1
|
Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2021; 11:595532. [PMID: 33488497 PMCID: PMC7817643 DOI: 10.3389/fneur.2020.595532] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) on tau have long been recognized as affecting protein function and contributing to neurodegeneration. The explosion of information on potential and observed PTMs on tau provides an opportunity to better understand these modifications in the context of tau homeostasis, which becomes perturbed with aging and disease. Prevailing views regard tau as a protein that undergoes abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated in Alzheimer's disease (AD) and other tauopathies. However, the phosphorylation of tau may, in fact, represent part of the normal but interrupted function and catabolism of the protein. In addition to phosphorylation, tau undergoes another forms of post-translational modification including (but not limited to), acetylation, ubiquitination, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic appreciation of how these PTMs regulate tau during health and are potentially hijacked in disease remains elusive. Recent studies have reinforced the idea that PTMs play a critical role in tau localization, protein-protein interactions, maintenance of levels, and modifying aggregate structure. These studies also provide tantalizing clues into the possibility that neurons actively choose how tau is post-translationally modified, in potentially competitive and combinatorial ways, to achieve broad, cellular programs commensurate with the distinctive environmental conditions found during development, aging, stress, and disease. Here, we review tau PTMs and describe what is currently known about their functional impacts. In addition, we classify these PTMs from the perspectives of protein localization, electrostatics, and stability, which all contribute to normal tau function and homeostasis. Finally, we assess the potential impact of tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important position in the biology of neurodegenerative diseases. This review aims to provide an integrated perspective of how post-translational modifications actively, purposefully, and dynamically remodel tau function, clearance, and aggregation. In doing so, we hope to enable a more comprehensive understanding of tau PTMs that will positively impact future studies.
Collapse
Affiliation(s)
| | | | - Aimee W. Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Smolek T, Jadhav S, Brezovakova V, Cubinkova V, Valachova B, Novak P, Zilka N. First-in-Rat Study of Human Alzheimer's Disease Tau Propagation. Mol Neurobiol 2018; 56:621-631. [PMID: 29770957 DOI: 10.1007/s12035-018-1102-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/01/2018] [Indexed: 10/16/2022]
Abstract
One of the key features of misfolded tau in human neurodegenerative disorders is its propagation from one brain area into many others. In the last decade, in vivo tau spreading has been replicated in several mouse transgenic models expressing mutated human tau as well as in normal non-transgenic mice. In this study, we demonstrate for the first time that insoluble tau isolated from human AD brain induces full-blown neurofibrillary pathology in a sporadic rat model of tauopathy expressing non-mutated truncated tau protein. By using specific monoclonal antibodies, we were able to monitor the spreading of tau isolated from human brain directly in the rat hippocampus. We found that exogenous human AD tau was able to spread from the area of injection and induce tau pathology. Interestingly, solubilisation of insoluble AD tau completely abolished the capability of tau protein to induce and spread of neurofibrillary pathology in the rat brain. Our results show that exogenous tau is able to induce and drive neurofibrillary pathology in rat model for human tauopathy in a similar way as it was described in various mouse transgenic models. Rat tau spreading model has many advantages over mouse and other organisms including size and complexity, and thus is highly suitable for identification of pathogenic mechanism of tau spreading.
Collapse
Affiliation(s)
- Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10, Bratislava, Slovak Republic.,Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10, Bratislava, Slovak Republic.,Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Veronika Brezovakova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10, Bratislava, Slovak Republic
| | - Veronika Cubinkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10, Bratislava, Slovak Republic.,Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Bernadeta Valachova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10, Bratislava, Slovak Republic
| | - Petr Novak
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10, Bratislava, Slovak Republic.,Axon Neuroscience CRM Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Centre of Excellence for Alzheimer's Disease and Related Disorders, Dubravska 9, 845 10, Bratislava, Slovak Republic. .,Axon Neuroscience R&D Services SE, Dvořákovo nábrežie 10, Bratislava, Slovak Republic.
| |
Collapse
|
3
|
Song J. Animal Model of Aluminum-Induced Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1091:113-127. [PMID: 30315452 DOI: 10.1007/978-981-13-1370-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lack of a satisfactory animal model for Alzheimer's disease (AD) has limited the reach progress of the pathogenesis of the disease and of therapeutic agents aiming to important pathophysiological points. In this chapter, we analyzed the research status of animal model of aluminum-induced Alzheimer's disease. Compared with other animal models, Al-maltolate-treated aged rabbits is a more reliable and efficient system in sharing a common mechanism with the development of neurodegeneration in Alzheimer's disease.
