1
|
Yeoh S, Warner WS, Merchant SS, Hsu EW, Agoston DV, Mahan MA. Incorporating Blood Flow in Nerve Injury and Regeneration Assessment. Front Surg 2022; 9:862478. [PMID: 35529911 PMCID: PMC9069240 DOI: 10.3389/fsurg.2022.862478] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/04/2022] [Indexed: 01/22/2023] Open
Abstract
Peripheral nerve injury is a significant public health challenge, with limited treatment options and potential lifelong impact on function. More than just an intrinsic part of nerve anatomy, the vascular network of nerves impact regeneration, including perfusion for metabolic demands, appropriate signaling and growth factors, and structural scaffolding for Schwann cell and axonal migration. However, the established nerve injury classification paradigm proposed by Sydney Sunderland in 1951 is based solely on hierarchical disruption to gross anatomical nerve structures and lacks further information regarding the state of cellular, metabolic, or inflammatory processes that are critical in determining regenerative outcomes. This review covers the anatomical structure of nerve-associated vasculature, and describes the biological processes that makes these vessels critical to successful end-organ reinnervation after severe nerve injuries. We then propose a theoretical framework that incorporates measurements of blood vessel perfusion and inflammation to unify perspectives on all mechanisms of nerve injury.
Collapse
Affiliation(s)
- Stewart Yeoh
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Wesley S. Warner
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| | - Samer S. Merchant
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Edward W. Hsu
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| | - Denes v. Agoston
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States
| | - Mark A. Mahan
- Department of Neurosurgery, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
2
|
Inoue M, Hojo T, Yano T, Katsumi Y. Effects of Lumbar Acupuncture Stimulation on Blood Flow to the Sciatic Nerve Trunk - An Exploratory Study. Acupunct Med 2018; 23:166-70. [PMID: 16430124 DOI: 10.1136/aim.23.4.166] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Acupuncture may have a role in the treatment of intermittent claudication of the cauda equina due to lumbar spinal canal stenosis. The aim of this study was to explore the possible physiological mechanisms. Methods In a laboratory experiment, manual acupuncture was performed at a point adjacent to the sixth lumbar vertebra of 13 animals and its effect on sciatic nerve blood flow was measured using a laser Doppler flowmetry. Simultaneously, changes in blood pressure and cardiac rate were observed. Each animal was stimulated four to eight times, making a total of 58 experiments. Results Acupuncture stimulation did not produce consistent changes in sciatic nerve blood flow, with increased and decreased blood flow as well as no change in blood flow observed. Among the 58 individual experiments, sciatic nerve blood flow was increased in 33, reduced in 12, and unchanged in 13. Approximately half of the stimulations showed a correlation between blood flow and blood pressure change. Conclusion Our results indicate that lumbar acupuncture stimulation can have an influence on sciatic nerve blood flow. The effect is dependent not only on blood pressure but also other factors, for example vasodilator and vasoconstrictor nerve activity. This mechanism may contribute to a clinical effect on intermittent claudication of the cauda equina.
Collapse
|
3
|
Zochodne DW. Local blood flow in peripheral nerves and their ganglia: Resurrecting key ideas around its measurement and significance. Muscle Nerve 2018; 57:884-895. [DOI: 10.1002/mus.26031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Douglas W. Zochodne
- Division of Neurology, Department of Medicine and Neuroscience and Mental Health Institute; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
4
|
Inoue M, Kitakoji H, Yano T, Ishizaki N, Itoi M, Katsumi Y. Acupuncture Treatment for Low Back Pain and Lower Limb Symptoms-The Relation between Acupuncture or Electroacupuncture Stimulation and Sciatic Nerve Blood Flow. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 5:133-43. [PMID: 18604251 PMCID: PMC2396470 DOI: 10.1093/ecam/nem050] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 04/12/2007] [Indexed: 11/13/2022]
Abstract
To investigate the clinical efficacy of acupuncture treatment for lumbar spinal canal stenosis and herniated lumbar disc and to clarify the mechanisms in an animal experiment that evaluated acupuncture on sciatic nerve blood flow. In the clinical trial, patients with lumbar spinal canal stenosis or herniated lumbar disc were divided into three treatment groups; (i) Ex-B2 (at the disordered level), (ii) electrical acupuncture (EA) on the pudendal nerve and (iii) EA at the nerve root. Primary outcome measurements were pain and dysesthesia [evaluated with a visual analogue scale (VAS)] and continuous walking distance. In the animal study, sciatic nerve blood flow was measured with laser-Doppler flowmetry at, before and during three kinds of stimulation (manual acupuncture on lumber muscle, electrical stimulation on the pudendal nerve and electrical stimulation on the sciatic nerve) in anesthetized rats. For the clinical trial, approximately half of the patients who received Ex-B2 revealed amelioration of the symptoms. EA on the pudendal nerve was effective for the symptoms which had not improved by Ex-B2. Considerable immediate and sustained relief was observed in patients who received EA at the nerve root. For the animal study, increase in sciatic nerve blood flow was observed in 56.9% of the trial with lumber muscle acupuncture, 100% with pudendal nerve stimulation and 100% with sciatic nerve stimulation. Sciatic nerve stimulation sustained the increase longer than pudendal nerve stimulation. One mechanism of action of acupuncture and electrical acupuncture stimulation could be that, in addition to its influence on the pain inhibitory system, it participates in causing a transient change in sciatic nerve blood blow, including circulation to the cauda equine and nerve root.
