University College, London, UK
| |
Collapse
|
9
|
Abstract
N-Acetylaspartylglutamate (NAAG) is a neuropeptide found in millimolar concentrations in brain that is localized to subpopulations of glutamatergic, cholinergic, GABAergic, and noradrenergic neuronal systems. NAAG is released upon depolarization by a Ca(2+)-dependent process and is an agonist at mGluR3 receptors and an antagonist at NMDA receptors. NAAG is catabolized to N-acetylaspartate and glutamate primarily by glutamate carboxypeptidase II, which is expressed on the extracellular surface of astrocytes. The levels of NAAG and the activity of carboxypeptidase II are altered in a regionally specific fashion in several neuropsychiatric disorders.
Collapse
Affiliation(s)
- J T Coyle
- Department of Psychiatry, Harvard Medical School, Belmont, Massachusetts 02178, USA.
| |
Collapse
|
10
|
Passani LA, Vonsattel JP, Coyle JT. Distribution of N-acetylaspartylglutamate immunoreactivity in human brain and its alteration in neurodegenerative disease. Brain Res 1997; 772:9-22. [PMID: 9406950 DOI: 10.1016/s0006-8993(97)00784-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The dipeptide N-acetylaspartylglutamate (NAAG) may be involved in the process of glutamatergic signaling by both acting at glutamate receptors and as a glutamate protransmitter. In the present study we determined the cellular localization and distribution of NAAG-like immunoreactivity (NAAG-LI) in normal human brain and in neurodegenerative disorders to ascertain the degree of NAAG's colocalization to putative glutamatergic pathways. Immunohistochemistry with an antibody against NAAG was performed on control, Huntington's disease (HD) and Alzheimer's disease (AD) human autopsy and biopsy brain sections from the cerebral cortex, hippocampus, amygdala, neostriatum, brainstem and spinal cord. In normal human brain, NAAG-LI was widespread localized to putative glutamatergic pyramidal neurons of the cerebral cortex and hippocampus. Punctate NAAG-LI was present in areas known to receive neuronal glutamatergic input, such as layer IV of the cerebral cortex, striatal neuropil, and the outer portion of the molecular layer of the hippocampal dentate gyrus. In the two pathologic brain regions examined, the HD neostriatum and the AD temporal cortex, we observed a widespread loss of NAAG-LI neurons. In addition NAAG-LI reactive microglia surrounding plaques were seen in AD temporal cortex but not in the HD striatum. Our results suggest that NAAG is substantially localized to putative glutamatergic pathways in human brain and that NAAG-LI neurons are vulnerable to the neurodegenerative process in HD and AD.
Collapse
Affiliation(s)
- L A Passani
- Laboratory of Molecular and Developmental Neuroscience, Massachusetts General Hospital, Charlestown, USA
| | | | | |
Collapse
|
11
|
Repérant J, Rio JP, Ward R, Wasowicz M, Miceli D, Medina M, Pierre J. Enrichment of glutamate-like immunoreactivity in the retinotectal terminals of the viper Vipera aspis: an electron microscope quantitative immunogold study. J Chem Neuroanat 1997; 12:267-80. [PMID: 9243346 DOI: 10.1016/s0891-0618(97)00018-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A post-embedding immunogold study was carried out to estimate the immunoreactivity to glutamate in retinal terminals, P axon terminals and dendrites containing synaptic vesicles in the superficial layers of the optic tectum of Vipera. Retinal terminals, identified following either intraocular injection of tritiated proline, horseradish peroxidase (HRP) or short-term survivals after retinal ablation, were observed to be highly glutamate-immunoreactive. A detailed quantitative analysis showed that about 50% of glutamate immunoreactivity was localized over the synaptic vesicles, 35.8% over mitochondria and 14.2% over the axoplasmic matrix. The close association of immunoreactivity with the synaptic vesicles could indicate that Vipera retino-tectal terminals may use glutamate as their neurotransmitter. P axon terminals and dendrites containing synaptic vesicles, strongly gamma-aminobutyric (GABA)-immunoreactive, were shown to be also moderately glutamate-immunoreactive, but two to three times less than retinal terminals. Moreover, in P axon terminals, the glutamate immunoreactivity was denser over mitochondria than over synaptic vesicles, possibly reflecting the 'metabolic' pool of glutamate, which serves as a precursor in the formation of GABA.
