1
|
Cunningham P, Sumal A, Patton E, Helms H, Noneman MT, Martinez-Muñiz G, Bader JE, Chatzistamou I, Aladhami A, Unger C, Enos RT, Shin HK, Velázquez KT. Ojeok-san ameliorates visceral and somatic nociception in a mouse model of colitis induced colorectal cancer. PLoS One 2022; 17:e0270338. [PMID: 35737651 PMCID: PMC9223640 DOI: 10.1371/journal.pone.0270338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
Cancer patients can develop visceral, somatic, and neuropathic pain, largely due to the malignancy itself and its treatments. Often cancer patients and survivors turn to the use of complementary and alternative medicine (CAM) to alleviate pain and fatigue. Thus, it is necessary to investigate how CAM therapies work as novel analgesics to treat cancer pain. Ojeok-san (OJS) is an herbal formula consisting of seventeen herbs. This herbal formula has been shown to possess anti-inflammatory, immunoregulatory, and analgesic properties. In this study, we examined the potential beneficial effects and mechanism of action of OJS in a preclinical model of colitis-associated colorectal cancer. Male and female C57BL/6J mice were exposed to the carcinogen, azoxymethane (AOM, 10 mg/kg) and a chemical inflammatory driver, dextran sulfate sodium (DSS1-2%), to promote tumorigenesis in the colorectum. OJS was given orally (500, 1000, and 2000 mg/kg) to determine its influence on disease activity, tumor burden, nociception, sedation, Erk signaling, and behavioral and metabolic outcomes. In addition, in vitro studies were performed to assess CT-26 cell viability, dorsal root ganglia (DRG) activation, and bone-marrow-derived macrophage (BMDM) inflammatory response to lipopolysaccharide stimulation after OJS treatment. We found that administration of 2000 mg/kg of OJS was able to mitigate mechanical somatic and visceral nociception via Erk signaling without affecting symptom score and polyp number. Moreover, we discovered that OJS has sedative properties and elicits prolonged total sleeping time in AOM/DSS mice. Our in vitro experiments showed that OJS has the capacity to reduce TNFα gene expression in LPS-stimulated BMDM, but no changes were observed in DRG spike number and CT-26 cell proliferation. Taken together, these data suggest that OJS ameliorates nociception in mice and warrants further examination as a potential CAM therapy to promote analgesia.
Collapse
Affiliation(s)
- Patrice Cunningham
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Aman Sumal
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Emma Patton
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Henry Helms
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Matthew T. Noneman
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Gustavo Martinez-Muñiz
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Jackie E. Bader
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Ahmed Aladhami
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Christian Unger
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Reilly T. Enos
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Hyeun Kyoo Shin
- Basic Herbal Medicine Research Group, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kandy T. Velázquez
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| |
Collapse
|
2
|
Phase I clinical trial to evaluate the safety and pharmacokinetics of capsule formulation of the standardized extract of Atractylodes lancea. J Tradit Complement Med 2021; 11:343-355. [PMID: 34195029 PMCID: PMC8240349 DOI: 10.1016/j.jtcme.2021.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aim Atractylodes lancea (AL) has been demonstrated in a series of studies to be a potential candidate for the treatment of cholangiocarcinoma. The aim of the current study was to evaluate the safety and pharmacokinetics of the capsule formulation of the standardized AL extract in healthy Thai participants. Experimental procedure Forty-eight healthy Thai participants who fulfilled the inclusion and had none of the exclusion criteria were allocated to two study groups. The group 1 participants were randomized to receive a single oral dose of 1,000 mg of AL or placebo (20:4 participants). The group 2 participants were randomized to receive daily oral doses of 1,000 mg AL or placebo daily for 21 days (20:4 participants). Safety and tolerability of the two AL regimens were monitored. Blood samples were collected for measurement of atractylodin concentrations by HPLC and pharmacokinetic analysis was performed using model-dependent and model-independent analysis. Results and conclusion The AL extract was well tolerated in both groups. Atractylodin was rapidly absorbed but with low systemic exposure and residence time. There was no difference in the pharmacokinetic parameters of atractylodin following a single or multiple dosing, suggesting the absence of accumulation and dose-dependency in human plasma after continuous dosing for 21 days. The information on human pharmacokinetics of AL, when given as capsule formulation of the standardized extract, would assist in further dose optimization in cholangiocarcinoma patients with the defined pharmacokinetic-pharmacodynamic relationship. The study is the first pharmacokinetics of Atractylodes lancea (AL) in humans. AL was well tolerated as verified by clinical and laboratory investigations. There was no change in the pharmacokinetics of atractylodin (AL active compound) when given as multiple dosing for 21 days. The information will be used for further dose optimization in cholangiocarcinoma patients.