Collapse
Affiliation(s)
- Motohiro Inoue
- Department of Clinical Acupuncture and Moxibustion II, Department of health Promoting Acupuncture and Moxibustion, Department of Clinical Acupuncture and Moxibustion I and Department of Orthopaedic Surgery, Meiji University of Oriental Medicine
| | | | | | | | | | | |
Collapse
|
5
|
Xu Q, Midha R, Zochodne DW. The Microvascular Impact of Focal Nerve Trunk Injury. J Neurotrauma 2010; 27:639-46. [DOI: 10.1089/neu.2009.1025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- QingGui Xu
- Division of Neurosurgery, University of Calgary, Calgary, Alberta
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
| | - Rajiv Midha
- Division of Neurosurgery, University of Calgary, Calgary, Alberta
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta
| | | |
Collapse
|
6
|
Xu QG, Midha R, Martinez JA, Guo GF, Zochodne DW. Facilitated sprouting in a peripheral nerve injury. Neuroscience 2008; 152:877-87. [PMID: 18358630 DOI: 10.1016/j.neuroscience.2008.01.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 12/14/2007] [Accepted: 02/05/2008] [Indexed: 12/26/2022]
Abstract
During regeneration of injured peripheral nerves, local conditions may influence how regenerative axon sprouts emerge from parent axons. More extensive lesions might be expected to disrupt such growth. In this work, we discovered instead that long segmental crush injuries facilitate the growth and maturation of substantially more axon sprouts than do classical short crush injuries (20 mm length vs. 2 mm). At identical distances from the proximal site of axon interruption there was a 45% rise in the numbers of neurofilament labeled axons extending through a long segmental crush zone by 1 week. By 2 weeks, there was a 35% greater density of regenerating myelinated axons in long compared with short crush injuries just beyond (5 mm) the proximal injury site. Moreover, despite the larger numbers of axons, their maturity was identical and they were regular, parallel, associated with Schwann cells (SCs) and essentially indistinguishable between the injuries. Backlabeling with Fluorogold indicated that despite these differences, the axons arose from similar numbers of parent motor and sensory neurons. Neither injury was associated with ischemia. Both injuries were associated with rises in GFAP (glial acidic fibrillary protein) and p75 mRNAs, markers of SC plasticity but p75, GFAP and brain-derived neurotrophic factor mRNAs did not differ between the injuries. There was a higher local mRNA level of GAP43/B50 at 7 days following injury and a higher sonic hedgehog protein (Shh) mRNA at 24 h in long crush zones. GAP43/B50 protein and SHH protein both had prominent localization within regenerating axons. Long segmental nerve trunk crush injuries do not impair regeneration but instead generate greater axon plasticity that results in larger numbers of mature myelinated axons. The changes occur without apparent change in SC activation, overall nerve architecture or nerve blood flow. While the mechanism is uncertain, the findings indicate that manipulation of the nerve microenvironment can induce substantial changes in regenerative sprouting.
Collapse
Affiliation(s)
- Q G Xu
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive Northwest, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
7
|
Abstract
The disabling human syndrome of "neuropathic pain" is an intractable complication of peripheral nerve injury or degeneration. A complex interaction between injured peripheral axons, sensory neurons and central nervous system signaling is thought to account for it. In this brief review, we present evidence that the free radical signaling molecule, nitric oxide (NO) may act at several levels of the nervous system during the development of experimental neuropathic pain. For example, NO may directly influence injured axons in the periphery, may indirectly influence pain by its role in the process of Wallerian degeneration, and may signal in the dorsal horn of the spinal cord. While it is premature to argue for therapeutic approaches that alter NO actions, it may be an important player in the cascade of events that generate neuropathic pain.
Collapse
Affiliation(s)
- Dan Levy
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
8
|
Ma W, Quirion R. Targeting invading macrophage-derived PGE2, IL-6 and calcitonin gene-related peptide in injured nerve to treat neuropathic pain. Expert Opin Ther Targets 2007; 10:533-46. [PMID: 16848690 DOI: 10.1517/14728222.10.4.533] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immune and inflammatory responses occurring in an injured nerve have been generally believed to contribute to the generation and maintenance of neuropathic pain. In this review, the authors demonstrate the upregulation of COX-2/prostaglandin E2, IL-6 and calcitonin gene-related peptide in invading macrophages and discuss possible mechanisms involved in their upregulation and how they contribute to the maintenance of neuropathic pain. By acting on nociceptors in dorsal root ganglion and local inflammatory cells via autocrine or paracrine pathways, these inflammatory mediators facilitate spontaneous ectopic activity and sustain nociceptive responses, an important mechanism underlying both ongoing and evoked neuropathic pain state. Targeting these mediators in injured nerve may provide novel therapeutic avenues to more successfully treat nerve injury-associated neuropathic pain.