Collapse
Affiliation(s)
- J Repérant
- INSERM U-106, Laboratoire de Neuromorphologie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Mize RR, Butler GD. Postembedding immunocytochemistry demonstrates directly that both retinal and cortical terminals in the cat superior colliculus are glutamate immunoreactive. J Comp Neurol 1996; 371:633-48. [PMID: 8841915 DOI: 10.1002/(sici)1096-9861(19960805)371:4<633::aid-cne11>3.0.co;2-k] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Although the excitatory neurotransmitter glutamate is known to be present in the cat superior colliculus (SC), the types of synapses that contain glutamate have not been examined. We, therefore, studied the ultrastructure of synaptic profiles labeled by a glutamate antibody by using electron microscopic postembedding immunocytochemistry. In addition, unilateral aspiration lesions of areas 17-18 were made at 5-28 days before death in order to determine whether degenerating terminals from visual cortex were glutamate immunoreactive (Glu-ir). Three types of axon terminal were glu-ir: 1) those containing large, round synaptic vesicles and pale mitochondria, characteristic of retinal terminals (RT profiles); 2) those containing small, round synaptic vesicles and dark mitochondria (RSD profiles); and 3) those containing large, round synaptic vesicles and dark mitochondria (RLD profiles). Measures of mean gold particle density revealed that RT, RSD, and RLD profiles had similar average grain densities (11.3-12.7 particles/unit area). Other labeled profile types included cell bodies, large-calibre dendrites, and myelinated axons. Axon terminals containing flattened synaptic vesicles and vesicle-containing presynaptic dendrites, both of which contain gamma-aminobutyric acid (GABA), had many fewer gold particles (3.6 and 4.8 mean particles/unit area, respectively). Following unilateral removal of visual cortex, normal RSD terminals were observed infrequently in the SC ipsilateral to the lesion. Synaptic terminals in the initial stages of degeneration were heavily labeled by the glutamate antibody, as were axon terminals and myelinated axons undergoing hypertrophied or neurofilamentous degeneration. These results show that both major sensory afferents to the superficial layers of cat SC contain glutamate--RT terminals from the retina and RSD terminals from visual cortex. The origin of RLD terminals is unknown.
Collapse
Affiliation(s)
- R R Mize
- Department of Anatomy, Louisiana State University Medical Center, New Orleans 70112, USA
| | | |
Collapse
|
13
|
Abstract
The acidic dipeptide N-acetylaspartylglutamate (NAAG), which satisfies many of the criteria for a neurotransmitter, was identified immunohistochemically within two human retinae. We observed NAAG immunoreactivity in retinal ganglion cells, their dendrites in the inner plexiform layer, and their axons in the optic nerve fiber layer. The vast majority of ganglion cells were stained, including displaced ganglion cells, ganglion cells of different sizes, and those whose dendrites arborized in the inner and outer sublaminae of the inner plexiform layer, that is, presumed On- and Off- cells. The sizes of labeled and unlabeled cells in the ganglion cell layer, as measured in counterstained material, suggest that the unlabeled cells consist primarily or only of displaced amacrine cells. We also saw immunoreactivity in small cells along the inner margin of the inner nuclear layer, presumably amacrine cells, and in small cells with little cytoplasm in the inner plexiform and ganglion cell layers, presumably displaced amacrine cells. These results are consistent with a role for NAAG in the transmission of visual information from the retina to the rest of the brain. Further, they are similar to those reported previously in rat, cat and monkey, thus demonstrating the relevance of previous studies to humans.
Collapse
Affiliation(s)
- S B Tieman
- Department of Biological Sciences, State University of New York, Albany 12222, USA.
| | | |
Collapse
|
14
|
Abstract
Immunocytochemical methods were used to visualize glutamate immunoreactivity in the cat retina and to compare its localization with that of aspartate, GABA, and glycine. The cellular and subcellular distribution of glutamate was analyzed at the light-microscopic level by optical densitometry and at the electron-microscopic level by immunogold quantification. The findings were consistent with the proposed role for glutamate as the neurotransmitter of photoreceptors and bipolar cells as particularly high concentrations of staining were found in synaptic terminals of these cells. Ganglion cells were also consistently stained. Aspartate was totally colocalized with glutamate in neuronal cell bodies but the synaptic levels of aspartate were much lower than for glutamate. In addition to the staining of photoreceptor, bipolar, and ganglion cells, glutamate immunoreactivity was also observed in approximately 60% of the amacrine cells. These cells exhibited colocalization with either GABA or glycine. The elevated levels of Glu in amacrine cells may reflect its role as a transmitter precursor in GABAergic cells and as an energy source for mitochondria in glycinergic cells.
Collapse
Affiliation(s)
- L Jojich
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI 48201, USA
| | | |
Collapse
|
15
|
Montero VM. Quantitative immunogold evidence for enrichment of glutamate but not aspartate in synaptic terminals of retino-geniculate, geniculo-cortical, and cortico-geniculate axons in the cat. Vis Neurosci 1994; 11:675-81. [PMID: 7918218 DOI: 10.1017/s0952523800002984] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A postembedding immunogold procedure was used on thin sections of the dorsal lateral geniculate nucleus (LGN) and perigeniculate nucleus (PGN) of the cat to estimate qualitatively and quantitatively, at the electron-microscopic (EM) level, the intensity of glutamate or aspartate immunoreactivities on identifiable synaptic terminals and other profiles of the neuropil. On sections incubated with a glutamate antibody, terminals of retinal and cortical axons in the LGN, and of collaterals of geniculo-cortical axons in the PGN, contain significantly higher density of immunogold particles than GABAergic terminals, glial cells, dendrites, and cytoplasm of geniculate cells. By contrast, in sections incubated with an aspartate antibody, terminals of retino-geniculate, cortico-geniculate, and geniculo-cortical axons did not show a selective enrichment of immunoreactivity, but instead the density of immunogold particles was generally low in the different profiles of the neuropil, with the exception of nucleoli. These results suggest that glutamate, but not aspartate, is a neurotransmitter candidate in the retino-geniculo-cortical pathways.