Collapse
|
3
|
Acharya B, Chaijaroenkul W, Na-Bangchang K. Therapeutic potential and pharmacological activities of β-eudesmol. Chem Biol Drug Des 2021; 97:984-996. [PMID: 33449412 DOI: 10.1111/cbdd.13823] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Herbal medicines are attracting the attention of researchers worldwide. β-Eudesmol is one of the most studied and major bioactive sesquiterpenes, mainly extracted from Atractylodes lancea (Thunb) DC. rhizomes. It has potential anti-tumor and anti-angiogenic activities and is an inhibitor of tumor growth by inhibiting angiogenesis by suppressing CREB activation of the growth factor signaling pathway. It also stimulates neurite outgrowth in rat pheochromocytoma cells with activation of mitogen-activated protein kinases. It may be a promising lead compound for enhancing neural function, and it may help to explain the underlying mechanisms of neural differentiation. In this review, we summarized the currently available clinical and preclinical studies describing the therapeutic applications of β-eudesmol.
Collapse
Affiliation(s)
- Bishwanath Acharya
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand.,Drug discovery, and Development Center, Thammasat University, Rangsit Center, Klong Luang, Pathum Thani, Thailand
| |
Collapse
|
4
|
β-Eudesmol, an Oxygenized Sesquiterpene, Reduces the Increase in Saliva 3-Methoxy-4-Hydroxyphenylglycol After the "Trier Social Stress Test" in Healthy Humans: A Randomized, Double-Blind, Placebo-Controlled Cross-Over Study. Nutrients 2018; 11:nu11010009. [PMID: 30577513 PMCID: PMC6356403 DOI: 10.3390/nu11010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/15/2018] [Accepted: 12/19/2018] [Indexed: 11/21/2022] Open
Abstract
Hops, the immature inflorescences of the female hop plant (Humulus lupulus L.) are one of the main components of beer and provides flavor and bitterness. β-Eudesmol, an oxygenated sesquiterpene, is reported to accumulate in a particular hop cultivar. Recently, we revealed that β-Eudesmol ingestion affected autonomic nerve activity in an animal model. The effect on humans has not been elucidated, therefore, we investigated the effects of β-Eudesmol on reducing objective and subjective markers related to sympathetic nerve activity after the application of mental stress in healthy participants. Fifty participants (male and female aged 20 to 50 years) were randomly assigned to two groups. Five minutes before taking the Trier Social Stress Test (TSST) as a mental stressor, participants in each group ingested a beverage containing β-Eudesmol, the active beverage, or a placebo beverage that did not contain β-Eudesmol. Saliva 3-methoxy-4-hydroxyphenylglycol (MHPG), a major product of noradrenaline breakdown and a representative marker of sympathetic nerve activity, was significantly lower just after the TSST in the active group compared with the placebo group. Saliva cortisol, a marker of the endocrine stress response system, was not significantly different between the two groups. No adverse events related to test beverage ingestion were observed. This is the first experimental evidence of β-Eudesmol effect for mental stress in human.
Collapse
|
5
|
Jun X, Fu P, Lei Y, Cheng P. Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. Chin Med 2018; 13:59. [PMID: 30505341 PMCID: PMC6260578 DOI: 10.1186/s13020-018-0216-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 12/22/2022] Open
Abstract
Atractylodes lancea Thunb. DC. (AL) has a long history as one of the important herbs used in East Asia. This review is on the purpose of providing a comprehensive summary of the pharmacological effects of AL and its extractions. The publication from PubMed, ScienceDirect, Springer, and Wiley database was collected and summarized. The potential application of AL on the disease could be attributed to its pharmacological properties such as anti-cancer, anti-inflammatory and other essential effects. Hence, this review aims at providing evidence of the pharmacological activities of AL as one of natural products used in clinical trial.
