1
|
Yuen J, Goyal A, Rusheen AE, Kouzani AZ, Berk M, Kim JH, Tye SJ, Blaha CD, Bennet KE, Lee KH, Shin H, Oh Y. High frequency deep brain stimulation can mitigate the acute effects of cocaine administration on tonic dopamine levels in the rat nucleus accumbens. Front Neurosci 2023; 17:1061578. [PMID: 36793536 PMCID: PMC9922701 DOI: 10.3389/fnins.2023.1061578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/09/2023] [Indexed: 01/31/2023] Open
Abstract
Cocaine's addictive properties stem from its capacity to increase tonic extracellular dopamine levels in the nucleus accumbens (NAc). The ventral tegmental area (VTA) is a principal source of NAc dopamine. To investigate how high frequency stimulation (HFS) of the rodent VTA or nucleus accumbens core (NAcc) modulates the acute effects of cocaine administration on NAcc tonic dopamine levels multiple-cyclic square wave voltammetry (M-CSWV) was used. VTA HFS alone decreased NAcc tonic dopamine levels by 42%. NAcc HFS alone resulted in an initial decrease in tonic dopamine levels followed by a return to baseline. VTA or NAcc HFS following cocaine administration prevented the cocaine-induced increase in NAcc tonic dopamine. The present results suggest a possible underlying mechanism of NAc deep brain stimulation (DBS) in the treatment of substance use disorders (SUDs) and the possibility of treating SUD by abolishing dopamine release elicited by cocaine and other drugs of abuse by DBS in VTA, although further studies with chronic addiction models are required to confirm that. Furthermore, we demonstrated the use of M-CSWV can reliably measure tonic dopamine levels in vivo with both drug administration and DBS with minimal artifacts.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Abhinav Goyal
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Aaron E. Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Medical Scientist Training Program, Mayo Clinic, Rochester, MN, United States
| | - Abbas Z. Kouzani
- School of Engineering, Deakin University, Geelong, VIC, Australia
| | - Michael Berk
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Jee Hyun Kim
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT), Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Susannah J. Tye
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Charles D. Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Kevin E. Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Division of Engineering, Mayo Clinic, Rochester, MN, United States
| | - Kendall H. Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
2
|
Comparing dopamine release, uptake, and D2 autoreceptor function across the ventromedial to dorsolateral striatum in adolescent and adult male and female rats. Neuropharmacology 2020; 175:108163. [PMID: 32479812 DOI: 10.1016/j.neuropharm.2020.108163] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 05/18/2020] [Accepted: 05/25/2020] [Indexed: 01/03/2023]
Abstract
Adolescence is characterized by changes in behavior, such as increases in sensation seeking and risk taking, and increased vulnerability to developing a range of psychiatric disorders, including substance abuse disorders (SUD) and mood disorders. The mesolimbic dopamine system plays an essential role in mediating these behaviors and disorders. Therefore, it is imperative to understand how the dopamine system and its regulation are changing during this period of development. Here, we used ex vivo fast scan cyclic voltammetry to compare stimulated dopamine release and its local circuitry regulation between early adolescent and adult male and female Sprague-Dawley rats. We found that, compared to adults, adolescent males have decreased stimulated dopamine release in the NAc core, while adolescent females have increased dopamine release in the NAc shell, NAc core, and DMS. We also found sex- and region-specific differences in other dopamine dynamics, including maximal dopamine uptake (Vmax), release across a range of stimulation frequencies, and autoreceptor regulation of dopamine release. Better understanding how the dopamine system develops during adolescence will be imperative for understanding what mediates adolescent vulnerability to developing psychiatric disorders and how disruptions during this period of reorganization could alter behaviors and vulnerability into adulthood.
Collapse
|
3
|
Distinctive Modulation of Dopamine Release in the Nucleus Accumbens Shell Mediated by Dopamine and Acetylcholine Receptors. J Neurosci 2017; 37:11166-11180. [PMID: 29030431 DOI: 10.1523/jneurosci.0596-17.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023] Open
Abstract
Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivoSIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is also minimal in the shell in part due to elevated acetylcholinesterase activity. This distinctive modulation of DA transmission in the shell may have functional implications in the acquisition of reward-motivated behaviors and reward seeking.
Collapse
|
4
|
Rice ME, Patel JC, Cragg SJ. Dopamine release in the basal ganglia. Neuroscience 2011; 198:112-37. [PMID: 21939738 PMCID: PMC3357127 DOI: 10.1016/j.neuroscience.2011.08.066] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/22/2011] [Accepted: 08/26/2011] [Indexed: 10/17/2022]
Abstract
Dopamine (DA) is a key transmitter in the basal ganglia, yet DA transmission does not conform to several aspects of the classic synaptic doctrine. Axonal DA release occurs through vesicular exocytosis and is action potential- and Ca²⁺-dependent. However, in addition to axonal release, DA neurons in midbrain exhibit somatodendritic release by an incompletely understood, but apparently exocytotic, mechanism. Even in striatum, axonal release sites are controversial, with evidence for DA varicosities that lack postsynaptic specialization, and largely extrasynaptic DA receptors and transporters. Moreover, DA release is often assumed to reflect a global response to a population of activities in midbrain DA neurons, whether tonic or phasic, with precise timing and specificity of action governed by other basal ganglia circuits. This view has been reinforced by anatomical evidence showing dense axonal DA arbors throughout striatum, and a lattice network formed by DA axons and glutamatergic input from cortex and thalamus. Nonetheless, localized DA transients are seen in vivo using voltammetric methods with high spatial and temporal resolution. Mechanistic studies using similar methods in vitro have revealed local regulation of DA release by other transmitters and modulators, as well as by proteins known to be disrupted in Parkinson's disease and other movement disorders. Notably, the actions of most other striatal transmitters on DA release also do not conform to the synaptic doctrine, with the absence of direct synaptic contacts for glutamate, GABA, and acetylcholine (ACh) on striatal DA axons. Overall, the findings reviewed here indicate that DA signaling in the basal ganglia is sculpted by cooperation between the timing and pattern of DA input and those of local regulatory factors.