Collapse
Affiliation(s)
- Jing Song
- Republic Health School, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Design and Construction of a Novel Flame-Based Electroanalyzer for Sensitive and Selective Detection of Alkali ions at nM Levels by Amperometry: Discrimination of Alzheimer’s Disease. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.06.129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Wang C, Zhang F, Jiang S, Siedlak SL, Shen L, Perry G, Wang X, Tang B, Zhu X. Estrogen receptor-α is localized to neurofibrillary tangles in Alzheimer's disease. Sci Rep 2016; 6:20352. [PMID: 26837465 PMCID: PMC4738266 DOI: 10.1038/srep20352] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/30/2015] [Indexed: 01/30/2023] Open
Abstract
The female predominance for developing Alzheimer disease (AD) suggests the involvement of gender specific factor(s) such as a reduced estrogen-estrogen receptor signaling in the pathogenesis of AD. The potential role of ERα in AD pathogenesis has been explored by several groups with mixed results. We revisited this issue of expression and distribution of ERα in AD brain using a specific ERα antibody. Interestingly, we found that ERα co-localized with neurofibrillary pathology in AD brain and further demonstrated that ERα interacts with tau protein in vivo. Immunoprecipitaion experiments found increased ERα-tau interaction in the AD cases, which may account for ERα being sequestered in neuronal tau pathology. Indeed, tau overexpression in M17 cells leads to interruption of estrogen signaling. Our data support the idea that sequestration of ERα by tau pathology underlies the loss of estrogen neuroprotection during the course of AD.
Collapse
Affiliation(s)
- Chunyu Wang
- Department of Neurology, the second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Fan Zhang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosurgery, Chengdu first people’s Hospital, Chengdu, The People’s Republic of China
| | - Sirui Jiang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sandra L. Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - George Perry
- Department of Biology, The University of Texas at San Antonio, San Antonio, Texas, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
6
|
Zhu X, Castellani RJ, Moreira PI, Aliev G, Shenk JC, Siedlak SL, Harris PLR, Fujioka H, Sayre LM, Szweda PA, Szweda LI, Smith MA, Perry G. Hydroxynonenal-generated crosslinking fluorophore accumulation in Alzheimer disease reveals a dichotomy of protein turnover. Free Radic Biol Med 2012; 52:699-704. [PMID: 22137893 PMCID: PMC3268699 DOI: 10.1016/j.freeradbiomed.2011.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/28/2011] [Accepted: 11/03/2011] [Indexed: 11/22/2022]
Abstract
Lipid peroxidation generates reactive aldehydes, most notably hydroxynonenal (HNE), which covalently bind amino acid residue side chains leading to protein inactivation and insolubility. Specific adducts of lipid peroxidation have been demonstrated in intimate association with the pathological lesions of Alzheimer disease (AD), suggesting that oxidative stress is a major component of AD pathogenesis. Some HNE-protein products result in protein crosslinking through a fluorescent compound similar to lipofuscin, linking lipid peroxidation and the lipofuscin accumulation that commonly occurs in post-mitotic cells such as neurons. In this study, brain tissue from AD and control patients was examined by immunocytochemistry and immunoelectron microscopy for evidence of HNE-crosslinking modifications of the type that should accumulate in the lipofuscin pathway. Strong labeling of granulovacuolar degeneration (GVD) and Hirano bodies was noted but lipofuscin did not contain this specific HNE-fluorophore. These findings directly implicate lipid crosslinking peroxidation products as accumulating not in the lesions or the lipofuscin pathways, but instead in a distinct pathway, GVD, that accumulates cytosolic proteins.