Collapse
Affiliation(s)
- Xie Jun
- 1Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Fu
- 2West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yu Lei
- 1Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Peng Cheng
- 1Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
6
|
Research and Development of Atractylodes lancea (Thunb) DC. as a Promising Candidate for Cholangiocarcinoma Chemotherapeutics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5929234. [PMID: 29348769 PMCID: PMC5733893 DOI: 10.1155/2017/5929234] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/11/2017] [Indexed: 01/08/2023]
Abstract
Treatment and control of cholangiocarcinoma (CCA): the bile duct cancer is limited by the lack of effective chemotherapeutic drugs and alternative drugs are needed, particularly those from natural sources. This article reviews steps of research and development of Atractylodes lancea (Thunb) DC. (AL) as potential candidate for CCA chemotherapy, with adoption of the reverse pharmacology approach. Major steps include (1) reviewing of existing information on its phytochemistry and pharmacological properties, (2) screening of its activities against CCA, (3) standardization of AL, (4) nonclinical studies to evaluate anti-CCA activities, (5) phytochemistry and standardization of AL extract, (6) development of oral pharmaceutical formulation of standardized AL extract, and (7) toxicity testing of oral pharmaceutical formulation of standardized AL extract. Results from a series of our study confirm anti-CCA potential and safety profiles of both the crude extract and the finished product (oral pharmaceutical formulation of the standardized AL extract). Phases I and II clinical trials of the product to confirm tolerability and efficacy in healthy subjects and patients with advanced stage CCA will be carried out soon.
Collapse
|
7
|
Plengsuriyakarn T, Karbwang J, Na-Bangchang K. Anticancer activity using positron emission tomography-computed tomography and pharmacokinetics of β-eudesmol in human cholangiocarcinoma xenografted nude mouse model. Clin Exp Pharmacol Physiol 2015; 42:293-304. [PMID: 25545782 DOI: 10.1111/1440-1681.12354] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/04/2014] [Accepted: 12/10/2014] [Indexed: 12/20/2022]
Abstract
Cholangiocarcinoma (CCA) is an important public health problem in several parts of South East Asia, particularly in Thailand. The limited availability of effective diagnostic tools for early stage CCA, including chemotherapeutic options, constitutes a major problem for treatment and control of CCA. The aim of the present study was to assess the anti-CCA activity and pharmacokinetics of β-eudesmol in CCA-xenografted nude mouse model and healthy mice. Positron emission tomography-computed tomography (PET-CT) with (18)F-fluorodeoxyglucose was used for detecting and monitoring tumour development, and PET-CT with technetium-99m was used to investigate its pharmacokinetics property. Results support the role of PET-CT as a potential tool for detecting and monitoring the progress of lung metastasis. Tumour size and lung metastasis were significantly inhibited by 91.6% (of baseline) and 95% (of total lung mass), respectively, following treatment with high-dose β-eudesmol (100 mg/kg body weight for 30 days). Survival time was prolonged by 64.4% compared with untreated controls. Systemic clearance of the compound was rapid, particularly during the first 60 min. The compound was distributed to the vital organs at maximum levels 2 h after oral administration and 15 min after intravenous injection. Results from the present study suggest the potential of β-eudesmol as a promising candidate for further development as an anti-CCA drug with respect to its pharmacodynamics and pharmacokinetic properties. PET-CT, with radiotracers (18)F-fluorodeoxyglucose and technetium-99m, was shown to be a reliable tool in the investigation of anti-CCA and pharmacokinetic properties of β-eudesmol in CCA-xenografted and healthy mice.
Collapse
Affiliation(s)
- Tullayakorn Plengsuriyakarn
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand; Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Thammasat University, Pathum Thani, Thailand
| | | | | |
Collapse
|
8
|
Plengsuriyakarn T, Matsuda N, Karbwang J, Viyanant V, Hirayama K, Na-Bangchang K. Anticancer Activity of Atractylodes lancea (Thunb.) DC in a Hamster Model and Application of PET-CT for Early Detection and Monitoring Progression of Cholangiocarcinoma. Asian Pac J Cancer Prev 2015; 16:6279-84. [DOI: 10.7314/apjcp.2015.16.15.6279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
9
|
Koonrungsesomboon N, Na-Bangchang K, Karbwang J. Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC. ASIAN PAC J TROP MED 2015; 7:421-8. [PMID: 25066389 DOI: 10.1016/s1995-7645(14)60069-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/24/2013] [Accepted: 03/02/2014] [Indexed: 11/16/2022] Open
Abstract
The rhizome of Atractylodes lancea (A. lancea) (Thunb.) DC. (AL) is extensively used in Chinese, Thai, and Japanese traditional medicines as crude extracts/decoctions or a component in various herbal formulations. Various pharmacological activities of AL and its major constituents have been demonstrated in vitro, ex vivo, and in animal models. Results from the toxicity studies in animal models suggest safety profile of AL and its active constituents. Despite extensive use with positive impression in many diseases, there has not been a clinical study that can conclusively support its efficacy and safety profile in human. This review comprehensively summarizes current information on the pharmacological activities of AL and their active constituents including anticancer, anti-inflammatory, antimicrobial and antipyretic activities, as well as activities on central nervous, cardiovascular, and gastrointestinal systems.
