1
|
Fortin SM, Chen JC, Petticord MC, Ragozzino FJ, Peters JH, Hayes MR. The locus coeruleus contributes to the anorectic, nausea, and autonomic physiological effects of glucagon-like peptide-1. SCIENCE ADVANCES 2023; 9:eadh0980. [PMID: 37729419 PMCID: PMC10511187 DOI: 10.1126/sciadv.adh0980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023]
Abstract
Increasing the therapeutic potential and reducing the side effects of U.S. Food and Drug Administration-approved glucagon-like peptide-1 receptor (GLP-1R) agonists used to treat obesity require complete characterization of the central mechanisms that mediate both the food intake-suppressive and illness-like effects of GLP-1R signaling. Our studies, in the rat, demonstrate that GLP-1Rs in the locus coeruleus (LC) are pharmacologically and physiologically relevant for food intake control. Furthermore, agonism of LC GLP-1Rs induces illness-like behaviors, and antagonism of LC GLP-1Rs can attenuate GLP-1R-mediated nausea. Electrophysiological and behavioral pharmacology data support a role for LC GLP-1Rs expressed on presynaptic glutamatergic terminals in the control of feeding and malaise. Collectively, our work establishes the LC as a site of action for GLP-1 signaling and extends our understanding of the GLP-1 signaling mechanism necessary for the development of improved obesity pharmacotherapies.
Collapse
Affiliation(s)
- Samantha M. Fortin
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jack C. Chen
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa C. Petticord
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Matthew R. Hayes
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Congiu M, Micheli L, Santoni M, Sagheddu C, Muntoni AL, Makriyannis A, Malamas MS, Ghelardini C, Di Cesare Mannelli L, Pistis M. N-Acylethanolamine Acid Amidase Inhibition Potentiates Morphine Analgesia and Delays the Development of Tolerance. Neurotherapeutics 2021; 18:2722-2736. [PMID: 34553321 PMCID: PMC8804012 DOI: 10.1007/s13311-021-01116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/26/2022] Open
Abstract
Opioids are essential drugs for pain management, although long-term use is accompanied by tolerance, necessitating dose escalation, and dependence. Pharmacological treatments that enhance opioid analgesic effects and/or attenuate the development of tolerance (with a desirable opioid-sparing effect in treating pain) are actively sought. Among them, N-palmitoylethanolamide (PEA), an endogenous lipid neuromodulator with anti-inflammatory and neuroprotective properties, was shown to exert anti-hyperalgesic effects and to delay the emergence of morphine tolerance. A selective augmentation in endogenous PEA levels can be achieved by inhibiting N-acylethanolamine acid amidase (NAAA), one of its primary hydrolyzing enzymes. This study aimed to test the hypothesis that NAAA inhibition, with the novel brain permeable NAAA inhibitor AM11095, modulates morphine's antinociceptive effects and attenuates the development of morphine tolerance in rats. We tested this hypothesis by measuring the pain threshold to noxious mechanical stimuli and, as a neural correlate, we conducted in vivo electrophysiological recordings from pain-sensitive locus coeruleus (LC) noradrenergic neurons in anesthetized rats. AM11095 dose-dependently (3-30 mg/kg) enhanced the antinociceptive effects of morphine and delayed the development of tolerance to chronic morphine in behaving rats. Consistently, AM11095 enhanced morphine-induced attenuation of the response of LC neurons to foot-shocks and prevented the attenuation of morphine effects following chronic treatment. Behavioral and electrophysiological effects of AM11095 on chronic morphine were paralleled by a decrease in glial activation in the spinal cord, an index of opioid-induced neuroinflammation. NAAA inhibition might represent a potential novel therapeutic approach to increase the analgesic effects of opioids and delay the development of tolerance.