Collapse
Affiliation(s)
- Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, Maryland, USA
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gjumrakch Aliev
- Institute for Neuroscience, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Justin C Shenk
- Institute for Neuroscience, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peggy L R Harris
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hisashi Fujioka
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lawrence M Sayre
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Pamela A Szweda
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Luke I Szweda
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Mark A Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - George Perry
- Institute for Neuroscience, University of Texas at San Antonio, San Antonio, Texas, USA.
| |
Collapse
|
7
|
Deregulation of Cytoskeletal Protein Phosphorylation and Neurodegeneration. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
8
|
|
9
|
Siedlak SL, Casadesus G, Webber KM, Pappolla MA, Atwood CS, Smith MA, Perry G. Chronic antioxidant therapy reduces oxidative stress in a mouse model of Alzheimer's disease. Free Radic Res 2009; 43:156-64. [PMID: 19160110 DOI: 10.1080/10715760802644694] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Oxidative modifications are a hallmark of oxidative imbalance in the brains of individuals with Alzheimer's, Parkinson's and prion diseases and their respective animal models. While the causes of oxidative stress are relatively well-documented, the effects of chronically reducing oxidative stress on cognition, pathology and biochemistry require further clarification. To address this, young and aged control and amyloid-beta protein precursor-over-expressing mice were fed a diet with added R-alpha lipoic acid for 10 months to determine the effect of chronic antioxidant administration on the cognition and neuropathology and biochemistry of the brain. Both wild type and transgenic mice treated with R-alpha lipoic acid displayed significant reductions in markers of oxidative modifications. On the other hand, R-alpha lipoic acid had little effect on Y-maze performance throughout the study and did not decrease end-point amyloid-beta load. These results suggest that, despite the clear role of oxidative stress in mediating amyloid pathology and cognitive decline in ageing and AbetaPP-transgenic mice, long-term antioxidant therapy, at levels within tolerable nutritional guidelines and which reduce oxidative modifications, have limited benefit.
Collapse
Affiliation(s)
- Sandra L Siedlak
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Yehuda-Shnaidman E, Kalderon B, Azazmeh N, Bar-Tana J. Gating of the mitochondrial permeability transition pore by thyroid hormone. FASEB J 2009; 24:93-104. [PMID: 19723706 DOI: 10.1096/fj.09-133538] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The calorigenic-thermogenic activity of thyroid hormone (T3) has long been ascribed to uncoupling of mitochondrial oxidative phosphorylation. However, the mode of action of T3 in promoting mitochondrial proton leak is still unresolved. Mitochondrial uncoupling by T3 is reported here to be transduced in vivo in rats and in cultured Jurkat cells by gating of the mitochondrial permeability transition pore (PTP). T3-induced PTP gating is shown here to be abrogated in inositol 1,4,5-trisphosphate (IP(3)) receptor 1 (IP(3)R1)(-/-) cells, indicating that the endoplasmic reticulum IP(3)R1 may serve as upstream target for the mitochondrial activity of T3. IP(3)R1 gating by T3 is due to its increased expression and truncation into channel-only peptides, resulting in IP(3)-independent Ca(2+) efflux. Increased cytosolic Ca(2+) results in activation of protein phosphatase 2B, dephosphorylation and depletion of mitochondrial Bcl2 (S70), and increase in mitochondrial free Bax leading to low-conductance PTP gating. The T3 transduction pathway integrates genomic and nongenomic activities of T3 in regulating mitochondrial energetics and may offer novel targets for thyromimetics designed to modulate energy expenditure.
Collapse
Affiliation(s)
- Einav Yehuda-Shnaidman
- Department of Human Nutrition and Metabolism, Hebrew University Medical School, Jerusalem, Israel
| | | | | | | |
Collapse
|
11
|
Veurink G, Fuller SJ, Atwood CS, Martins RN. ReviewGenetics, lifestyle and the roles of amyloid β and oxidative stress in Alzheimer’s disease. Ann Hum Biol 2009; 30:639-67. [PMID: 14675907 DOI: 10.1080/03014460310001620144] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This paper reviews a wide range of recent studies that have linked AD-associated biochemical and physiological changes with oxidative stress and damage. Some of these changes include disruptions in metal ion homeostasis, mitochondrial damage, reduced glucose metabolism, decreased intracellular pH and inflammation. Although the changes mentioned above are associated with oxidative stress, in most cases, a cause and effect relationship is not clearcut, as many changes are interlinked. Increases in the levels of Abeta peptides, the main protein components of the cerebral amyloid deposits of AD, have been demonstrated to occur in inherited early-onset forms of AD, and as a result of certain environmental and genetic risk factors. Abeta peptides have been shown to exhibit superoxide dismutase activity, producing hydrogen peroxide which may be responsible for the neurotoxicity exhibited by this peptide in vitro. This review also discusses the biochemical aspects of oxidative stress, antioxidant defence mechanisms, and possible antioxidant therapeutic measures which may be effective in counteracting increased levels of oxidative stress. In conclusion, this review provides support for the theory that damage caused by free radicals and oxidative stress is a primary cause of the neurodegeneration seen in AD with Abeta postulated as an initiator of this process.
