1
|
Activity-Based Training Alters Penile Reflex Responses in a Rat Model of Spinal Cord Injury. J Sex Med 2019; 16:1143-1154. [PMID: 31277969 DOI: 10.1016/j.jsxm.2019.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Multisystem functional gains have been reported in males with spinal cord injury (SCI) after undergoing activity-based training (ABT), including increases in scoring of sexual function and reports of improved erectile function. AIM This study aims to examine the effect of daily 60-minute locomotor training and exercise in general on sexual function in a rat SCI contusion model. METHODS Male Wistar rats received a T9 contusion SCI. Animals were randomized into 4 groups: a quadrupedal stepping group (SCI + QT), a forelimb-only exercise group (SCI + FT), a non-trained harnessed group (SCI + NT), and a home cage non-trained group (SCI + HC). The 2 non-trained groups were combined (SCI) post hoc. Daily training sessions were 60 minutes in duration for 8 weeks. Urine samples were collected during bi-weekly 24-hour metabolic cage behavioral testing. Latency, numbers of penile dorsiflexion, and glans cupping were recorded during bi-weekly penile dorsiflexion reflex (PDFR) testing. Terminal electromyography (EMG) recordings of the bulbospongiosus muscle (BSM) were recorded in response to stimulation of the dorsal nerve of the penis (DNP). OUTCOMES ABT after SCI had a significant effect on PDFR, as well as BSM EMG latency and burst duration. RESULTS SCI causes a significant decrease in the latency to onset of PDFR. After 8 weeks of ABT, SCI + QT animals had a significantly increased latency relative to the post-SCI baseline. BSM EMG response to DNP stimulation had a significantly decreased latency and increase in average and maximum amplitude in SCI + QT animals. SCI animals had a significantly longer burst duration than trained animals. Time between PDFR events, penile dorsiflexion, glans cupping, and urine testosterone were not affected by ABT. CLINICAL IMPLICATIONS ABT has a positive influence on sexual function and provides a potential therapy to enhance the efficacy of current sexual dysfunction therapies in the male SCI population. STRENGTHS AND LIMITATIONS Several significant small improvements in sexual function were found in a clinically relevant rat model of SCI using a readily available rehabilitative therapy. The limited findings could reflect insensitivity of the PDFR as a measure of erectile function. CONCLUSIONS These results indicate that task-specific stepping and/or loading provide sensory input to the spinal cord impacting the neural circuitry responsible for sexual function. Steadman CJ, Hoey RF, Montgomery LR, et al. Activity-Based Training Alters Penile Reflex Responses in a Rat Model of Spinal Cord Injury. J Sex Med 2019; 16:1143-1154.
Collapse
|
2
|
Pfaff DW, Baum MJ. Hormone-dependent medial preoptic/lumbar spinal cord/autonomic coordination supporting male sexual behaviors. Mol Cell Endocrinol 2018; 467:21-30. [PMID: 29100889 DOI: 10.1016/j.mce.2017.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 11/19/2022]
Abstract
Testosterone (T) can act directly through neural androgen receptors (AR) to facilitate male sexual behavior; however, T's metabolites also can play complicated and interesting roles in the control of mating. One metabolite, dihydrotestosterone (DHT) binds to AR with significantly greater affinity than that of T. Is that important behaviorally? Another metabolite, estradiol (E), offers a potential alternative route of facilitating male mating behavior by acting through estradiol receptors (ER). In this review we explore the roles and relative importance of T as well as E and DHT at various levels of the neuroaxis for the activation of male sex behavior in common laboratory animals and, when relevant research findings are available, in man.
Collapse
Affiliation(s)
- Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY 10065, United States.