Collapse
Affiliation(s)
- V M Montero
- Department of Neurophysiology, University of Wisconsin, Madison
| |
Collapse
|
16
|
Xing LC, Tieman SB. Relay cells, not interneurons, of cat's lateral geniculate nucleus contain N-acetylaspartylglutamate. J Comp Neurol 1993; 330:272-85. [PMID: 8098338 DOI: 10.1002/cne.903300208] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
N-acetylaspartylglutamate (NAAG) is an endogenous brain dipeptide that satisfies many of the criteria for a neurotransmitter. We have previously identified NAAG immunoreactivity in neurons of the lateral geniculate nucleus (LGN) of the cat and monkey. To determine whether all LGN neurons contain NAAG, we treated sections of cat LGN with affinity-purified antibodies to NAAG and counterstained them with thionin. The larger neurons contained NAAG, but the smaller neurons did not. We treated other sections with antiserum to glutamic acid decarboxylase (GAD), the rate-limiting enzyme in the synthesis of gamma-aminobutyric acid (GABA), in order to label interneurons of the LGN. In these sections, the smaller cells were labeled; the larger neurons were not. We hypothesized that NAAG was present in relay cells, but not interneurons. We used two double-labeling paradigms to test this hypothesis. We combined immunocytochemistry for NAAG using a fluorescent secondary antibody with either (1) fluorescent retrograde tracers (true blue, granular blue, rhodamine beads, or propidium iodide) injected into areas 17 and/or 18 or (2) immunocytochemistry for GAD using a second fluorescent secondary antibody. In the LGN, over 99% of retrogradely labeled cells contained NAAG, but few GAD-positive neurons did. In contrast, neurons of the perigeniculate nucleus contained both NAAG and GAD, demonstrating that staining by one set of antisera did not inhibit staining by the other and that perigeniculate neurons are chemically distinct from the interneurons of the LGN. We conclude that in LGN, the relay cells, which project to visual cortex, contain NAAG, whereas most of the interneurons, which contain GABA, do not.
Collapse
Affiliation(s)
- L C Xing
- Neurobiology Research Center, State University of New York, Albany 12222
| | | |
Collapse
|
17
|
Tieman SB, Neale JH, Tieman DG. N-acetylaspartylglutamate immunoreactivity in neurons of the monkey's visual pathway. J Comp Neurol 1991; 313:45-64. [PMID: 1662235 DOI: 10.1002/cne.903130105] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The acidic dipeptide N-acetylaspartylglutamate (NAAG) was identified immunohistochemically within neurons of the visual pathways of two adult macaque monkeys which had undergone midsagittal sectioning of the optic chiasm 6 or 9 years earlier. In both temporal and nasal retinae, amacrine cells, including some displaced amacrine cells, expressed NAAG immunoreactivity. In temporal but not nasal retina, retinal ganglion cells were stained, as were their dendrites in the inner plexiform layer, and their axons in the optic nerve fiber layer. In nasal retina, the ganglion cells had degenerated because they were axotomized by the optic chiasm section. In the target regions of the retinal ganglion cells, the superior colliculus and the lateral geniculate nucleus (LGN), both neuropil and cell bodies were stained. In LGN, staining was confined to layers 2, 3, and 5, that is, to the layers innervated by the intact ipsilateral pathway. Immunoreactivity was also seen in the cells of layers 2, 3A, 4B, 5, and 6 of area 17 and layers 3 and 5 of area 18. The neuropil was stained in all layers of area 17, but more heavily in layers 1, 2, 4B, the bottom of 4C beta, 5B, and 6B. Within 4C the staining was patchy; in tangential sections there were alternating bands of light and dark label which matched the ocular dominance bands demonstrated by cytochrome oxidase histochemistry in adjacent sections. This banding pattern is consistent with the presence of NAAG in geniculocortical terminals of the intact ipsilateral pathway and the absence of such terminals for the contralateral pathway, which had undergone transneuronal degeneration due to the optic chiasm sectioning. Overall, our results for monkey are very similar to those in cat and suggest that NAAG or a structurally related molecule may have a prominent role in the communication of visual signals at retinal, thalamic, and cortical levels.
Collapse
Affiliation(s)
- S B Tieman
- Neurobiology Research Center, State University of New York, Albany 12222
| | | | | |
Collapse
|