Collapse
Affiliation(s)
- G Veurink
- The Sir James McCusker Alzheimer's Disease Research Unit, Hollywood Private Hospital, Perth, Australia
| | | | | | | |
Collapse
|
12
|
Reddy VP, Zhu X, Perry G, Smith MA. Oxidative stress in diabetes and Alzheimer's disease. J Alzheimers Dis 2009; 16:763-74. [PMID: 19387111 DOI: 10.3233/jad-2009-1013] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oxidative stress plays a major role in diabetes as well as in Alzheimer's disease and other related neurological diseases. Intracellular oxidative stress arises due to the imbalance in the production of reactive oxygen/reactive nitrogen species and cellular antioxidant defense mechanisms. In turn, the excess reactive oxygen/reactive nitrogen species mediate the damage of proteins and nucleic acids, which have been shown to have direct and deleterious consequences in diabetes and Alzheimer's disease. Oxidative stress also contributes to the production of advanced glycation end products through glycoxidation and lipid peroxidation. The advanced glycation end products and lipid peroxidation products are ubiquitous to diabetes and Alzheimer's disease and serve as markers of disease progression in both disorders. Antioxidants and advanced glycation end products inhibitors, either induced endogenously or exogenously introduced, may counteract with the deleterious effects of the reactive oxygen/reactive nitrogen species and thereby, in prevention or treatment paradigms, attenuate or substantially delay the onset of these devastating pathologies.
Collapse
Affiliation(s)
- V Prakash Reddy
- Department of Chemistry, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | | | | | | |
Collapse
|
13
|
Shah SB, Nolan R, Davis E, Stokin GB, Niesman I, Canto I, Glabe C, Goldstein LSB. Examination of potential mechanisms of amyloid-induced defects in neuronal transport. Neurobiol Dis 2009; 36:11-25. [PMID: 19497367 DOI: 10.1016/j.nbd.2009.05.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/03/2009] [Accepted: 05/25/2009] [Indexed: 01/31/2023] Open
Abstract
Microtubule-based neuronal transport pathways are impaired during the progression of Alzheimer's disease and other neurodegenerative conditions. However, mechanisms leading to defects in transport remain to be determined. We quantified morphological changes in neuronal cells following treatment with fibrils and unaggregated peptides of beta-amyloid (Abeta). Abeta fibrils induce axonal and dendritic swellings indicative of impaired transport. In contrast, Abeta peptides induce a necrotic phenotype in both neurons and non-neuronal cells. We tested several popular hypotheses by which aggregated Abeta could disrupt transport. Using fluorescent polystyrene beads, we developed experimental models of physical blockage and localized release of reactive oxygen species (ROS) that reliably induce swellings. Like the beads, Abeta fibrils localize in close proximity to swellings; however, fibril internalization is not required for disrupting transport. ROS and membrane permeability are also unlikely to be responsible for fibril-mediated toxicity. Collectively, our results indicate that multiple initiating factors converge upon pathways of defective transport.
Collapse
Affiliation(s)
- Sameer B Shah
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2008; 1792:482-96. [PMID: 19026743 DOI: 10.1016/j.bbadis.2008.10.014] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2008] [Revised: 10/18/2008] [Accepted: 10/21/2008] [Indexed: 12/22/2022]
Abstract
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Abeta), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Abeta aggregation may not only be the consequence of excitotoxicity, aberrant Ca(2+) signals, and proinflammatory cytokines such as TNF-alpha, but may also promote these pathological effectors. At the molecular level, insulin resistance and Abeta disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.