| | - Michael J Baum
- Department of Biology, Boston University, Boston, MA 02215, United States
| |
Collapse
|
3
|
Andreev-Andrievskiy A, Lagereva E, Popova A. Reflex erection in the rat: reciprocal interplay between hemodynamic and somatic events. BMC Urol 2018; 18:36. [PMID: 29739451 PMCID: PMC5941648 DOI: 10.1186/s12894-018-0352-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 05/02/2018] [Indexed: 01/23/2023] Open
Abstract
Background Penile erection is a complex reflex under spinal control and modulated by the brain. The hemodynamic events under autonomic control and the perineal muscles somatic activity are interconnected during the reflex erection at the spinal level, however if the afferent feedback on the corpus cavernosum pressure during an erection affects the somatic activity (perineal muscles contractions) and vice versa is not known. This study was aimed to test this hypothesis using a rat model. Methods Intracavernous pressure (ICP) and bulbocavernosus (BC) muscle EMG were recorded during reflex erections elicited with dorsal penile nerve (DNP) electrical stimulation in anaesthetized acutely spinalized SD rats with surgically (bilateral cavernous nerve section, CnX, n = 8) and pharmacologically (trimetaphan infusion, TMPh, n = 8) abolished pressor response, or with surgically (bilateral section of the motor branch of the pudendal nerve, PnX, n = 7) and pharmacologically (1 mg/kg d-tubocurarine, n = 8) blocked perineal muscles contractions, or with interrupted afferent input from the penis (bilateral crush of the dorsal penile nerve, DPnX, n = 7). Control rats (n = 8) received no intervention. Results Moderate positive correlations were found between net parameters of pressor and somatic activity during DNP-stimulation induced reflex erection in spinal rats, particularly the speed of pressor response development was positively correlated to EMG parameters. No changes of EMG activity were found in CnX rats, while the decrease of BC EMG in TMPh-treated males can be attributed to direct inhibitory action of TMPh on neuromuscular transmission. Pressor response latency was increased and ICP front slope decreased in dTK and PnX rats, indicating that perineal muscles contraction augment pressor response. DPN crush had little effect on ICP and EMG. Conclusion Afferent input on the level of intracavernous pressure and the perineal muscles activity has minimal impact on, correspondingly, the somatic and the autonomic components of the reflex erection in spinal males, once the reflex has been initiated. Electronic supplementary material The online version of this article (10.1186/s12894-018-0352-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexander Andreev-Andrievskiy
- Lomonosov Moscow State University, Biology faculty, 1-12 Leninskie gory, Moscow, 119234, Russia. .,Institute for biomedical problems RAS, 76A Khoroshevskoe shosse, Moscow, 123007, Russia. .,MSU Institute for mitoengeneering, LLC, 1-73A Leninskie gory, Moscow, 119234, Russia.
| | - Evgeniia Lagereva
- Institute for biomedical problems RAS, 76A Khoroshevskoe shosse, Moscow, 123007, Russia.,MSU Institute for mitoengeneering, LLC, 1-73A Leninskie gory, Moscow, 119234, Russia
| | - Anfisa Popova
- Lomonosov Moscow State University, Biology faculty, 1-12 Leninskie gory, Moscow, 119234, Russia.,Institute for biomedical problems RAS, 76A Khoroshevskoe shosse, Moscow, 123007, Russia.,MSU Institute for mitoengeneering, LLC, 1-73A Leninskie gory, Moscow, 119234, Russia
| |
Collapse
|
4
|
Kozyrev N, Staudt MD, Brown A, Coolen LM. Chronic Contusion Spinal Cord Injury Impairs Ejaculatory Reflexes in Male Rats: Partial Recovery by Systemic Infusions of Dopamine D3 Receptor Agonist 7OHDPAT. J Neurotrauma 2016; 33:943-53. [DOI: 10.1089/neu.2015.4232] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Natalie Kozyrev
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
- Department of Physiology, University of Michigan, Ann Arbor, Michigan
| | - Michael D. Staudt
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
| | - Arthur Brown
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Lique M. Coolen
- Department of Anatomy and Cell Biology, Western University, London, Ontario, Canada
- Department of Physiology, University of Michigan, Ann Arbor, Michigan
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, Mississippi
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
5
|
Veening J, Coolen L. Neural mechanisms of sexual behavior in the male rat: Emphasis on ejaculation-related circuits. Pharmacol Biochem Behav 2014; 121:170-83. [DOI: 10.1016/j.pbb.2013.12.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 01/20/2023]
|
6
|
Kozyrev N, Lehman MN, Coolen LM. Activation of Gastrin‐releasing Peptide Receptors in the Lumbosacral Spinal Cord is Required for Ejaculation in Male Rats. J Sex Med 2012; 9:1303-18. [DOI: 10.1111/j.1743-6109.2012.02688.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
7
|
Stress affects a gastrin-releasing peptide system in the spinal cord that mediates sexual function: implications for psychogenic erectile dysfunction. PLoS One 2009; 4:e4276. [PMID: 19169356 PMCID: PMC2627921 DOI: 10.1371/journal.pone.0004276] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/16/2008] [Indexed: 11/19/2022] Open
Abstract
Background Many men suffering from stress, including post-traumatic stress disorder (PTSD), report sexual dysfunction, which is traditionally treated via psychological counseling. Recently, we identified a gastrin-releasing peptide (GRP) system in the lumbar spinal cord that is a primary mediator for male reproductive functions. Methodology/Principal Findings To ask whether an acute severe stress could alter the male specific GRP system, we used a single-prolonged stress (SPS), a putative rat model for PTSD in the present study. Exposure of SPS to male rats decreases both the local content and axonal distribution of GRP in the lower lumbar spinal cord and results in an attenuation of penile reflexes in vivo. Remarkably, pharmacological stimulation of GRP receptors restores penile reflexes in SPS-exposed males, and induces spontaneous ejaculation in a dose-dependent manner. Furthermore, although the level of plasma testosterone is normal 7 days after SPS exposure, we found a significant decrease in the expression of androgen receptor protein in this spinal center. Conclusions/Significance We conclude that the spinal GRP system appears to be a stress-vulnerable center for male reproductive functions, which may provide new insight into a clinical target for the treatment of erectile dysfunction triggered by stress and psychiatric disorders.