Collapse
Affiliation(s)
- M E Rice
- Department of Neurosurgery, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
5
|
Wang Y, Moquin KF, Michael AC. Evidence for coupling between steady-state and dynamic extracellular dopamine concentrations in the rat striatum. J Neurochem 2010; 114:150-9. [PMID: 20403079 DOI: 10.1111/j.1471-4159.2010.06740.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A previous study from our laboratory demonstrated the presence within the rat striatum of dopaminergic terminals in different dynamical states, determined at least in part by the extent to which terminals are subject to autoinhibition. The present study is designed to test the hypothesis that heterogeneity in the basal tonic extracellular dopamine concentration contributes to the variable extent of autoinhibition. We probed basal extracellular dopamine concentrations using a previously demonstrated strategy that utilizes intrastriatal microinfusion of kynurenate, a substance that according to voltammetric measurements decreases extracellular dopamine from its basal concentration. In the striatum, however, we find that the response to kynurenate infusion is itself heterogeneous, allowing a broad classification of sites within the striatum as kynurenate-insensitive and kynurenate-sensitive, respectively. These newly identified kynurenate-insensitive and sensitive sites yield substantially and significantly different evoked dopamine release as measured by voltammetry during electrical stimulation of the medial forebrain bundle. Our findings confirm the hypothesis that heterogeneity in the local basal concentration of dopamine is responsible for the variable extent of autoinhibition within the striatum and support the conclusion that the steady state and dynamical components of extracellular dopamine in this brain region are coupled.
Collapse
Affiliation(s)
- Yuexiang Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | | | |
Collapse
|
6
|
Verheij MMM, Cools AR. Twenty years of dopamine research: individual differences in the response of accumbal dopamine to environmental and pharmacological challenges. Eur J Pharmacol 2008; 585:228-44. [PMID: 18423601 DOI: 10.1016/j.ejphar.2008.02.084] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 02/07/2008] [Accepted: 02/13/2008] [Indexed: 11/30/2022]
Abstract
Individual differences in the dopaminergic system of the nucleus accumbens of rats have extensively been reported. These individual differences have frequently been used to explain individual differences in response to environmental and pharmacological challenges. Remarkably, only little attention is paid to the factors that underlie these individual differences. This review gives an overview of the studies that have been performed in our institute during the last 20 years to investigate individual differences in accumbal dopamine release. Data are summarised demonstrating that individual differences in accumbal dopamine release are due to individual differences in: the functional reactivity of the noradrenergic system, the accumbal concentration of vesicular monoamine transporters and tyrosine hydroxylase as well as in the quantal size of the presynaptic pools of dopamine. Our data are embedded in the available literature to create a model that illustrates the putative hardware giving rise to the individual-specific release of accumbal dopamine. An important role is contributed to individual differences in the reactivity of the: hypothalamic-pituitary-adrenal axes, the reactivity of second messenger systems as well in the aminergic reactivity of the accumbens shell and core. The consequences of the individual-specific make-up and reactivity of the nucleus accumbens on the regulation of behaviour and the response to drugs of abuse will also be discussed. Apart from agents that interact with dopaminergic receptors, re-uptake or breakdown, noradrenergic agents as well as agents that interact with vesicular monoamine transporters or tyrosine hydroxylase are suggested to have therapeutic effects in subjects that are suffering from diseases in which the dopaminergic system is disturbed.
Collapse
Affiliation(s)
- Michel M M Verheij
- Department of Cognitive Neuroscience (CNS), Division of Psychoneuropharmacology (PNF), Radboud University Nijmegen Medical Centre, 6525 EZ, Nijmegen, The Netherlands.
| | | |
Collapse
|
7
|
van Kuyck K, Gabriëls L, Cosyns P, Arckens L, Sturm V, Rasmussen S, Nuttin B. Behavioural and physiological effects of electrical stimulation in the nucleus accumbens: a review. ACTA NEUROCHIRURGICA. SUPPLEMENT 2007; 97:375-91. [PMID: 17691326 DOI: 10.1007/978-3-211-33081-4_43] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electrical stimulation (ES) in the brain is becoming a new treatment option in patients with treatment-resistant obsessive-compulsive disorder (OCD). A possible brain target might be the nucleus accumbens (NACC). This review aims to summarise the behavioural and physiological effects of ES in the NACC in humans and in animals and to discuss these findings with regard to neuroanatomical, electrophysiological and behavioural insights. The results clearly demonstrate that ES in the NACC has an effect on reward, activity, fight-or-flight, exploratory behaviour and food intake, with evidence for only moderate physiological effects. Seizures were rarely observed. Finally, the results of ES studies in patients with treatment-resistant OCD and in animal models for OCD are promising.