Collapse
|
15
|
Shiarli AM, Jennings R, Shi J, Bailey K, Davidson Y, Tian J, Bigio EH, Ghetti B, Murrell JR, Delisle MB, Mirra S, Crain B, Zolo P, Arima K, Iseki E, Murayama S, Kretzschmar H, Neumann M, Lippa C, Halliday G, Mackenzie J, Khan N, Ravid R, Dickson D, Wszolek Z, Iwatsubo T, Pickering-Brown SM, Mann DMA. Comparison of extent of tau pathology in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), frontotemporal lobar degeneration with Pick bodies and early onset Alzheimer's disease. Neuropathol Appl Neurobiol 2006; 32:374-87. [PMID: 16866983 DOI: 10.1111/j.1365-2990.2006.00736.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to gain insight into the pathogenesis of frontotemporal lobar degeneration (FTLD), the mean tau load in frontal cortex was compared in 34 patients with frontotemporal dementia linked to chromosome 17 (FTDP-17) with 12 different mutations in the tau gene (MAPT), 11 patients with sporadic FTLD with Pick bodies and 25 patients with early onset Alzheimer's disease (EOAD). Tau load was determined, as percentage of tissue occupied by stained product, by image analysis of immunohistochemically stained sections using the phospho-dependent antibodies AT8, AT100 and AT180. With AT8 and AT180 antibodies, the amount of tau was significantly (P < 0.001 in each instance) less than that in EOAD for both FTDP-17 (8.5% and 10.0% respectively) and sporadic FTLD with Pick bodies (16.1% and 10.0% respectively). With AT100, the amount of tau detected in FTDP-17 was 54% (P < 0.001) of that detected in EOAD, but no tau was detected in sporadic FTLD with Pick bodies using this particular antibody. The amount of insoluble tau deposited within the brain in FTDP-17 did not depend in any systematic way upon where the MAPT mutation was topographically located within the gene, or on the physiological or structural change generated by the mutation, regardless of which anti-tau antibody was used. Not only does the amount of tau deposited in the brain differ between the three disorders, but the pattern of phosphorylation of tau also varies according to disease. These findings raise important questions relating to the role of aggregated tau in neurodegeneration - whether this represents an adaptive response which promotes the survival of neurones, or whether it is a detrimental change that directly, or indirectly, brings about the demize of the affected cell.
Collapse
Affiliation(s)
- A-M Shiarli
- Clinical Neuroscience Research Group, University of Manchester, Greater Manchester Neurosciences Centre, Hope Hospital, Salford, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chau KWK, Chan WY, Shaw PC, Chan HYE. Biochemical investigation of Tau protein phosphorylation status and its solubility properties in Drosophila. Biochem Biophys Res Commun 2006; 346:150-9. [PMID: 16759647 DOI: 10.1016/j.bbrc.2006.05.112] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 05/13/2006] [Indexed: 12/20/2022]
Abstract
Tau hyperphosphorylation and insoluble aggregate formation are two cellular features of tauopathies. However, the contribution of Tau protein hyperphosphorylation and its aggregation to Tau pathology still remain controversial. Overexpression of human tau transgenes in the Drosophila eye is toxic and causes neuronal degeneration. We showed that human Tau protein was phosphorylated by endogenous protein kinases in flies, and overexpression of either GSK3beta or Cdk5 enhanced tau-induced toxicity. Using a dominant-negative approach, we showed that kinase activity is important for the enhancement of tau-induced toxicity. Interestingly, such enhancement was accompanied with hyperphosphorylation and alteration of protein solubility properties of Tau. This situation was reminiscent of that observed in pre-tangle neurons in tauopathies patients. We also observed age-dependent Tau aggregate formation in aged transgenic flies. In summary, tau-induced toxicity is enhanced when the human Tau protein undergoes hyperphosphorylation, and we further demonstrated that aging contributes to Tau aggregate formation. Our data also underscore the utilization of transgenic Drosophila Tau models for the studies of pre-tangle events in tauopathies.