Collapse
Affiliation(s)
- Weiya Ma
- Douglas Hospital Research Center, McGill University, Montréal, Quebec, H4H 1R3, Canada
| | | |
Collapse
|
9
|
Ma W, Quirion R. Increased calcitonin gene-related peptide in neuroma and invading macrophages is involved in the up-regulation of interleukin-6 and thermal hyperalgesia in a rat model of mononeuropathy. J Neurochem 2006; 98:180-92. [PMID: 16805807 DOI: 10.1111/j.1471-4159.2006.03856.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The pain related peptide, calcitonin gene-related peptide (CGRP), plays an important role in inflammatory pain and immune responses. However, its role in neuropathic pain is not established. Following nerve injury, CGRP and pro-inflammatory interleukin-6 (IL-6) are increased in injured nerves. The aim of this study was to determine if CGRP in injured nerves is involved in the up-regulation of IL-6 and in the maintenance of neuropathic pain. Perineural injection of a neutralizing IL-6 antiserum or CGRP receptor antagonists (CGRP8-37 and BIBN4096BS) effectively attenuated thermal hyperalgesia 4 weeks after partial sciatic nerve ligation. Perineural CGRP antagonists also dramatically reduced IL-6 level in injured nerves. CGRP release from injured sites was dramatically increased and CGRP immunoreactivity was localized in both neuroma and invading macrophages. CGRP receptor markers (CRLR and RAMP1) were expressed in invading macrophages. Both CGRP antagonists significantly reduced IL-6 release from injured nerve explants. In cell cultures derived from injured nerves, CGRP concentration-dependently increased IL-6 release, an effect also blocked by CGRP antagonists. Taken together, these data show that increased levels of CGRP in injured neuroma and invading macrophages are involved in the up-regulation of IL-6 in macrophages as well as in the maintenance of neuropathic pain.
Collapse
Affiliation(s)
- Weiya Ma
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
10
|
Fischer MJM, Reeh PW, Sauer SK. Proton-induced calcitonin gene-related peptide release from rat sciatic nerve axons, in vitro, involving TRPV1. Eur J Neurosci 2003; 18:803-10. [PMID: 12925006 DOI: 10.1046/j.1460-9568.2003.02811.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have shown previously that rat sciatic nerve axons in vitro express sensitivity to capsaicin and heat and responded to these stimuli with a Ca2+-dependent and graded immunoreactive calcitonin gene-related peptide release. Morphological evidence for stimulated vesicular exocytosis and for the vanilloid receptor TRPV1 in the axolemma of the unmyelinated nerve fibres has also been presented. Here we used solutions of low pH, high K+ or 47 degrees C to stimulate isolated desheathed sciatic nerves measuring immunoreactive calcitonin gene-related peptide release. pH 6.1 increased immunoreactive calcitonin gene-related peptide release by 31% over baseline and pH 5.2 and 4.3 caused a log-linear concentration-dependent increase of 137 and 265%, respectively. The effect of pH 3.4 was out of the linear range and not reversible. Stimulation in Ca2+-free solutions and under increased intracellular Ca2+ buffering capacity strongly reduced the proton responses. The TRPV1 antagonists capsazepine and ruthenium red substantially reduced the effects of pH 5.2 but not pH 6.1. Combining a stimulus of 60 mm K+ with the subliminal pH 6.3 reduced the axonal immunoreactive calcitonin gene-related peptide response by 88%. The noxious heat response at pH 6.3, however, was only reduced by 39%, suggesting a hidden sensitization to heat by low pH. This was supported by an effect of capsazepine to reduce the combined response to half, indicative of an involvement of TRPV1 in the sensitization but not in the axonal heat response itself that was found to be resistant to capsazepine. Axonal calcitonin gene-related peptide release is thought to play a physiological role in activity-dependent autoregulation of endoneurial blood flow. Axonal sensitivity to and sensitization by protons may be a pathophysiological mechanism involved in certain peripheral neuropathies.
Collapse
Affiliation(s)
- Michael J M Fischer
- Institut für Physiologie und Experimentelle Pathophysiologie, Universität Erlangen/Nürnberg, Universitätsstrasse 17, D-91054 Erlangen, Germany
| | | | | |
Collapse
|
11
|
|
12
|
|
13
|
Zochodne DW. Nerve and ganglion blood flow in diabetes: an appraisal. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2003; 50:161-202. [PMID: 12198810 DOI: 10.1016/s0074-7742(02)50077-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Vasa nervorum, the vascular supply to peripheral nerve trunks, and their associated cell bodies in ganglia have unique anatomical and physiological characteristics. Several different experimental approaches toward understanding the changes in vase nervorum following injury and disease have been used. Quantative techniques most widely employed have been microelectrode hydrogen clearance palarography and [14C]iodoantipyrine autoradiographic distribution, whereas estimates of red blood cell flux using a fiber-optic laser Doppler probe offer real time data at different sites along the nerve trunk. There are important caveats about the use of these techniques, their advantages, and their limitations. Reports of nerve blood flow require careful documentation of physiological variables, including mean arterial pressure and nerve temperature during the recordings. Several ischemic models of the peripheral nerve trunk have addressed the ischemic threshold below which axonal degeneration ensues (< 5ml/100 g/min). Following injury, rises in local blood flow reflect acitons of vasoactive peptides, nitric oxide, and the development of angiogenesis. In experimental diabetes, a large number of studies have documented reductions in nerve blood flow and tandem corrections of nerve blood flow and conduction slowing. A significant proportions, however, of the work can be criticized on the basis of methodology and interpretation. Similarly, not all work has confirmed that reductions of nerve blood flow are an invariable feature of experimental or human diabetic polyneuropathy. Therefore, while there is disagreement as to whether early declines in nerve blood flow "account" for diabetic polyneuropathy, there is unquestioned eveidence of early microangiopathy. Abnormalities of vase nervorum and micorvessels supplying ganglia at the very least develop parallel to and together with changes in neurons, Schwann cells, and axons.