Collapse
Affiliation(s)
- K van Kuyck
- Laboratory of Experimental Neurosurgery and Neuroanatomy, Department of Neuroscience and Psychiatry, Leuven Provisorium, Belgium
| | | | | | | | | | | | | |
Collapse
|
8
|
Gabriele J, Thomas N, N-Marandi S, Mishra R. Differential modulation of a 40 kDa catecholamine regulated protein in the core and shell subcompartments of the nucleus accumbens following chronic quinpirole and haloperidol administration in the rat. Synapse 2007; 61:835-42. [PMID: 17603808 DOI: 10.1002/syn.20435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Past reports have shown dopamine (DA) D2/D3 receptor agonist quinpirole (QNP) and the DA D2 receptor antagonist, haloperidol (HAL) display a significant increase in expression of catecholamine regulated protein (CRP40) in the nucleus accumbens (NAcc) and the striatum, respectively. The present study investigated the in vivo effects of QNP and HAL on CRP40 protein levels within the core and shell subcompartments of the NAcc. As significant homology exists between CRP40 and Hsp70/Hsc70, parallel studies with inducible Hsp70 and constitutive Hsc70 were conducted to establish the specificity with respect to QNP on Hsp70 and CRP40. Results demonstrated that CRP40 protein was significantly expressed in the shell relative to the core region of NAcc following chronic QNP (+16.28%+/-0.42%, P<0.05) and CRP40 protein was significantly expressed in the core vs. the shell following chronic HAL (+36.02%+/-0.75%, P<0.05). There was no significant change in Hsp70 protein levels following chronic QNP or HAL administration. The results demonstrated selective modulation of CRP40 within NAcc by QNP and HAL treatment, without affecting Hsp70.
Collapse
Affiliation(s)
- Joseph Gabriele
- Department of Psychiatry and Behavioral Neuroscience, McMaster University, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
9
|
Mateo Y, Lack CM, Morgan D, Roberts DCS, Jones SR. Reduced dopamine terminal function and insensitivity to cocaine following cocaine binge self-administration and deprivation. Neuropsychopharmacology 2005; 30:1455-63. [PMID: 15702135 DOI: 10.1038/sj.npp.1300687] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite large numbers of studies describing neuroadaptations caused by chronic cocaine exposure, there remains considerable uncertainty as to whether alterations in dopamine (DA) neurotransmission are responsible for progression into an addicted state. High-intake, 24-h access cocaine self-administration (SA, 10 days) followed by an extended (7 days), but not 1 day deprivation period produces an increased motivation to SA cocaine as measured by a progressive ratio protocol. Following binge cocaine SA and deprivation, the status of DA terminals in the nucleus accumbens (NAc) was investigated using microdialysis in freely moving rats and voltammetry in brain slices. At 1 and 7 days following binge cocaine SA, baseline extracellular DA concentrations in the NAc core were decreased by 40 and 55% of control levels, in the 1 and 7 day deprivation groups, respectively. Acute cocaine (1.5 mg/kg, i.v.) administration increased extracellular DA (350%) in the NAc core of naïve animals but failed to significantly increase DA at 1 or 7 days following binge cocaine SA. The shell of the NAc showed a similar lack of effect of cocaine. Analysis of DA terminals in brain slices showed that cocaine was markedly less effective in inhibiting DA uptake at 1 and 7 days of cocaine deprivation (max effect 40% of control). Electrically stimulated DA release was decreased at 1 day and further decreased at 7 days of deprivation (67 and 49% of control, respectively). The rate of DA uptake was increased (150% of control) following binge SA, irrespective of deprivation period. Finally, presynaptic autoreceptors were subsensitive at both time points, as measured by the ability of quinpirole, a D2-like DA receptor agonist, to inhibit DA release. Thus, the NAc was hypodopaminergic and DA terminals were less sensitive to cocaine following binge cocaine SA and deprivation.