Collapse
Affiliation(s)
- Mauro Congiu
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Laura Micheli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Università Degli Studi Di Firenze, Florence, Italy
| | - Michele Santoni
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Michael S Malamas
- Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Carla Ghelardini
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Università Degli Studi Di Firenze, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Università Degli Studi Di Firenze, Florence, Italy
| | - Marco Pistis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
3
|
Alba-Delgado C, Mico JA, Berrocoso E. Neuropathic pain increases spontaneous and noxious-evoked activity of locus coeruleus neurons. Prog Neuropsychopharmacol Biol Psychiatry 2021; 105:110121. [PMID: 33007320 DOI: 10.1016/j.pnpbp.2020.110121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/07/2023]
Abstract
The noradrenergic locus coeruleus nucleus is an important station in both the ascending and descending pain regulatory pathways. These neurons discharge in tonic and phasic modes in response to sensory stimuli. However, few studies have set out to characterize the electrophysiological response of the locus coeruleus to noxious stimuli in conditions of neuropathic pain. Thus, the effects of mechanical nociceptive stimulation of the sciatic nerve area on spontaneous (tonic) and sensory-evoked (phasic) locus coeruleus discharge were studied by extracellular recording in anesthetized rats seven, fourteen and twenty-eight days after chronic constriction injury. Minor significant electrophysiological changes were found seven and fourteen days after nerve injury. However, alterations to the spontaneous activity in both the ipsilateral and contralateral locus coeruleus were found twenty-eight days after nerve constriction, as witnessed by an increase of burst firing incidence and irregular firing patterns. Furthermore, noxious-evoked responses were exacerbated in the contralateral and ipsilateral nucleus at twenty-eight days after injury, as were the responses evoked when stimulating the uninjured paw. In addition, mechanical stimulation of the hindpaw produced a significant sensitization of neuronal tonic activity after 28 days of neuropathy. In summary, long-term nerve injury led to higher spontaneous activity and exacerbated noxious-evoked responses in the locus coeruleus to stimulation of nerve-injured and even uninjured hindpaws, coinciding temporally with the development of depressive and anxiogenic-like behavior.
Collapse
Affiliation(s)
| | - Juan Antonio Mico
- Neuropsychopharmacology Research Group, Department of Neuroscience, University of Cadiz, Cádiz, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Berrocoso
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Neuropsychopharmacology Research Group, Psychobiology Area, Department of Psychology, University of Cadiz, Cádiz, Spain.
| |
Collapse
|
4
|
Yagüe J, Humanes-Valera D, Aguilar J, Foffani G. Functional reorganization of the forepaw cortical representation immediately after thoracic spinal cord hemisection in rats. Exp Neurol 2014; 257:19-24. [DOI: 10.1016/j.expneurol.2014.03.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/07/2014] [Accepted: 03/19/2014] [Indexed: 11/28/2022]
|
5
|
Alba-Delgado C, Mico JA, Sánchez-Blázquez P, Berrocoso E. Analgesic antidepressants promote the responsiveness of locus coeruleus neurons to noxious stimulation: implications for neuropathic pain. Pain 2012; 153:1438-1449. [PMID: 22591831 DOI: 10.1016/j.pain.2012.03.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 03/08/2012] [Accepted: 03/29/2012] [Indexed: 11/15/2022]
Abstract
Antidepressants that block the reuptake of noradrenaline and/or serotonin are among the first-line treatments for neuropathic pain, although the mechanisms underlying this analgesia remain unclear. The noradrenergic locus coeruleus is an essential element of both the ascending and descending pain modulator systems regulated by these antidepressants. Hence, we investigated the effect of analgesic antidepressants on locus coeruleus activity in Sprague-Dawley rats subjected to chronic constriction injury (CCI), a model of neuropathic pain. In vivo extracellular recordings of locus coeruleus revealed that CCI did not modify the basal tonic activity of this nucleus, although its sensory-evoked response to noxious stimuli was significantly altered. Under normal conditions, noxious stimulation evokes an early response, corresponding to the activation of myelinated A fibers, which is followed by an inhibitory period and a subsequent late capsaicin-sensitive response, consistent with the activation of unmyelinated C fibers. CCI provokes an enhanced excitatory early response in the animals and the loss of the late response. Antidepressant administration over 7 days (desipramine, 10mg/kg/day or duloxetine, 5mg/kg/day, delivered by osmotic minipumps) decreased the excitatory firing rate of the early response in the CCI group. Moreover, in all animals, these antidepressants reduced the inhibitory period and augmented the late response. We propose that N-methyl-d-aspartate and alpha-2-adrenoceptors are involved in the analgesic effect of antidepressants. Antidepressant-mediated changes were correlated with behavioral effects indicative of analgesia in healthy and neuropathic rats.