Collapse
Affiliation(s)
- Douglas W Zochodne
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
14
|
Kennedy JM, Zochodne DW. Influence of experimental diabetes on the microcirculation of injured peripheral nerve: functional and morphological aspects. Diabetes 2002; 51:2233-40. [PMID: 12086955 DOI: 10.2337/diabetes.51.7.2233] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Regeneration of diabetic axons has delays in onset, rate, and maturation. It is possible that microangiopathy of vasa nervorum, the vascular supply of the peripheral nerve, may render an unfavorable local environment for nerve regeneration. We examined local nerve blood flow proximal and distal to sciatic nerve transection in rats with long-term (8 month) experimental streptozotocin diabetes using laser Doppler flowmetry and microelectrode hydrogen clearance polarography. We then correlated these findings, using in vivo perfusion of an India ink preparation, by outlining the lumens of microvessels from unfixed nerve sections. There were no differences in baseline nerve blood flow between diabetic and nondiabetic uninjured nerves, and vessel number, density, and area were unaltered. After transection, there were greater rises in blood flow in proximal stumps of nondiabetic nerves than in diabetic animals associated with a higher number, density, and caliber of epineurial vessels. Hyperemia also developed in distal stumps of nondiabetic nerves but did not develop in diabetic nerves. In these stumps, diabetic rats had reduced vessel numbers and smaller mean endoneurial vessel areas. Failed or delayed upregulation of nerve blood flow after peripheral nerve injury in diabetes may create a relatively ischemic regenerative microenvironment.
Collapse
Affiliation(s)
- James M Kennedy
- Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
15
|
Höke A, Sun HS, Gordon T, Zochodne DW. Do denervated peripheral nerve trunks become ischemic? The impact of chronic denervation on vasa nervorum. Exp Neurol 2001; 172:398-406. [PMID: 11716563 DOI: 10.1006/exnr.2001.7808] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The long-term relationship between the peripheral nerve trunk and its vascular supply, the vasa nervorum, has not been considered in the context of denervation and regeneration. While the microvessels of peripheral nerve are not thought to influence Wallerian degeneration itself, in this work we explored how vasa nervorum respond to denervation of the nerve trunk. Our hypotheses were that the presence of axons had a significant impact on the vasa nervorum and that the absence of reinnervation might eventually lead to an unfavorable ischemic regenerative microenvironment. We studied rat sciatic nerve trunks for up to 6 months following transection and either prevented regeneration or allowed it to proceed. Vasa nervorum were studied in several ways: (i) measurements of local endoneurial blood flow using microelectrode hydrogen clearance polarography; (ii) measurements of erythrocyte flux (flow) in the extrinsic nerve plexus using laser Doppler flowmetry; (iii) India ink perfusion of microvessels in unfixed nerve; (iv) mRNA expression of vascular endothelial growth factor (VEGF) using reverse transcription polymerase chain reaction. Early after injury, there were rises in endoneurial and extrinsic flow, microvessel numbers, and VEGF mRNA expression. Angiogenesis was apparently confined to the epineurial and perineurial compartments. Later, however, there were substantial declines in flow observed in long-term (6-month) denervated sciatic nerve trunks associated with declines in the caliber of new microvessels. Reinnervated sciatic nerves had restored endoneurial blood flow. The findings confirm important relationships between axon presence and local blood flow. Angiogenesis is a feature of the injured peripheral nerve, but long term denervated nerve trunks have declines of flow despite retaining new microvessels.
Collapse
Affiliation(s)
- A Höke
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta
| | | | | | | |
Collapse
|
16
|
Zochodne DW, Cheng C, Miampamba M, Hargreaves K, Sharkey KA. Peptide accumulations in proximal endbulbs of transected axons. Brain Res 2001; 902:40-50. [PMID: 11376593 DOI: 10.1016/s0006-8993(01)02310-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Axons proximal to a transection develop into enlarged, but presumed 'passive' endbulb structures. In previous studies, we observed that proximal stumps of transected sciatic nerves accumulate discrete and striking deposits of calcitonin gene-related peptide (CGRP) that have apparent direct and local actions on nearby microvessels. In this work, we provide evidence that CGRP, in the company of several additional peptides, are deposited through 'arrested' anterograde transport into axon endbulbs that develop after transection. In proximal stump tips of rat sciatic nerves transected 48 h earlier, CGRP accumulation colocalized with a label for neurofilament that was accentuated at axon tips, but was prevented by a concurrent more proximal sciatic section. Similarly, interruption of CGRP deposition eliminated its apparent actions on local microvessels following injury. CGRP accumulation was also observed in sural nerve proximal stump tips, indicating its presence in sensory axons despite the known declines in the sensory neuronal synthesis of CGRP that occur following axotomy. Peptide accumulation was not unique to CGRP, with a similar pattern of anterograde accumulation observed for substance P (SP), neuropeptide Y (NPY) and galanin. Deposited peptides and perhaps other axonal constituents in the milieu of a peripheral nerve injury may be associated with important local physiological actions in the regenerative microenvironment.