Collapse
Affiliation(s)
- Yolanda Mateo
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | | | | | | | | |
Collapse
|
10
|
Davidson C, Lee TH, Ellinwood EH. Acute and chronic continuous methamphetamine have different long-term behavioral and neurochemical consequences. Neurochem Int 2005; 46:189-203. [PMID: 15670635 DOI: 10.1016/j.neuint.2004.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 11/10/2004] [Indexed: 01/09/2023]
Abstract
We compared two different methamphetamine dosing regimens and found distinct long-term behavioral and neurochemical changes. Adult rats were treated with 1-day methamphetamine injection (3x5 mg/kg s.c., 3 h apart) or 7-day methamphetamine minipump (20 mg/kg/day s.c.). The minipump regimen models the sustained methamphetamine plasma levels in some human bingers whereas the 1-day regimen models a naive user overdose. On withdrawal days 7 and 28, rats were acutely challenged with cocaine to test for behavioral sensitization and subsequently sacrificed for caudate and accumbens dopamine tissue content. Other rats were analyzed on withdrawal days 3, 7 or 28 using voltammetry in caudate slices. On withdrawal days 7 and 28, the methamphetamine injection but not the minipump rats showed behavioral cross-sensitization to cocaine. There was no change in baseline dopamine release, reuptake or sensitivity to quinpirole in any treatment group on either withdrawal day. However, consistent with the behavioral sensitization, cocaine had a greater effect in potentiating dopamine release and in blocking dopamine reuptake in methamphetamine injection versus saline irrespective of withdrawal day. The minipump group showed tolerance to the dopamine releasing effect of cocaine on withdrawal day 28 and had lower dopamine tissue content in the caudate versus the methamphetamine injection group. Dopamine turnover as measured by the DOPAC/dopamine ratio tended to be higher in the minipump-treated rats. These data suggest that the behavioral cross-sensitization seen in the methamphetamine injection rats could be in part due to the increased potency of cocaine in blocking dopamine reuptake and in increasing dopamine release. The decreased potency of cocaine in the caudate slices from the minipump-treated group may be related to decreased dopamine tissue content.
Collapse
Affiliation(s)
- Colin Davidson
- Department of Psychiatry, Duke University Medical Center, Box 3870, Durham, NC 27710, USA.
| | | | | |
Collapse
|
11
|
Zocchi A, Girlanda E, Varnier G, Sartori I, Zanetti L, Wildish GA, Lennon M, Mugnaini M, Heidbreder CA. Dopamine responsiveness to drugs of abuse: A shell-core investigation in the nucleus accumbens of the mouse. Synapse 2003; 50:293-302. [PMID: 14556234 DOI: 10.1002/syn.10271] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The existence of subterritories within the nucleus accumbens has now been widely supported by histochemical, neurochemical, electrophysiological, as well as morphological and ultrastructural studies and suggest specific afferent and efferent systems involved in different behavioral aspects. Microdialysis studies in the rat have consistently shown that most drugs of abuse increase extracellular dopamine levels preferentially in the shell subregion of the nucleus accumbens. The study of the relative roles of NAc subregions may considerably help our understanding of the neurobiological basis of drug addiction. Accordingly, the aim of the present work was to extend the outcome of rat studies to the mouse species. Five major drugs of abuse were systemically and acutely administered to mice with a microdialysis probe implanted in either the shell or the core. A statistical comparison was performed on data transformed as percentage values of baseline dopamine vs. logarithmic values with baseline dopamine as a covariate. Results show a significant increase in dopamine levels in both the shell and core subregions following cocaine, amphetamine, nicotine, ethanol, and morphine treatments. A difference between shell and core after cocaine, nicotine, and morphine was evident when data were analyzed as percent values of baseline. However, such a shell-core dichotomy became no longer significant when ANOVA was applied on the statistically more appropriate logarithmic transformation of data with baseline as a covariate. The significant baseline differences among groups of mice (dopamine levels in the shell significantly lower compared with dopamine levels in the core) may have compromised, at least in part, the statistical procedure usually applied in microdialysis studies. These findings suggest that a careful evaluation of the data is required when subtle changes in extracellular levels of DA are measured.
Collapse
Affiliation(s)
- Alessandro Zocchi
- Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, 37135 Verona, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chefer VI, Shippenberg TS. Changes in basal and cocaine-evoked extracellular dopamine uptake and release in the rat nucleus accumbens during early abstinence from cocaine: quantitative determination under transient conditions. Neuroscience 2002; 112:907-19. [PMID: 12088750 DOI: 10.1016/s0306-4522(02)00099-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite an abundance of studies on mechanisms of behavioral sensitization, considerable uncertainty exists as to whether alterations in dopamine neurotransmission underlie the exacerbated behavioral effects of cocaine observed during the early stages of abstinence. One of the factors contributing to the uncertainty and controversy may be the limitations in utilized measurement techniques (mostly conventional microdialysis). The techniques of quantitative microdialysis under transient conditions and rotating disk electrode voltammetry were used to characterize basal dopamine dynamics as well as time-related changes in extracellular dopamine concentrations and dopamine uptake that occur in response to an acute drug challenge in control animals and animals with previous history of cocaine. Basal extracellular dopamine concentrations were unaltered on abstinence day 3 from repeated cocaine administration (5 days, 20 mg/kg, i.p.). The extraction fraction of dopamine, an indirect measure of dopamine uptake, was significantly lower in cocaine-sensitized animals relative to controls. These two facts, taken together, suggest that basal dopamine release is depressed in cocaine-sensitized animals on abstinence day 3. At the same time, a cocaine challenge decreased the extraction fraction and increased the extracellular dopamine concentration in both experimental groups. The magnitude of the increase in extracellular dopamine concentration was greater in cocaine-sensitized animals, while the ability of cocaine to decrease the extraction fraction was unaltered, suggesting that the increase in extracellular dopamine concentration reflects an increase in drug-evoked dopamine release. Moreover, cocaine-pretreated rats demonstrated greater depolarization-induced dopamine release and the ability of dopamine D(2) receptor agonist, quinpirole, to inhibit release was decreased in these animals. These data demonstrate that a cocaine treatment regimen resulting in behavioral sensitization is associated with a reduction in basal dopamine release, an enhancement in both cocaine and K(+)-evoked dopamine release, and a subsensitivity of dopamine D(2) autoreceptors that regulate dopamine release in the nucleus accumbens.