Collapse
Affiliation(s)
- Nut Koonrungsesomboon
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Japan
| | - Kesara Na-Bangchang
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Thailand
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, Japan.
| |
Collapse
|
10
|
Ding HY, Wu YC, Linc HC. Phytochemical and Pharmacological Studies on Chinese Changzhu. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200000075] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Ishida T. Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells. Chem Biodivers 2007; 2:569-90. [PMID: 17192005 DOI: 10.1002/cbdv.200590038] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This review article summarizes our knowledge of the metabolism of mono- and sesquiterpenoids in mammals, microorganisms, cloned-insect enzymes, and plant-cultured cells. A number of unusual enzymatic reactions and products are reported such as the stereoselective formation of primary alcohols from sterically congested Me2C groups. Such enzymatic processes, including unknown chemical transformations under abiotic conditions, could lead to the discovery of new chemical reactions and might be helpful in the design of new drugs. The transformations of the following mono- and sesquiterpenoids (in alphabetical order) are discussed: (+)-(1R)-aromadendrene (61), (-)-allo-aromadendrene (62), (+/-)-camphene (21), (-)-cis-carane (20), (+)-3-carene (17), (+/-)-carvone (27), (-)-beta-caryophyllene (43), (+)-cedrol (35), cuminaldehyde (25), (+)-curdione (69), (-)-cyclocolorenone (60), (-)-elemol (51), (2E,6E)-farnesol (31), germacrone (67), ginsenol (40), (-)-globulol (63), isoprobotryan-9alpha-ol (82a), juvenile hormone III (33), (+)-ledol (65), (+)-longifolene (46), myrcene (3), (-)-myrtenal (23), (+)-nootkatone (48), patchouli alcohol (37), (-)-perillaldehyde (24), (-)-alpha- and beta-pinene (8 and 9), alpha-santalol (28), (-)-6beta-santonin (83a), 6beta-tetrahydrosantonin (83b), beta-selinene (57), alpha-thujone (26a), beta-thujone (26b), T-2 toxin (87), and valerianol (53).
Collapse
Affiliation(s)
- Takashi Ishida
- Environmental Chemistry Laboratory, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima-shi, Hiroshima 731-5193, Japan.
| |
Collapse
|
12
|
Kimura I. Medical benefits of using natural compounds and their derivatives having multiple pharmacological actions. YAKUGAKU ZASSHI 2006; 126:133-43. [PMID: 16508237 DOI: 10.1248/yakushi.126.133] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The multiple pharmacological actions of a unique compound are a prerequisite for classifying drugs as highly efficacious, because the multiple pharmacological actions offer the possibility of treating various symptoms of chronic diseases as described below. 1) Sustained hyperglycemia induces macrovascular and microvascular complications in type 2 diabetes mellitus. Antihyperglycemic medication and the control of postprandial hyperglycemia are essentially important for normalizing plasma glucose level. Gymnemic acid IV isolated from Gymnema sylvestre (Asclepiadaceae) leaves has antisweet, antihyperglycemic, glucose uptake inhibitory, and gut glycosidase inhibitory effects. Most of these pharmacological effects may synergistically contribute to alleviating type 2 diabetes-related symptoms. 2) Diabetic skeletal and vascular smooth muscles are hypersensitive to chemical transmitters, cytokines and autacoids. The sensitivity of neuromuscular synapses is enhanced in diabetes, which seems to be closely associated with neuropathy as one of the diabetic complications. beta-Eudesmol found in Atractylodes lancea rhizome has a desensitizing channel blocking action to nicotinic acetylcholine receptors, anti-angiogenic action in vascular endothelium, and neuronal differentiation actions. These multiple pharmacological actions are favorable for treating angiogenic diseases possibly including the complications of diabetes, namely, retinopathy and nephropathy, and cancer. 3) Nipradilol is clinically utilized as a topical antiglaucoma drug. The ocular hypotensive effects of this compound are brought about by its alpha1 and beta-adrenergic receptor blocking actions, and nitric oxide (NO) releasing action. NO directly activates cyclooxygenases. All these pharmacologic effects are beneficial for treating glaucoma. The selectivity and specificity of drug action are required for treating acute diseases, infections or for acting as useful reagents. The pleiotropic actions of natural compounds and their derivatives serve as important clues for developing new drugs for various chronic diseases.
Collapse
Affiliation(s)
- Ikuko Kimura
- Department of Clinical Pharmacology, Graduate School of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, Toyama, Japan.
| |
Collapse
|
13
|
Analysis of Chemical-Structure-Activity Relationships to Identify New Pro-Drugs with Unique Mechanisms of Actions in Kampo Medicines and Other Natural Products. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s1572-5995(00)80057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|