Collapse
Affiliation(s)
- D W Zochodne
- Department of Clinical Neurosciences and the Neuroscience Research Group, University of Calgary, Alberta, Calgary, Canada.
| | | | | | | | | |
Collapse
|
17
|
Verrotti A, Giuva PT, Morgese G, Chiarelli F. New trends in the etiopathogenesis of diabetic peripheral neuropathy. J Child Neurol 2001; 16:389-94. [PMID: 11417602 DOI: 10.1177/088307380101600601] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuropathy is well recognized as a major complication of insulin-dependent diabetes mellitus in adults, resulting in significant morbidity and possibly an increased mortality. Both the peripheral and autonomic nervous systems can be involved, and adolescents with diabetes can show early evidence of neuropathy. The pathogenesis of diabetic neuropathy remains unclear but is thought to involve various mechanisms. This complication can be traced to the metabolic effects of hyperglycemia and/or other effects of insulin deficiency on the various constituents of the peripheral nerve. The polyol pathway and/or nonenzymatic glycation affecting one or more cell types in the multicellular constituents of the peripheral nerve appear likely to have an inciting role. The role of other factors, such as possible direct neurotrophic effects of insulin and insulin-related growth factors, seems to be relevant.
Collapse
Affiliation(s)
- A Verrotti
- Department of Medicine, University of Chieti, Italy.
| | | | | | | |
Collapse
|
18
|
Abstract
Local events in the milieu of injured peripheral nerve trunks may have an important influence on the likelihood of regenerative success or the development of neuropathic pain. Injury-related changes in the microcirculation of this milieu have provided some evidence that axonal endbulbs, structures that form at the proximal end of transected axons, dump peptides and other molecules into the injury milieu where they may exert local actions, including those on microvessels. During a later phase of nerve repair, macrophage influx and pancellular proliferative events appear to develop in a coordinated fashion. Nitric oxide is probably an important and prominent player in the injured nerve trunk, both at early and later stages of the repair process. A better understanding of the injured peripheral nerve microenvironment may allow therapeutic approaches that can enhance regeneration and diminish pain.
Collapse
Affiliation(s)
- D W Zochodne
- Department of Clinical Neurosciences, University of Calgary, Room 182A, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
19
|
Zochodne DW, Levy D, Zwiers H, Sun H, Rubin I, Cheng C, Lauritzen M. Evidence for nitric oxide and nitric oxide synthase activity in proximal stumps of transected peripheral nerves. Neuroscience 1999; 91:1515-27. [PMID: 10391455 DOI: 10.1016/s0306-4522(98)00729-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Nitric oxide may be liberated as an inflammatory mediator within injured peripheral nerve trunks. We evaluated the proximal stumps of injured peripheral nerve stumps that later form neuromas or regenerative nerve sprouts, for evidence of local nitric oxide elaboration and activity. Proximal stumps were created in male Sprague-Dawley rats by sectioning of the sciatic nerve and resection of its distal portions and branches. There was striking physiological evidence of nitric oxide activity at the tips of 48-h and 14-day-old proximal nerve stumps. We detected local nitric oxide-mediated hyperemia of both extrinsic plexus and endoneurial microvessels that was reversible, in a dose-dependent stereospecific fashion, by the broad-spectrum nitric oxide synthase inhibitors, Nomega-nitro-L-arginine-methyl ester or Nomega-nitro-L-arginine, but not by 7-nitroindazole, an inhibitor with relative selectivity for neuronal nitric oxide. Immunohistochemical studies provided evidence for the localization of nitric oxide generators at the same sites. In 48-h but not 14-day stumps increased expression of two isoforms of nitric oxide synthase was detected: endothelial nitric oxide and to a much lesser extent neuronal nitric oxide synthase. Both isoforms appeared in axonal endbulb-like profiles that co-localized with neurofilament immunostaining. Western immunoblots identified a band consistent with endothelial nitric oxide synthase expression. In 14-day stumps with early neuroma formation, but not 48-h stumps, there was staining for immunological nitric oxide synthase in some endoneurial and epineurial macrophages. Total nitric oxide synthase biochemical enzymatic activity, measured by labelled arginine to citrulline conversion, was increased in 14-day but not 48-h stumps. Injured peripheral nerves have evidence of early nitric oxide action, nitric oxide synthase expression and nitric oxide activity in proximal nerve stumps. Nitric oxide may have an important impact on the regenerative milieu.
Collapse
Affiliation(s)
- D W Zochodne
- Department of Clinical Neurosciences and The Neurosciences Research Group, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Diabetic neuropathies include both focal neuropathies and diffuse polyneuropathy. Polyneuropathy, the most common of the diabetic neuropathies excluding focal entrapment, has not yet been explained by a single disease mechanism despite intensive investigation. A number of abnormalities appear to cascade into a 'vicious cycle' of progressive microvascular disease associated with motor, sensory and autonomic fiber loss. These abnormalities include excessive polyol (sugar alcohol) flux through the aldose reductase pathway, functional and structural alterations of nerve microvessels, nerve and ganglia hypoxia, oxidative stress, nonspecific glycosylation of axon and microvessel proteins, and impairment in the elaboration of trophic factors critical for peripheral nerves and their ganglia. While an initiating role for nerve ischemia in the development of polyneuropathy has been proposed, the evidence for it can be questioned. The role of sensory and autonomic ganglia in the development of polyneuropathy has had relatively less attention despite the possibility that they may be vulnerable to a variety of insults, particularly neurotrophin deficiency. Superimposed on the deficits of polyneuropathy is the failure of diabetic nerves to regenerate as effectively as nondiabetics. Polyneuropathy has not yet yielded to specific forms of treatment but a variety of new trials addressing plausible hypotheses have been initiated. This review will summarize some of the clinical, pathological and experimental work applied toward understanding human diabetic neuropathy and will emphasize ideas on pathogenesis.