Collapse
|
8
|
Sengelaub DR, Forger NG. The spinal nucleus of the bulbocavernosus: firsts in androgen-dependent neural sex differences. Horm Behav 2008; 53:596-612. [PMID: 18191128 PMCID: PMC2423220 DOI: 10.1016/j.yhbeh.2007.11.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 11/30/2022]
Abstract
Cell number in the spinal nucleus of the bulbocavernosus (SNB) of rats was the first neural sex difference shown to differentiate under the control of androgens, acting via classical intracellular androgen receptors. SNB motoneurons reside in the lumbar spinal cord and innervate striated muscles involved in copulation, including the bulbocavernosus (BC) and levator ani (LA). SNB cells are much larger and more numerous in males than in females, and the BC/LA target muscles are reduced or absent in females. The relative simplicity of this neuromuscular system has allowed for considerable progress in pinpointing sites of hormone action, and identifying the cellular bases for androgenic effects. It is now clear that androgens act at virtually every level of the SNB system, in development and throughout adult life. In this review we focus on effects of androgens on developmental cell death of SNB motoneurons and BC/LA muscles; the establishment and maintenance of SNB motoneuron soma size and dendritic length; BC/LA muscle morphology and physiology; and behaviors controlled by the SNB system. We also describe new data on neurotherapeutic effects of androgens on SNB motoneurons after injury in adulthood.
Collapse
Affiliation(s)
- Dale R Sengelaub
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
9
|
Ranson RN, Santer RM, Watson AHD. Biogenic amine and neuropeptide inputs to identified pelvic floor motoneurons that also express SRC-1. Neurosci Lett 2005; 382:248-53. [PMID: 15925099 DOI: 10.1016/j.neulet.2005.03.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2005] [Revised: 03/10/2005] [Accepted: 03/11/2005] [Indexed: 11/18/2022]
Abstract
In the rat, the neurochemical phenotypes of neurons that are presynaptic to motoneurons innervating the levator ani are poorly defined. In this study, motoneurons within the spinal nucleus of the bulbospongiosus (SNB) were revealed, using retrograde labelling, following injection of cholera toxin B subunit into the levator ani muscle. Different classes of neuron making substantial inputs onto these labelled neurons were revealed by using immunocytochemistry for dopamine beta hydroxylase, serotonin and substance P. Appositions (sites of presumptive synapses) between immunoreactive terminals and both the somata and dendrites of labelled SNB motoneurons were commonly seen suggesting that substance P, noradrenaline and serotonin are likely to exert a significant influence on the activity of perineal motoneurons and thus on sexual reflexes. Additionally, steroid receptor coactivator-1 was found to be present in the nuclei of 96% of SNB neurons retrogradely labelled from the levator ani. This suggests that practically all of the neurons that innervate the levator ani are likely to be modulated by circulating steroid hormones.