Collapse
Affiliation(s)
- V I Chefer
- Integrative Neuroscience Unit, Behavioral Neuroscience Laboratory, NIH/NIDA Intramural Research Program, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA.
| | | |
Collapse
|
13
|
Gholami A, Haeri-Rohani A, Sahraie H, Zarrindast MR. Nitric oxide mediation of morphine-induced place preference in the nucleus accumbens of rat. Eur J Pharmacol 2002; 449:269-77. [PMID: 12167469 DOI: 10.1016/s0014-2999(02)02038-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present study, the effects of intra-nucleus accumbens injection of L-arginine, a nitric oxide (NO) precursor, and N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on morphine-induced conditioned place preference in male Wistar rats were investigated. Our data showed that subcutaneous (s.c.) injection of morphine sulphate (0.5-10 mg/kg) significantly increased the time spent in the drug-paired compartment in a dose-dependent manner. Intra-accumbens administration of L-arginine (0.03 and 0.05 microg/rat) with an ineffective dose of morphine (0.5 mg/kg) elicited significant conditioned place preference, while intra-accumbens administration of L-NAME (0.3, 0.1 and 1 microg/rat) decreased the acquisition of conditioned place preference induced by morphine (7.5 mg/kg). The response to different doses of L-arginine was decreased by L-NAME (0.03 microg/rat). L-Arginine and L-NAME by themselves did not elicit any effect on place conditioning. Intra-accumbens administration of L-arginine but not L-NAME significantly decreased the expression of morphine (7.5 mg/kg)-induced place preference. The attenuation of already established morphine-induced place preference on the test day by L-arginine was inhibited by L-NAME. The results indicate that NO may be involved in the acquisition and expression of morphine-induced place preference.
Collapse
Affiliation(s)
- Azam Gholami
- Department of Biology, Faculty of Science, Tehran University, Tehran, Iran
| | | | | | | |
Collapse
|
14
|
Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores. J Neurosci 2001. [PMID: 11487614 DOI: 10.1523/jneurosci.21-16-05916.2001] [Citation(s) in RCA: 152] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Amphetamine (AMPH) is known to raise extracellular dopamine (DA) levels by inducing stimulation-independent DA efflux via reverse transport through the DA transporter and by inhibiting DA re-uptake. In contrast, recent studies indicate that AMPH decreases stimulation-dependent vesicular DA release. One candidate mechanism for this effect is the AMPH-mediated redistribution of DA from vesicles to the cytosol. In addition, the inhibition of stimulation-dependent release may occur because of D2 autoreceptor activation by DA that is released via reverse transport. We used the D2 receptor antagonist sulpiride and mice lacking the D2 receptor to address this issue. To evaluate carefully AMPH effects on release and uptake, we recorded stimulated DA overflow in striatal slices by using continuous amperometry and cyclic voltammetry. Recordings were fit by a random walk simulation of DA diffusion, including uptake with Michaelis-Menten kinetics, that provided estimates of DA concentration and uptake parameters. AMPH (10 microm) promoted the overflow of synaptically released DA by decreasing the apparent affinity for DA uptake (K(m) increase from 0.8 to 32 microm). The amount of DA released per pulse, however, was decreased by 82%. This release inhibition was prevented partly by superfusion with sulpiride (47% inhibition) and was reduced in D2 mutant mice (23% inhibition). When D2 autoreceptor activation was minimal, the combined effects of AMPH on DA release and uptake resulted in an enhanced overflow of exocytically released DA. Such enhancement of stimulation-dependent DA overflow may occur under conditions of low D2 receptor activity or expression, for example as a result of AMPH sensitization.
Collapse
|
15
|
Heidbreder CA, Baumann MH. Autoregulation of dopamine synthesis in subregions of the rat nucleus accumbens. Eur J Pharmacol 2001; 411:107-113. [PMID: 11137864 DOI: 10.1016/s0014-2999(00)00882-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The discovery of a core-shell dichotomy within the nucleus accumbens has opened new lines of investigation into the neuronal basis of psychiatric disorders and drug dependence. In the present study, the autoregulation of dopamine synthesis in subdivisions of the rat nucleus accumbens was examined. We measured the accumulation of L-3,4-dihydroxyphenylalanine (DOPA) after the inhibition of aromatic L-amino acid decarboxylase with 3-hydroxylbenzylhydrazine (NSD-1015, 100 mg kg(-1)) as an in vivo index of dopamine synthesis. The effect of the dopamine D(1)/D(2) receptor agonist apomorphine (0, 20, 100, 500 microgram kg(-1)) and the dopamine D(2)/D(3) receptor agonist quinpirole (0, 20, 100, 500 microgram kg(-1)) on dopamine synthesis was determined in the dorsolateral core, ventromedial shell, and rostral pole of the nucleus accumbens. DOPA accumulation was also measured in the frontal cortex, olfactory tubercle, and caudate nucleus of the same rats for comparative purposes. The results show that the three sectors of the nucleus accumbens had similar basal levels of DOPA. Both apomorphine and quinpirole produced a decrease in the dopamine synthesis rate in all brain regions examined. In general, the dopamine D(2)/D(3) receptor agonist quinpirole produced a significantly greater decrease in DOPA accumulation than the dopamine D(1)/D(2) receptor agonist apomorphine. Within the nucleus accumbens, we found no core-shell differences in the agonist-induced suppression of dopamine synthesis, but the rostral pole was less sensitive to the highest dose of both dopamine agonists. These results suggest that differences in dopamine function between the core and shell might not involve region-specific differences in the receptor-mediated autoregulation of dopamine neurotransmission. Moreover, the blunted effect of dopamine agonists in the rostral pole illustrates that this region of the accumbens is functionally distinct, possibly due to a lower dopamine receptor reserve when compared to the core and shell.