Collapse
Affiliation(s)
- D W Zochodne
- Department of Clinical Neurosciences, University of Calgary, Alberta.
| |
Collapse
|
21
|
Abstract
A local inflammatory reaction may play an important role in the development of neuropathic pain following peripheral nerve injury. One important participant in the inflammatory response of injured peripheral nerve may be nitric oxide (NO). In this work, we examined physiological and morphological evidence for nitric oxide synthase (NOS) activation in the chronic constriction injury model of neuropathic pain in rats. Physiological evidence of local NO action was provided by studying NO-mediated changes in local blood flow associated with the injury site. Immunohistochemistry was used to localize isoforms of NOS that might generate NO. Sciatic nerve injury associated with behavioural evidence of neuropathic pain had substantial rises in local blood flow. The NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME), but not NG-nitro-D-arginine methyl ester (D-NAME), reversed the hyperaemia in a dose-dependent fashion proximal to the constriction at 48 h and distally at 14 days post-operation when applied systemically or topically. Aminoguanidine, a NOS inhibitor with relatively greater selectivity for the inducible NOS (iNOS) isoform, reversed nerve hyperaemia distal to the constriction only at 14 days. NOS-like immunoreactivity of the neuronal and endothelial isoforms was identified just proximal to the constriction at 48 h. iNOS-like immunoreactivity was observed at 7 and 14 days at the constriction and distal sites, respectively. This work provides evidence for local NOS expression and NO action in the chronic constriction injury model of neuropathic pain. NO has local physiological actions that include vasodilatation of microvessels and that may be important in the development of pain sensitivity.
Collapse
Affiliation(s)
- D Levy
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
22
|
Long A, Bongenhielm U, Boissonade FM, Fried K, Robinson PP. Neuropeptide immunoreactivity in ligature-induced neuromas of the inferior alveolar nerve in the ferret. Brain Res 1998; 791:263-70. [PMID: 9593929 DOI: 10.1016/s0006-8993(98)00113-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Injury to branches of the trigeminal nerve can sometimes result in persistent dysaesthesia. In an attempt to understand the aetiology of this condition we are currently investigating changes which occur at the injury site. In the present study we have examined the expression of seven neuropeptides, all of which have been implicated in nociceptive transmission, or have previously been shown to have altered expression following nerve injury. In 20 adult ferrets the inferior alveolar nerve was sectioned and ligated, and recovery permitted for 3 days, 8 days, 3 weeks, 6 weeks or 12 weeks. Longitudinal sections of the neuromas were processed using immunohistochemical techniques to quantify the expression of substance P, calcitonin gene-related peptide, vasoactive intestinal polypeptide, galanin, somatostatin, enkephalin and neuropeptide Y. After 3 days, all of the neuropeptides were expressed at the injury site. In the neuromas examined after longer recovery periods these levels of expression had declined and were similar to those found in the contralateral controls. This initial high level, followed by a decline, parallels the incidence of ectopic neural activity recorded electrophysiologically in the same model. It is, therefore, possible that the accumulation of neuropeptides at the injury site may play a role in the initiation or modulation of ectopic neural activity.
Collapse
Affiliation(s)
- A Long
- Department of Oral and Maxillofacial Surgery, University of Sheffield, School of Clinical Dentistry, Claremont Crescent, Sheffield S10 2TA, UK
| | | | | | | | | |
Collapse
|
23
|
|
24
|
|
25
|
McMurdo L, Lockhart JC, Ferrell WR. Modulation of synovial blood flow by the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8-37). Br J Pharmacol 1997; 121:1075-80. [PMID: 9249241 PMCID: PMC1564796 DOI: 10.1038/sj.bjp.0701237] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The effect of the calcitonin gene-related peptide (CGRP) receptor antagonist, CGRP(8-37) on blood flow in the knee joint of the anaesthetized rat was investigated. 2. Synovial blood flow in both exposed and intact, skin-covered knees was measured by laser Doppler perfusion imaging. 3. Topical application of CGRP(8-37) caused a dose-dependent fall in synovial blood flow in the exposed knee joint of the rat. At low (1.5 nmol) doses of CGRP(8-37) there was no significant effect on synovial blood flow. In rats treated with 7.5 nmol CGRP(8-37) there was a fall in synovial blood flow (maximum effect at 10 min: -28.8 +/- 4.6%; n=7), which returned to resting levels within 30 min. The highest dose (15 nmol) of antagonist used in this study caused a marked (maximum at 10 min: -35.6 +/- 9.3%; n=8), and prolonged (up to 30 min) fall in blood flow. 4. Ten days after surgical denervation, CGRP(9-37) (15 nmol, topical) had no significant effect on blood flow in the rat exposed knee joint (change in flux at 10 min: -5.1+/-3.6%; n=4). This suggests that CGRP(8-37) acts selectively to antagonize the actions of a neurally derived product, probably CGRP, on the rat synovial vasculature. 5. In skin-covered knee joints, intra-articular injection of CGRP(8-37) (15 nmol; bolus) elicited a significant fall in synovial blood flow (maximum effect at 10 min: -15.5 +/- 5.8%; n=6). 6. CGRP (0.01, 0.1 or 1.0 nmol; topical) caused a dose-dependent increase in exposed knee joint blood flow, which was attenuated by co-administration of 1.5 nmol CGRP(8-37). For example, 1 nmol CGRP elicited a peak increase in flux at 10 min of 94.7 +/- 31.8% (n=8) and 28.8 +/- 8.9% (n=7) in the absence and presence of CGRP(8-37), respectively. The vasodilator responses induced by acetylcholine (ACh) (10 nmol, topical; n=4-5) or sodium nitroprusside (SNP) (10 nmol, topical; n=4-5) were unaltered in the presence of CGRP(8-37) (1.5 nmol, topical). 7. Thus, the CGRP receptor antagonist CGRP(8-37) elicits vasoconstriction in the rat synovium. This suggests that the endogenous, basal release of CGRP may play a physiological role in the regulation of blood flow in the rat knee joint.