Collapse
Affiliation(s)
- Katy Wing-Kam Chau
- Department of Biochemistry and Molecular Biotechnology Programme, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | | | |
Collapse
|
17
|
Shamasundar NM, Sathyanarayana Rao TS, Dhanunjaya Naidu M, Ravid R, Rao KSJ. A new insight on Al-maltolate-treated aged rabbit as Alzheimer's animal model. ACTA ACUST UNITED AC 2006; 52:275-92. [PMID: 16782202 DOI: 10.1016/j.brainresrev.2006.04.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 11/29/2022]
Abstract
Lack of an adequate animal model for Alzheimer's disease (AD) has limited an understanding of the pathogenesis of the disease and the development of therapeutic agents targeting key pathophysiological processes. There are undoubtedly few satisfactory animal models for exploring therapies targeting at amyloid beta (Abeta) secretion, deposition, aggregation, and probably the inflammatory response. However, an understanding of the complex events--tau, Abeta, oxidative stress, redox active iron, etc.--involved in the neuronal cell loss is still unclear due to the lack of a suitable animal model system. The use of neurotoxic agents particularly aluminum-organic complexes, especially Al-maltolate, expands the scope of AD research by providing new animal models exhibiting neurodegenerative processes relevant to AD neuropathology. Examination of different species of aged animals including the rapidly advancing transgenic mouse models revealed very limited AD-like pathology. Most other animal models have single event expression such as extracellular Abeta deposition, intraneuronal neurofilamentous aggregation of proteins akin to neurofibrillary tangles, oxidative stress or apoptosis. To date, there are no paradigms of any animal in which all the features of AD were evident. However, the intravenous injection of Al-maltolate into aged New zealand white rabbits results in conditions which mimics a number of neuropathological, biochemical and behavioral changes observed in AD. Such neurodegenerative effects include the formation of intraneuronal neurofilamentous aggregates that are tau positive, immunopositivity of Abeta, presence of redox active iron, oxidative stress and apoptosis, adds credence to the value of this animal model system. The use of this animal model should not be confused with the ongoing controversy regarding the possible role of Al in the neuropathogenesis, a debate which by no means has been concluded. Above all this animal model involving neuropathology induced by Al-maltolate provides a new information in understanding the mechanism of neurodegeneration.
Collapse
|
18
|
Bing G, Nguyen XV, Liu M, Markesbery WR, Sun A. Biophysical and biochemical characterization of the intrinsic fluorescence from neurofibrillary tangles. Neurobiol Aging 2005; 27:823-30. [PMID: 15946772 DOI: 10.1016/j.neurobiolaging.2005.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/05/2005] [Accepted: 04/12/2005] [Indexed: 11/27/2022]
Abstract
Recently, we developed a novel fluorescent method named intrinsic fluorescence induction that allows direct visualization of neurofibrillary pathology without introducing exogenous chromogens. In the present study, we further characterized the properties of this novel red fluorescence biophysically, biochemically, and neuropathologically. In vitro spectrofluorometry and in situ emission scan show that the intrinsic fluorescence of neurofibrillary tangles has a long emission wavelength peak at 620 nm and a large Stoke's shift of 70 nm. Dephosphorylation of Alzheimer's disease brain sections with alkaline phosphatase or denaturation with guanidine only causes a subtle reduction in the induced fluorescence of neurofibrillary tangles, while hydrofluoric acid or formic acid completely eliminates the fluorescence. Chemical modification of residue serine, but not tyrosine or tryptophan, reduced the intensity of induced fluorescence significantly. The induced fluorophore, thus, has unique properties, and its generation likely depends on the particular conformation of paired helical filaments, which may in turn depend on tau hyperphosphorylation.
Collapse
Affiliation(s)
- Guoying Bing
- Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536-0098, USA.
| | | | | | | | | |
Collapse
|
19
|
Liu Q, Smith MA, Avilá J, DeBernardis J, Kansal M, Takeda A, Zhu X, Nunomura A, Honda K, Moreira PI, Oliveira CR, Santos MS, Shimohama S, Aliev G, de la Torre J, Ghanbari HA, Siedlak SL, Harris PLR, Sayre LM, Perry G. Alzheimer-specific epitopes of tau represent lipid peroxidation-induced conformations. Free Radic Biol Med 2005; 38:746-54. [PMID: 15721985 DOI: 10.1016/j.freeradbiomed.2004.11.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2004] [Accepted: 11/01/2004] [Indexed: 11/21/2022]
Abstract
Several recent studies support a link between tau protein phosphorylation and adduction of tau by reactive carbonyls. Indeed, the phosphorylation-dependent adduction of tau by carbonyl products resulting from lipid peroxidation creates the neurofibrillary tangle-related antigen, Alz50. To determine whether epitopes of carbonyl-modified tau are major conformational changes associated with neurofibrillary tangle formation, we examined seven distinct antibodies raised against neurofibrillary tangles that recognize unique epitopes of tau in Alzheimer disease. Consistently, all seven antibodies recognize tau more strongly (4- to 34-fold) after treatment of normal tau with the reactive carbonyl, 4-hydroxy-2-nonenal (HNE), but only when tau is in the phosphorylated state. These findings not only support the idea that oxidative stress is involved in neurofibrillary tangle formation occurring in brains of Alzheimer disease patients, but also show, for the first time, that HNE modifications of tau promote and contribute to the generation of the major conformational properties defining neurofibrillary tangles.