Collapse
Affiliation(s)
- C A Heidbreder
- Neuroscience Research, SmithKline Beecham Pharmaceuticals, New Frontiers Science Park (North), Building H25, Room 104A, Essex CM19 5AW, Harlow, UK.
| | | |
Collapse
|
16
|
Ellinwood EH, King GR, Davidson C, Lee TH. The dopamine D2/D3 antagonist DS121 potentiates the effect of cocaine on locomotion and reduces tolerance in cocaine tolerant rats. Behav Brain Res 2000; 116:169-75. [PMID: 11080548 DOI: 10.1016/s0166-4328(00)00270-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To explore the significance of dopamine (DA) autoreceptors in cocaine tolerance and cocaine induced locomotor activity rats were treated with saline and cocaine (40 mg/kg per day via osmotic minipump; normal and cocaine tolerant rats, respectively). Injections of DS121 (0-7 mg/kg, i.p.; S(-)-3-(3-(cyanophenyl)-N-n-propylpiperidine), a DA D2/3 and autoreceptor preferring antagonist, either alone (i.e. DS121 + saline injection) or in combination with cocaine (7.5 mg/kg, i.p.) were also given. DS121 (+ saline) increased locomotor activity in both saline and cocaine pump (CP) treated animals. DS121 also potentiated the effect of cocaine on locomotor activity; this effect was greatest in CP (tolerant) animals. It is concluded that DS121 can increase locomotor activity and that this effect is greatest when the DA tone is high, that is when cocaine is present, suggestive of a presynaptic mechanism. Furthermore, because DS121 potentiation of cocaine induced locomotor activity is greatest in tolerant animals it is concluded that supersensitive DA autoreceptors underlie this effect. These data further support our previous data, which show that DA autoreceptors are sensitized after continuous cocaine (minipump) treatment.
Collapse
Affiliation(s)
- E H Ellinwood
- Department of Psychiatry, Duke University Medical Center, Box 3870, Durham, NC 27710, USA.
| | | | | | | |
Collapse
|
17
|
Daws LC, Gould GG, Teicher SD, Gerhardt GA, Frazer A. 5-HT(1B) receptor-mediated regulation of serotonin clearance in rat hippocampus in vivo. J Neurochem 2000; 75:2113-22. [PMID: 11032901 DOI: 10.1046/j.1471-4159.2000.0752113.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 5-hydroxytryptamine (5-HT; serotonin) transporter (5-HTT) is important in terminating serotonergic neurotransmission and is a primary target for many psychotherapeutic drugs. Study of the regulation of 5-HTT activity is therefore important in understanding the control of serotonergic neurotransmission. Using high-speed chronoamperometry, we have demonstrated that local application of 5-HT(1B) antagonists into the CA3 region of the hippocampus prolongs the clearance of 5-HT from extracellular fluid (ECF). In the present study, we demonstrate that the 5-HT(1B) antagonist cyanopindolol does not produce this effect by increasing release of endogenous 5-HT or by directly binding to the 5-HTT. Dose-response studies showed that the potency of cyanopindolol to inhibit clearance of 5-HT was equivalent to that of the selective 5-HT reuptake inhibitor fluvoxamine. Local application of the 5-HT(1A) antagonist WAY 100635 did not alter 5-HT clearance, suggesting that the effect of cyanopindolol to prolong clearance is not via a mechanism involving 5-HT(1A) receptors. Finally, the effect of low doses of cyanopindolol and fluvoxamine to inhibit clearance of 5-HT from ECF was additive. These data are consistent with the hypothesis that activation of terminal 5-HT(1B) autoreceptors increases 5-HTT activity.
Collapse
Affiliation(s)
- L C Daws
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | |
Collapse
|
18
|
Zahm DS. An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci Biobehav Rev 2000; 24:85-105. [PMID: 10654664 DOI: 10.1016/s0149-7634(99)00065-2] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuroanatomical substrates associated in the literature with adaptive responding are discussed, with a focus on the nucleus accumbens. While it is emphasized that the accumbens exhibits multiple levels of complex organization, a fairly complete list of brief descriptions of recent studies devoted specifically to the accumbens shell and core subterritories is presented in tabular format. The distinct patterns of connectivity of the accumbens core and shell and structures related to them by connections are described. Multiple inputs, outputs and abundant reciprocity of connections within the ventral parts of the basal ganglia are emphasized and the implications for "through-put" of impulses is considered. It is noted, at least on neuroanatomical grounds, that there is ample reason to expect feed forward processing from shell and structures with which it is associated to core and structures with which it is associated. Furthermore, the potential for additional feed forward processing involving several forebrain functional anatomical systems, inlcuding the ventral striatopallidum, extended amygdala and magnocellular basal forebrain complex is considered. It is intended that from the considerations recorded here a conceptual framework will begin to emerge that is amenable to further experimental substantiation as regards how multiple basal forebrain systems and the cortices to which they are related by connections work together to fashion a unitary object--the adaptive response.