Collapse
Affiliation(s)
- Richard N Ranson
- Cardiff School of Biosciences, Biomedical Sciences Buildings, Cardiff University, P.O. Box 911, Museum Avenue, Cardiff CF10 3US, UK.
| | | | | |
Collapse
|
10
|
Abstract
Penile erection is a vascular event controlled by the autonomic nervous system. The spinal cord contains the autonomic preganglionic neurons that innervate the penile erectile tissue and the pudendal motoneurons that innervate the perineal striated muscles. Sympathetic pathways are anti-erectile, sacral parasympathetic pathways are pro-erectile, and contraction of the perineal striated muscles upon activity of the pudendal nerves improves penile rigidity. Spinal neurons controlling erection are activated by information from peripheral and supraspinal origin. Both peripheral and supraspinal information is capable of either eliciting erection or modulating or inhibiting an erection already present. Sensory information from the genitals is a potent activator of pro-erectile spinal neurons and elicits reflexive erections. Some pre-motor neurons of the medulla, pons and diencephalon project directly onto spinal sympathetic, parasympathetic and pudendal motoneurons. They receive in turn sensory information from the genitals. These spinal projecting pathways release a variety of neurotransmitters, including biogenic amines (serotonin, dopamine, noradrenaline, and adrenaline) and peptides that, through interactions with many receptor subtypes, exert complex effects on the spinal network that controls penile erection. Some supraspinal structures (e.g. the paraventricular nucleus and the medial preoptic area of the hypothalamus, the medial amygdala), whose roles in erection have been demonstrated in animal models, may not project directly onto spinal pro-erectile neurons. They are nevertheless prone to regulate penile erection in more integrated and coordinated responses of the body, as those occurring during sexual behavior. The application of basic and clinical research data to treatment options for erectile dysfunction has recently proved successful. Pro-erectile effects of phosphodiesterase type 5 inhibitors, acting in the penis, and of melanocortin agonists, acting in the brain, illustrate these recent developments.
Collapse
Affiliation(s)
- François Giuliano
- PELVIPHARM Laboratoire, Domaine CNRS, Bat. 5, 1 Avenue de la terrasse, 91198 Gif-sur-Yvette Cedex, France.
| | | |
Collapse
|
11
|
Hamson DK, Watson NV. Regional brainstem expression of Fos associated with sexual behavior in male rats. Brain Res 2004; 1006:233-40. [PMID: 15051527 DOI: 10.1016/j.brainres.2004.01.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2004] [Indexed: 02/04/2023]
Abstract
This study utilized Fos expression to map the distribution of activated cells in brainstem areas following masculine sexual behavior. Males displaying both appetitive and consumatory sexual behaviors (Cop) were compared to animals prevented from copulation (NC) and to socially isolated (SI) animals. Following copulation, Fos was preferentially augmented in the caudal ventral medulla (CVM), a region mediating descending inhibition of penile reflexes, and which may be regulated by a forebrain circuit that includes the medial preoptic area (MPOA). Copulation-induced Fos was observed in the medial divisions of both the dorsal cochlear nucleus (DC) and trapezoid bodies (Tz), areas which are part of a circuit processing auditory information. In addition, the medullary linear nucleus (Li) displayed comparable amounts of Fos in Cop and NC as compared to the SI animals. Other regions of the pontomedullary reticular system, which may mediate sleep and arousal, did not exhibit Fos expression associated with consumatory sexual behavior. We suggest that Fos is associated with the inhibition of sexual behavior following ejaculation in the CVM, and that auditory information arising from the DC and Tz is combined with copulation-related sensory information in the subparafasicular nucleus and projected to the hypothalamus. In addition, equal amounts of Fos expression observed in the Li in both the Cop and NC animals suggests that this region is involved in sexual arousal. Overall, the data suggest that processing by brainstem nuclei directly contributes to the regulation of mating behavior in male rats.
Collapse
Affiliation(s)
- Dwayne K Hamson
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | | |
Collapse
|
12
|
Peroulakis ME, Goldman B, Forger NG. Perineal muscles and motoneurons are sexually monomorphic in the naked mole-rat (Heterocephalus glaber). JOURNAL OF NEUROBIOLOGY 2002; 51:33-42. [PMID: 11920726 DOI: 10.1002/neu.10039] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Naked mole-rats are eusocial mammals that live in colonies with a single breeding female and one to three breeding males. All other members of the colony, known as subordinates, are nonreproductive and exhibit few sex differences in behavior or genital anatomy. This raises questions about the degree of sexual differentiation in subordinate naked mole-rats. The striated perineal muscles associated with the phallus [the bulbocavernosus (BC), ischiocavernosus (IC), and levator ani (LA) muscles], and their innervating motoneurons, are sexually dimorphic in all rodents examined to date. We therefore asked whether perineal muscles and motoneurons were also sexually dimorphic in subordinate naked mole-rats. Muscles similar to the LA and IC of other rodents were found in naked mole-rats of both sexes. No clear BC muscle was identified, although a large striated muscle associated with the urethra in male and female naked mole-rats may be homologous to the BC of other rodents. There were no sex differences in the volumes of the LA, IC, or the urethral muscles. Motoneurons innervating the perineal muscles were identified by retrograde labeling with cholera-toxin-conjugated horseradish peroxidase. All perineal motoneurons were found in a single cluster in the ventrolateral lateral horn, in a position similar to that of Onuf's nucleus of carnivores and primates. There was no sex difference in the size or number of motoneurons in Onuf's nucleus of naked mole-rats. Thus, unlike findings in any other mammal, neither the perineal muscles nor the perineal motoneurons appear to be sexually differentiated in subordinate naked mole-rats.