Collapse
Affiliation(s)
- Quan Liu
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Liu Q, Raina AK, Smith MA, Sayre LM, Perry G. Hydroxynonenal, toxic carbonyls, and Alzheimer disease. Mol Aspects Med 2003; 24:305-13. [PMID: 12893008 DOI: 10.1016/s0098-2997(03)00025-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cytoskeletal disruption is one of the distinguishing characteristics of the vulnerable neurons in Alzheimer disease (AD). It has been suggested that these cytoskeletal changes occur secondarily to covalent modifications of the protein components. Despite the abundance and probable importance of these changes, there has been very little data regarding the identity of the modified proteins or the precise chemistry of the modifications. Here we review a specific type of modification, namely carbonylation of proteins, which has been shown to be a common result of cellular oxidative stress. Hopefully, the following discussion will help elucidate the relationship between oxidative stress, protein modification and the pathogenesis of AD.
Collapse
Affiliation(s)
- Quan Liu
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
21
|
Vickers JC, Tan A, Dickson TC. Direct determination of the proportion of intra- and extra-cellular neocortical neurofibrillary tangles in Alzheimer's disease. Brain Res 2003; 971:135-7. [PMID: 12691846 DOI: 10.1016/s0006-8993(03)02429-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the cellular localisation of neurofibrillary tangles in Alzheimer's disease. All tau-positive tangles were stained for thioflavine S, while approximately 84% of thioflavine S-stained tangles were tau-immunolabelled. Approximately 58-62% and 73-76% of thioflavine S- and tau-labelled tangles, respectively, were present within cortical neurons labelled for microtubule-associated protein-2. Thus, most neocortical tangles in Alzheimer's disease are intracellular and may not be the principal cause of neocortical cell loss.
Collapse
Affiliation(s)
- James C Vickers
- Discipline of Pathology, School of Medicine, University of Tasmania, 43 Collins St, GPO Box 252-29, Tasmania Hobart 7001, Australia.
| | | | | |
Collapse
|
22
|
Ishizuka K, Kimura T, Yoshitake J, Akaike T, Shono M, Takamatsu J, Katsuragi S, Kitamura T, Miyakawa T. Possible assessment for antioxidant capacity in Alzheimer's disease by measuring lymphocyte heme oxygenase-1 expression with real-time RT-PCR. Ann N Y Acad Sci 2002; 977:173-8. [PMID: 12480749 DOI: 10.1111/j.1749-6632.2002.tb04814.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K Ishizuka
- Department of Neuropsychiatry, Kumamoto University School of Medicine, 1-1-1 Honjo, Kumamoto 860-8556, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Castellani RJ, Harris PL, Sayre LM, Fujii J, Taniguchi N, Vitek MP, Founds H, Atwood CS, Perry G, Smith MA. Active glycation in neurofibrillary pathology of Alzheimer disease: N(epsilon)-(carboxymethyl) lysine and hexitol-lysine. Free Radic Biol Med 2001; 31:175-80. [PMID: 11440829 DOI: 10.1016/s0891-5849(01)00570-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Advanced glycation end products are a diverse class of posttranslational modifications, stemming from reactive aldehyde reactions, that have been implicated in the pathogenesis of a number of degenerative diseases. Because advanced glycation end products are accelerated by, and result in formation of, oxygen-derived free radicals, they represent an important component of the oxidative stress hypothesis of Alzheimer disease (AD). In this study, we used in situ techniques to assess N(epsilon)-(Carboxymethyl)lysine (CML), the predominant advanced glycation end product that accumulates in vivo, along with its glycation-specific precursor hexitol-lysine, in patients with AD as well as in young and aged-matched control cases. Both CML and hexitol-lysine were increased in neurons, especially those containing intracellular neurofibrillary pathology in cases of AD. The increase in hexitol-lysine and CML in AD suggests that glycation is an early event in disease pathogenesis. In addition, because CML can result from either lipid peroxidation or advanced glycation, while hexitol-lysine is solely a product of glycation, this study, together with studies demonstrating the presence of 4-hydroxy-2-nonenal adducts and pentosidine, provides evidence of two distinct oxidative processes acting in concert in AD neuropathology. Our findings support the notion that aldehyde-mediated modifications, together with oxyradical-mediated modifications, are critical pathogenic factors in AD.