Collapse
Affiliation(s)
- D S Zahm
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, MO 63104, USA.
| |
Collapse
|
19
|
Hedou G, Feldon J, Heidbreder CA. Effects of cocaine on dopamine in subregions of the rat prefrontal cortex and their efferents to subterritories of the nucleus accumbens. Eur J Pharmacol 1999; 372:143-55. [PMID: 10395094 DOI: 10.1016/s0014-2999(99)00218-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study sought to investigate the contributions of the ventral prelimbic/infralimbic cortices and shell subterritory of the nucleus accumbens as well as the dorsal prelimbic/anterior cingulate cortices and core subregion of the nucleus accumbens to the acute systemic effects of cocaine (20 mg/kg i.p.) on both locomotor activity and simultaneous dialysate dopamine levels using a dual-probe microdialysis design. Basal dopamine levels were significantly higher in the ventral medial prefrontal cortex compared with the dorsal medial prefrontal cortex and higher concentrations of dopamine were also observed in the core of the nucleus accumbens compared with its shell counterpart. Cocaine produced a significant decrease in dopamine levels in both the ventral and dorsal medial prefrontal cortices. In contrast, cocaine significantly increased dialysate dopamine in the shell of the nucleus accumbens, whereas only a slight increase in dopamine was observed in the core subregion of the nucleus accumbens. A significant negative relationship between dopamine levels in the ventral and dorsal medial prefrontal cortices and dialysate dopamine concentrations in the shell and core of the nucleus accumbens was observed. Finally, in both the ventral and dorsal medial prefrontal cortices, the magnitude of the locomotor response to cocaine was inversely related to dialysate dopamine levels. In contrast, the magnitude of the locomotor response to cocaine became progressively larger as dopamine levels increased in the shell of the nucleus accumbens. These results show a dissociation in the pattern of dopamine release in subterritories of both the medial prefrontal cortex and nucleus accumbens in response to the acute systemic administration of cocaine.
Collapse
Affiliation(s)
- G Hedou
- The Swiss Federal Institute of Technology Zürich (ETH), Laboratory of Behavioral Biology, Schwerzenbach
| | | | | |
Collapse
|
20
|
Heidbreder CA, Hedou G, Feldon J. Behavioral neurochemistry reveals a new functional dichotomy in the shell subregion of the nucleus accumbens. Prog Neuropsychopharmacol Biol Psychiatry 1999; 23:99-132. [PMID: 10368859 DOI: 10.1016/s0278-5846(98)00094-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. The behavioral and neurochemical effects produced by the direct infusion of amphetamine by reverse microdialysis into either the core or shell of the nucleus accumbens were studied across the anteroposterior axis of this nucleus. 2. Amphetamine (0.05; 0.10; 0.50; 1.00 microM) produced a dose-dependent increase in locomotor activity after microinfusion into either the rostral shell, caudal shell or core of the nucleus accumbens. However, the amphetamine-induced locomotor activating effect, was significantly higher in the rostral shell of the nucleus accumbens compared with both the caudal shell and core. 3. The lowest concentrations of amphetamine produced an equipotent decrease in dialysate dopamine in either the rostral shell, caudal shell, or core. At 1.0 microM, however, amphetamine selectively increased dopamine in the rostral shell. In contrast, the highest dose of amphetamine significantly increased dialysate serotonin levels over baseline only in the caudal shell of the nucleus accumbens. 4. These results demonstrate the preferential effect of amphetamine on dopamine in the rostral shell and serotonin in the caudal shell subterritory of the nucleus accumbens.
Collapse
Affiliation(s)
- C A Heidbreder
- Swiss Federal Institute of Technology Zürich (ETH), Laboratory of Behavioral Biology, Switzerland.
| | | | | |
Collapse
|
21
|
David DJ, Zahniser NR, Hoffer BJ, Gerhardt GA. In vivo electrochemical studies of dopamine clearance in subregions of rat nucleus accumbens: differential properties of the core and shell. Exp Neurol 1998; 153:277-86. [PMID: 9784287 DOI: 10.1006/exnr.1998.6898] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dopamine (DA) uptake/clearance properties of the DA transporter (DAT) in the core and shell of the nucleus accumbens were measured using in vivo electrochemical recordings. Calibrated amounts of a DA solution were pressure-ejected from a micropipette/electrode assembly placed in the core or shell of the nucleus accumbens in anesthetized male Fischer 344 rats. Initial studies in the two brain regions revealed that the core and shell have different DA clearance properties as measured by the extracellular DA signal amplitudes, clearance times, and clearance rates. Although the same number of picomoles of DA were applied, DA clearance signals recorded in shell had significantly greater amplitudes but faster clearance rates than those recorded in the core. Systemic administration of 20 mg/kg cocaine, a monoamine transporter inhibitor, greatly increased the signal amplitude from the locally applied DA in both the core and shell. Signal amplitudes were increased to a greater extent in the shell, compared with the core, after cocaine administration. However, cocaine affected the clearance time of DA only in the core and the DA clearance rate only in the shell. Taken together with previously reported data, these studies further support differential activity of the DAT in the core versus shell subregions of the nucleus accumbens. In addition, these data indicate that DATs are more sensitive to the effects of psychomotor stimulants, such as cocaine, in the shell of the nucleus accumbens.