Collapse
Affiliation(s)
- Maria E Peroulakis
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
13
|
Holmes GM, Rogers RC, Bresnahan JC, Beattie MS. Differential effects of intrathecal thyrotropin-releasing hormone (TRH) on perineal reflexes in male rats. Physiol Behav 1997; 61:57-63. [PMID: 8976533 DOI: 10.1016/s0031-9384(96)00317-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The effects of thyrotropin-releasing hormone (TRH) on the sexual and defecatory reflexes regulated by pudendal motoneurons were investigated. Intrathecal TRH (10 microliters volume; 0.0, 0.01, 1.0 or 100 microM concentration) at lumbosacral spinal segments (L4-S1) in acute preparations produced a dose-dependent increase in external anal sphincter (EAS), but not bulbospongiosus (BS), electromyographic (EMG) activity. Intraspinal (L6) injection of 100 microM TRH (1 microliter/micropipette), significantly increased EAS EMG activity in acute preparations. Electromyographic activity of the BS muscle was unchanged. All doses of intrathecal TRH (10 microliters volume; 0, 10, 50, 100, or 500 microM concentration) in awake animals significantly reduced the proportion of responders to a penile reflex test. Subsequently, all measures of penile reflexes were significantly reduced. Glans tumescence and defecation bouts before or during penile reflex testing were unaffected by intrathecal TRH as were indices of behavioral and motor hyper-reactivity analogous to that produced by serotonin. These data indicate that pudendal motoneurons, in the dorsomedial nucleus, are differentially regulated by neuropeptides present in the lumbosacral spinal cord.
Collapse
Affiliation(s)
- G M Holmes
- Department of Cell Biology, Neurobiology and Anatomy, Ohio State University, Columbus 43210, USA.
| | | | | | | |
Collapse
|
14
|
Neuromodulation of penile erection: an overview of the role of neurotransmitters and neuropeptides. Prog Neurobiol 1995. [DOI: 10.1016/0301-0082(95)80003-q] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Mills AC, Sengelaub DR. Sexually dimorphic neuron number in lumbosacral dorsal root ganglia of the rat: development and steroid regulation. JOURNAL OF NEUROBIOLOGY 1993; 24:1543-53. [PMID: 8283188 DOI: 10.1002/neu.480241108] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rats possess a sexually dimorphic neuromuscular system that controls penile reflexes critical for copulation. This system includes two motor nuclei in the lumbar cord and their target musculature in the perineum. The spinal nucleus of the bulbocavernosus (SNB) and the dorsolateral nucleus (DLN) motoneuron populations and their target perineal muscles are much larger in males than in females. The sex difference in motoneuron number develops via androgen-regulated differential cell death during the perinatal period; androgen also regulates retention of the target muscles. The developmental pattern and steroid sensitivity of peripheral afferents to the SNB/DLN motor nuclei were previously unknown. In order to characterize the peripheral sensory component of the dimorphic SNB/DLN system, the neurons of the relevant dorsal root ganglia (DRGs) were quantified in terms of number, size, and androgen sensitivity at various perinatal ages. DRG neuron number is greatest prenatally, then decreases in both sexes after birth; the timing and pattern of neuron number development are similar to those seen in the SNB and DLN. Postnatally, males have more DRG neurons than females, as a result of greater neuron death in the DRGs of females. Females treated with testosterone propionate during the perinatal period exhibit masculine development of DRG neuron number. Thus, the normal development of DRG neuron number parallels that of the SNB/DLN motor nuclei and target muscles in pattern and timing, is sexually dimorphic, and is regulated by androgen.
Collapse
Affiliation(s)
- A C Mills
- Program in Neural Science, Indiana University, Bloomington 47405
| | | |
Collapse
|