Collapse
Affiliation(s)
- L McMurdo
- Institute of Biomedical & Life Sciences, University of Glasgow
| | | | | |
Collapse
|
26
|
Abstract
Investiture of new microvessels within an injured peripheral nerve trunk may determine the success that the local environment has in promoting axonal sprouting and regeneration. We therefore examined microvessel investment of 24 h-14 d proximal nerve stump preparations in rat sciatic nerves. The stumps, later destined to form neuromas, were created by sciatic nerve transection with resection of distal branches to prevent distal reinnervation. Microvessels were studied in the proximal stump in semithin whole mount sections of nerve and by analysis of India ink perfused microvessel profiles. Quantitative image analysis was made of the luminal profiles of vessels perfused with India ink from unfixed sections of the stumps, contralateral uninjured nerves and sham-exposed but uninjured nerves. Evidence of angiogenesis was observed in stumps 7 d after transection, indicated by a rise in the total numbers of perfused microvessels and in the numbers of 2-6 microns diameter perfused microvessels. There was a shift in the histogram of the percentage of perfused microvessels towards the 2-4 microns range and a reduction in the mean microvessel luminal area in the stumps. By 14 d, new microvessels were larger, indicated by an increase in total luminal area. New microvessels were prominent in the epineurial connective tissue or between layers of perineurial cells of former fascicles. Microvessels probably share a battery of trophic signals with other proliferating cellular elements in the milieu of the injured peripheral nerve trunk.
Collapse
Affiliation(s)
- D W Zochodne
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada.
| | | |
Collapse
|
27
|
Cameron NE, Cotter MA, Dines KC, Hohman TC. Reversal of defective peripheral nerve conduction velocity, nutritive endoneurial blood flow, and oxygenation by a novel aldose reductase inhibitor, WAY-121,509, in streptozotocin-induced diabetic rats. J Diabetes Complications 1996; 10:43-53. [PMID: 8639974 DOI: 10.1016/1056-8727(94)00076-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The main aim was to investigate whether 1 month of aldose reductase inhibitor treatment could correct a deficit in sciatic nerve nutritive blood flow following 1 month of untreated streptozotocin-induced diabetes in rats. Treatment was with two doses of WAY-121,509, both of which completely blocked neuronal sorbitol accumulation. The high dose fully corrected a motor conduction velocity deficit, whereas the low dose caused 51.3% amelioration. Nutritive endoneurial blood flow, monitored by hydrogen clearance, was 43.4% reduced after 1 month of diabetes. This was completely corrected by the high dose of WAY-121,509. In addition, vascular conductance was supranormal and there was a decrease in arteriovenous shunt flow. Low dose treatment caused a 55.6% improvement of the nutritive endoneurial blood flow deficit, paralleling the conduction velocity effect. WAY-121,509 did not alter nerve perfusion in nondiabetic rats. Data from multiple sciatic nerve penetrations by oxygen sensitive microelectrodes revealed a 42.0% deficit in mean endoneurial oxygen tension with diabetes, whereas tensions were in the nondiabetic range for high dose WAY-121,509 treatment. Thus, the data highlight neurovascular actions of aldose reductase inhibition, and suggest that neuronal polyol pathway metabolite levels are a poor predictor of functional efficacy.
Collapse
Affiliation(s)
- N E Cameron
- Department of Biomedical Sciences, University of Aberdeen, Marischal College, Scotland
| | | | | | | |
Collapse
|
28
|
Zochodne DW, Murray MM, van der Sloot P, Riopelle RJ. Distal tibial mononeuropathy in diabetic and nondiabetic rats reared on wire cages: an experimental entrapment neuropathy. Brain Res 1995; 698:130-6. [PMID: 8581471 DOI: 10.1016/0006-8993(95)00876-r] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Using electrophysiological recordings, we studied a distal tibial mononeuropathy that involves the hind foot of rats reared in cages with wire grid flooring. In an initial set of experiments, serial sciatic-tibial motor conduction recordings were made in smaller or larger rats reared in cages with wire grid or sawdust flooring. Electrophysiological features of the neuropathy were loss in the amplitude of the distal tibial nerve M potential recorded over hind limb foot muscles, temporal dispersion of the potential, often into multiple peaks, and a prolonged distal latency of the response. The changes in M amplitude were more apparent in larger rats with a greater body weight. In a second series of experiments we studied sciatic-tibial conduction over 16 weeks in nondiabetic rats and rats rendered diabetic with streptozotocin raised and wire grid or plastic flooring. Tibial mononeuropathy developed in both wire grid-reared groups, but there was evidence that it appeared earlier in diabetic rats. Electrophysiological changes of distal mononeuropathy also obscured the expected slowing of sciatic-tibial motor conduction velocity from diabetics. Tibial mononeuropathy in rats reared on wire grid flooring may be a useful animal model of human entrapment neuropathy but its presence can confound studies of experimental neuropathy. Rats used in studies of experimental neuropathy should be housed in plastic cages with sawdust or shavings flooring.