Collapse
Affiliation(s)
- D J David
- Neuroscience Training Program, University of Colorado Health Sciences Center, Denver, Colorado, 80262, USA
| | | | | | | |
Collapse
|
22
|
Heidbreder C, Feldon J. Amphetamine-induced neurochemical and locomotor responses are expressed differentially across the anteroposterior axis of the core and shell subterritories of the nucleus accumbens. Synapse 1998; 29:310-22. [PMID: 9661249 DOI: 10.1002/(sici)1098-2396(199808)29:4<310::aid-syn3>3.0.co;2-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The administration of psychostimulants increases dopamine (DA) release within the nucleus accumbens (NAC), a terminal projection site of mesolimbic DA neurons, originating in the ventral tegmental area (VTA). Recent evidence demonstrates that two subdivisions of the NAC, the dorsolateral core and the ventromedial shell, can be distinguished by morphological and immunohistochemical differences, as well as by their distinct anatomical connections. It has been suggested that these two subregions subserve different functions that are related to goal-directed behaviors, stimulus-reward associations, and reinforcement induced by addictive drugs. The shell region, in particular, modulates inputs from the limbic system, whereas the core is preferentially innervated by nuclei that process motor information. In the present study, we sought to investigate if (1) the direct infusion of d-amphetamine (AMPH) by reverse microdialysis into either the core or shell of the NAC across its anteroposterior axis differentially affects dialysate DA and 5-HT levels, and (2) these subterritories also subserve different behavioral functions. Following the determination of basal DA and 5-HT levels, four increasing concentrations of AMPH (0.05, 0.10, 0.50, 1.00 microM) were substituted for the dialysis perfusate for 60 min each. Movement units were detected by an infrared sensor and were transmitted through a motion interface to an activity monitor analyzer. AMPH produced a dose-dependent increase in locomotor activity after microinfusion into either the rostral shell, caudal shell or core of the NAC. The potency of the AMPH-induced locomotor activating effect was significantly higher in the rostral shell of the NAC compared with the caudal shell and the core. The lowest concentrations of AMPH (0.05, 0.1 microM) produced an equipotent decrease in dialysate DA in either the rostral shell, caudal shell, or core. At 1.0 microM, however, AMPH selectively increased DA in the rostral shell, whereas DA reached baseline values both in the caudal shell and core. Basal dialysate DA levels were significantly higher in the core relative to both the rostral and caudal parts of the shell. The highest dose of AMPH significantly increased dialysate 5-HT levels over baseline only in the caudal shell of the NAC. The basal dialysate 5-HT levels did not significantly differ between the three subterritories of the NAC. These results emphasize the heterogeneity and functional compartmentalization within the NAC, the differential regulation of neurochemical and motor responses across the anteroposterior axis of the NAC, and the preferential effect of AMPH in the rostral shell subterritory of the NAC.
Collapse
Affiliation(s)
- C Heidbreder
- Swiss Federal Institute of Technology Zürich (ETH), Institute of Toxicology, Schwerzenbach, Switzerland.
| | | |
Collapse
|
23
|
Kruk ZL, Cheeta S, Milla J, Muscat R, Williams JE, Willner P. Real time measurement of stimulated dopamine release in the conscious rat using fast cyclic voltammetry: dopamine release is not observed during intracranial self stimulation. J Neurosci Methods 1998; 79:9-19. [PMID: 9531455 DOI: 10.1016/s0165-0270(97)00156-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fast cyclic voltammetry (FCV) was used to measure real time release of electrically stimulated endogenous dopamine in the nucleus accumbens (NAc) of conscious freely moving rats for up to 17 days. The method of electrode construction, implantation, electrical stimulation and recording of changes of extracellular dopamine concentration in the conscious rat are described. Rats trained on a continuous reinforcement schedule to perform intracranial self stimulation (ICSS) were implanted with electrodes for FCV. During ICSS, no faradaic signal was observed at an electrode implanted in the NAc. Decreasing the intensity of the stimulating current abolished ICSS, increasing the stimulating current disrupted ICSS. Operator delivered electrical stimulations using currents greater than those needed for ICSS yielded dopamine signals. It is concluded that during ICSS, sufficient dopamine does not reach the extracellular fluid space to yield a faradaic signal detectable by FCV.
Collapse
Affiliation(s)
- Z L Kruk
- Department of Pharmacology, Queen Mary and Westfield College, London, UK.
| | | | | | | | | | | |
Collapse
|