Collapse
Affiliation(s)
- Cristina Alba-Delgado
- Neuropsychopharmacology Research Group, Department of Neuroscience, University of Cadiz, Cadiz, Spain Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain Instituto Cajal CSIC, Madrid, Spain Neuropsychopharmacology Research Group, Psychobiology Area, Department of Psychology, University of Cadiz, Cadiz, Spain
| | | | | | | |
Collapse
|
6
|
Viisanen H, Pertovaara A. Influence of peripheral nerve injury on response properties of locus coeruleus neurons and coeruleospinal antinociception in the rat. Neuroscience 2007; 146:1785-94. [PMID: 17445989 DOI: 10.1016/j.neuroscience.2007.03.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 02/26/2007] [Accepted: 03/13/2007] [Indexed: 10/23/2022]
Abstract
Noradrenergic locus coeruleus (LC) is involved in pain regulation. We studied whether response properties of LC neurons or coeruleospinal antinociception are changed 10-14 days following development of experimental neuropathy. Experiments were performed in spinal nerve-ligated, sham-operated and unoperated male rats under sodium pentobarbital anesthesia. Recordings of LC neurons indicated that responses evoked by noxious somatic stimulation were enhanced in nerve-injured animals, while the effects of nerve injury on spontaneous activity or the response to noxious visceral stimulation were not significant. Microinjection of glutamate into the central nucleus of the amygdala produced a dose-related inhibition of the discharge rate of LC neurons in nerve-injured animals but no significant effect on discharge rates in control groups. Assessment of the heat-induced hind limb withdrawal latency indicated that spinal antinociception induced by electrical stimulation of the LC was significantly weaker in nerve-injured than control animals. The results indicate that peripheral neuropathy induces bidirectional changes in coeruleospinal inhibition of pain. Increased responses of LC neurons to noxious somatic stimulation are likely to promote feedback inhibition of neuropathic hypersensitivity, while the enhanced inhibition of the LC from the amygdala is likely to suppress noradrenergic pain inhibition and promote neuropathic pain. It is proposed that the decreased spinal antinociception induced by direct stimulation of the LC may be explained by pronociceptive changes in the non-noradrenergic systems previously described in peripheral neuropathy. Furthermore, we propose the hypothesis that emotions processed by the amygdala enhance pain due to increased inhibition of the LC in peripheral neuropathy.
Collapse
Affiliation(s)
- H Viisanen
- Biomedicum Helsinki, Institute of Biomedicine/Physiology, POB 63, University of Helsinki, FIN-00014 Helsinki, Finland
| | | |
Collapse
|
7
|
Pan YZ, Li DP, Chen SR, Pan HL. Activation of μ-opioid receptors excites a population of locus coeruleus-spinal neurons through presynaptic disinhibition. Brain Res 2004; 997:67-78. [PMID: 14715151 DOI: 10.1016/j.brainres.2003.10.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The nucleus locus coeruleus (LC) plays an important role in analgesia produced by opioids and by modulation of the descending noradrenergic pathway. The functional role of micro-opioid receptors (muOR) in regulation of the excitability of spinally projecting LC neurons has not been investigated. In the present study, we tested the hypothesis that activation of presynaptic mu-opioid receptors excites a population of spinally projecting LC neurons through attenuation of gamma-aminobutyric acid (GABA)-ergic synaptic inputs. Spinally projecting LC neurons were retrogradely labeled by a fluorescent dye injected into the spinal dorsal horn of rats. Whole-cell current- and voltage-clamp recordings were performed on labeled LC neurons in brain slices. All labeled LC noradrenergic neurons were demonstrated by dopamine-beta-hydroxylase (DbetaH) immunofluorescence. In 37 labeled LC neurons, (D-Ala(2),N-Me-Phe(4),Gly-ol(5))-enkephalin (DAMGO) significantly increased the discharge activity of 17 (45.9%) neurons, but significantly inhibited the firing activity of another 15 (40.5%) cells. The excitatory effect of DAMGO on seven labeled LC neurons was diminished in the presence of bicuculline. DAMGO significantly decreased the frequency of GABA-mediated miniature inhibitory postsynaptic currents (mIPSCs) in all nine labeled LC neurons. However, DAMGO had no effect on glutamate-mediated miniature excitatory postsynaptic currents (mEPSCs) in 12 of 15 neurons. Furthermore, DAMGO significantly inhibited the peak amplitude of evoked inhibitory postsynaptic currents (eIPSCs) in all 11 labeled neurons, but had no significant effect on the evoked excitatory postsynaptic currents (eEPSCs) in 10 of these 11 neurons. Thus, data from this study suggest that activation of micro-opioid receptors excites a population of spinally projecting LC neurons by preferential inhibition of GABAergic synaptic inputs. These findings provide important new information about the descending noradrenergic modulation and analgesic mechanisms of opioids.