Collapse
Affiliation(s)
- D W Zochodne
- University of Calgary, Department of Clinical Neurosciences, Alberta, Canada.
| | | | | | | |
Collapse
|
29
|
Affiliation(s)
- H Lax
- Department of Clinical Neurosciences, University of Calgary, Alberta, Canada
| | | |
Collapse
|
30
|
Maggi CA. Tachykinins and calcitonin gene-related peptide (CGRP) as co-transmitters released from peripheral endings of sensory nerves. Prog Neurobiol 1995; 45:1-98. [PMID: 7716258 DOI: 10.1016/0301-0082(94)e0017-b] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- C A Maggi
- Department of Pharmacology, A. Menarini Pharmaceuticals, Florence, Italy
| |
Collapse
|
31
|
Sato A, Sato Y, Uchida S. Blood flow in the sciatic nerve is regulated by vasoconstrictive and vasodilative nerve fibers originating from the ventral and dorsal roots of the spinal nerves. Neurosci Res 1994; 21:125-33. [PMID: 7724063 DOI: 10.1016/0168-0102(94)90154-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Anesthetized rats were subjected to repetitive electrical stimulation of either the ventral or dorsal root of the spinal nerves between the 11th thoracic and 2nd sacral spinal segments. The response of nerve blood flow (NBF) in the sciatic nerve was examined using laser Doppler flowmetry. For all nerve fibers stimulation was for a 10-30-s period at a supramaximal intensity. (1) Stimulation of the T11-L1 ventral roots produced an increase in mean arterial pressure (MAP) and a biphasic NBF response was comprised of an initial increase and a subsequent decrease. The initial increase was a passive vasodilation due to the increase in MAP, while the following decrease in NBF resulted from active vasoconstriction of the vasa nervorum due to the activation of sympathetic nerves innervating the sciatic vasa nervorum. (2) Stimulation of the ventral root of the L6 segment produced an increase in NBF, even though MAP decreased. This increase in NBF was apparently mediated by activation of parasympathetic cholinergic vasodilators, because the response was abolished by i.v. injection of atropine, a muscarinic cholinergic receptor antagonist. (3) Stimulation of the dorsal roots between the L3 and S1 segments produced an increase in NBF, independent of changes in MAP. This increase in NBF appeared to be mediated by activation of a calcitonin gene-related peptide (CGRP) containing afferent fibers innervating the vasa nervorum, because the response was abolished by topical application of hCGRP (8-37), a CGRP receptor antagonist.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- A Sato
- Department of the Autonomic Nervous System, Tokyo Metropolitan Institute of Gerontology, Japan
| | | | | |
Collapse
|
32
|
Zochodne DW, Nguyen C, Sharkey KA. Accumulation and degranulation of mast cells in experimental neuromas. Neurosci Lett 1994; 182:3-6. [PMID: 7891882 DOI: 10.1016/0304-3940(94)90191-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Mast cell accumulation and degranulation occur within the endoneurium of injured peripheral nerves. We investigated the time course of mast cell accumulation and degranulation in experimental neuromas of the sciatic nerve in rats. Mast cell accumulation and degranulation were significant only after the first week following neuroma creation and were prominent at 14 days within the neuroma stump. Mast cell degranulation could account for microvascular changes within neuromas after the first week following injury.
Collapse
Affiliation(s)
- D W Zochodne
- Department of Clinical Neurosciences, University of Calgary, Alta., Canada
| | | | | |
Collapse
|
33
|
Zochodne DW, Ho LT. Diabetes mellitus prevents capsaicin from inducing hyperaemia in the rat sciatic nerve. Diabetologia 1993; 36:493-6. [PMID: 8335170 DOI: 10.1007/bf02743263] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Loss of neurogenic inflammation in response to tissue injury may be an important complication of diabetes mellitus. We studied local neurogenic inflammation in the peripheral nerve trunk of Sprague-Dawley rats 4 months following the induction of diabetes by streptozotocin injection. To assess neurogenic inflammation, the epineurial plexus of the sciatic nerve was exposed to topical capsaicin, an agent that releases vasoactive neuropeptides from perivascular afferent terminals. Under normal circumstances, local vasodilation results in endoneurial hyperaemia or a 'flare'. We evaluated the influence of capsaicin in diabetic sciatic nerve by making serial measurements of endoneurial blood flow using microelectrodes sensitive to hydrogen clearance. After 4 months of hyperglycaemia (glucose > 16.0 mmol/l), diabetic animals had slowing of unmyelinated and myelinated sural sensory conduction velocity compared to citrate buffer injected controls. Baseline sciatic endoneurial blood flow was unaltered by diabetes, and was comparable to controls. There was an expected hyperaemic response of endoneurial blood flow to capsaicin in control rat sciatic endoneurium but no consistent 'flare' response in diabetic rats. Our findings indicate that there is loss of capsaicin-related neurogenic inflammation in the vasa nervorum of experimental diabetes. It is possible that a similar deficit following nerve injury could impair the milieu for axonal regeneration in diabetes.
Collapse
Affiliation(s)
- D W Zochodne
- Peripheral Nerve Research Laboratory, University of Calgary, Alberta, Canada
| | | |
Collapse
|