Collapse
Affiliation(s)
- Yu-Zhen Pan
- Department of Anesthesiology, H187, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033-0850, USA
| | | | | | | |
Collapse
|
8
|
Pan YZ, Li DP, Chen SR, Pan HL. Activation of delta-opioid receptors excites spinally projecting locus coeruleus neurons through inhibition of GABAergic inputs. J Neurophysiol 2002; 88:2675-83. [PMID: 12424303 DOI: 10.1152/jn.00298.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulation of the noradrenergic nucleus locus coeruleus (LC) releases norepinephrine in the spinal cord, which inhibits dorsal horn neurons and produces analgesia. Activation of this descending noradrenergic pathway also contributes to the analgesic action produced by systemic opioids. The delta-opioid receptors are present presynaptically in the LC. However, their functional role in the control of the activity of spinally projecting LC neurons remains uncertain. In this study, we tested the hypothesis that activation of presynaptic delta-opioid receptors excites spinally projecting LC neurons through inhibition of GABA release. Spinally projecting LC neurons were retrogradely labeled by a fluorescent dye, DiI, injected into the spinal dorsal horn of rats. Whole cell voltage- and current-clamp recordings were performed on DiI-labeled LC neurons in brain slices in vitro. Retrogradely labeled LC noradrenergic neurons were demonstrated by dopamine-beta-hydroxylase immunofluorescence. [D-Pen(2), D-Pen(5)]-enkephalin (DPDPE, 1 microM) significantly decreased the frequency of GABA-mediated miniature inhibitory postsynaptic currents (IPSCs) of nine DiI-labeled LC neurons from 2.1 +/- 0.5 to 0.7 +/- 0.2 Hz without altering their amplitude and the kinetics. On the other hand, the miniature excitatory postsynaptic currents (EPSC) of nine DiI-labeled LC neurons were not significantly altered by DPDPE. Furthermore, DPDPE significantly inhibited the amplitude of evoked IPSC but not EPSC in eight DiI-labeled LC neurons. Under the current-clamp condition, the firing activity in 9 of 11 DiI-labeled LC neurons was significantly increased by 1 microM DPDPE from 4.6 +/- 0.7 to 6.2 +/- 1.0 Hz. Bicuculline (20 microM) also significantly increased the firing frequency in 13 of 20 neurons from 1.8 +/- 0.5 to 2.8 +/- 0.6 Hz. Additionally, the excitatory effect of DPDPE on LC neurons was diminished in the presence of bicuculline. Collectively, these data strongly suggest that activation of presynaptic delta-opioid receptors by DPDPE excites a population of spinally projecting LC neurons by preferential inhibition of GABA release. Thus presynaptic delta-opioid receptors likely play an important role in the regulation of the excitability of spinally projecting LC neurons and the descending noradrenergic inhibitory system.
Collapse
Affiliation(s)
- Yu-Zhen Pan
- Department of Anesthesiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033-0850, USA.
| | | | | | | |
Collapse
|
9
|
Chen J, Koyama N, Kaneko T, Mizuno N. The locus coeruleus of the Japanese monkey (Macaca fuscata) does not express mu-opioid receptor-like immunoreactivity. Brain Res 1997; 755:326-30. [PMID: 9175900 DOI: 10.1016/s0006-8993(97)00191-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
It is well known that locus coeruleus (LC) of the rat shows intense mu-opioid receptor-like immunoreactivity (MOR-LI). In the course of our study on the distribution of MOR-LI in the brain of the Japanese monkey (Macaca fuscata), however, no MOR-LI was found in the LC although the distribution pattern of MOR-LI in other regions of the lower brainstem of the monkey was essentially the same as that observed in the rat. It was also found that immunoreactivity for Met-enkephalin, the most potent endogenous ligand for MOR, was intense in the rat LC, but very weak, if any, in the monkey LC. MOR may not be expressed in the monkey LC.
Collapse
Affiliation(s)
- J Chen
- Department of Physiology, Shiga University of Medical Science, Seta, Otsu, Japan
| | | | | | | |
Collapse
|
10
|
Abstract
This paper is the nineteenth installment of our annual review of research concerning the opiate system. It summarizes papers published during 1996 reporting the behavioral effects of the opiate peptides and antagonists, excluding the purely analgesic effects, although stress-induced analgesia is included. The specific topics covered this year include stress, tolerance and dependence; eating; drinking; gastrointestinal, renal, and hepatic function; mental illness and mood; learning, memory, and reward; cardiovascular responses; respiration and thermoregulation; seizures and other neurological disorders; electrical-related activity; general activity and locomotion; sex, pregnancy, and development; immunological responses; and other behaviors.
Collapse
Affiliation(s)
- G A Olson
- Department of Psychology, University of New Orleans, LA 70148, USA
| | | | | |
Collapse
|