Collapse
Affiliation(s)
- R J Castellani
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kim D, Koh WK, Kim JU, Lee JH, Hong HN. Okadaic acid-induced upregulation of nitrotyrosine and heme oxygenase-1 in rat cortical neuron cultures. Neurosci Lett 2001; 297:33-6. [PMID: 11114478 DOI: 10.1016/s0304-3940(00)01661-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperphosphorylation of tau is a characteristic feature of the neurodegenerative pathology in Alzheimer's disease (AD). Okadaic acid (OA) is currently used in models of AD research to increase the phosphorylation of tau. Using immunocytochemistry and fluorescent study, we found that markers of oxidative activity such as nitrotyrosine, c-jun, 2',7'-dichlorofluorescein diacetate (DCF), and heme oxygenase-1 (HO-1) were altered in OA-treated culture. Immunoreactivity of nitrotyrosine and c-jun, and DCF-oxidation were increased in degenerating neurons, while HO-1 expression was increased in astrocyte in response to OA. The data suggest that tau phosphorylation and oxidative damage be implicated in OA-induced neurodegeneration.
Collapse
Affiliation(s)
- D Kim
- Department of Anatomy and Cell Biology, College of Medicine, University of Ulsan, 388-1 PoongNap-Dong, SongPa-Gu, 138-736, Seoul, South Korea.
| | | | | | | | | |
Collapse
|
25
|
Rottkamp CA, Nunomura A, Raina AK, Sayre LM, Perry G, Smith MA. Oxidative stress, antioxidants, and Alzheimer disease. Alzheimer Dis Assoc Disord 2000; 14 Suppl 1:S62-6. [PMID: 10850732 DOI: 10.1097/00002093-200000001-00010] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent evidence in the field of Alzheimer disease research has highlighted the importance of oxidative processes in its pathogenesis. Examination of cellular changes shows that oxidative stress is an event that precedes the appearance of neurofibrillary tangles, one of the hallmark pathologies of the disease. Although it is still unclear what the initial source of the oxidative stress is in Alzheimer disease, it is likely that the process is highly dependent on the presence of redox-active transition metals, such as iron and copper. Because of the proximal role that oxidative stress mechanisms seem to play in the pathogenesis of Alzheimer disease, further investigation in this realm may lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- C A Rottkamp
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
26
|
Buée L, Bussière T, Buée-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:95-130. [PMID: 10967355 DOI: 10.1016/s0165-0173(00)00019-9] [Citation(s) in RCA: 1429] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tau proteins belong to the family of microtubule-associated proteins. They are mainly expressed in neurons where they play an important role in the assembly of tubulin monomers into microtubules to constitute the neuronal microtubules network. Microtubules are involved in maintaining the cell shape and serve as tracks for axonal transport. Tau proteins also establish some links between microtubules and other cytoskeletal elements or proteins. Tau proteins are translated from a single gene located on chromosome 17. Their expression is developmentally regulated by an alternative splicing mechanism and six different isoforms exist in the human adult brain. Tau proteins are the major constituents of intraneuronal and glial fibrillar lesions described in Alzheimer's disease and numerous neurodegenerative disorders referred to as 'tauopathies'. Molecular analysis has revealed that an abnormal phosphorylation might be one of the important events in the process leading to their aggregation. Moreover, a specific set of pathological tau proteins exhibiting a typical biochemical pattern, and a different regional and laminar distribution could characterize each of these disorders. Finally, a direct correlation has been established between the progressive involvement of the neocortical areas and the increasing severity of dementia, suggesting that pathological tau proteins are reliable marker of the neurodegenerative process. The recent discovery of tau gene mutations in frontotemporal dementia with parkinsonism linked to chromosome 17 has reinforced the predominant role attributed to tau proteins in the pathogenesis of neurodegenerative disorders, and underlined the fact that distinct sets of tau isoforms expressed in different neuronal populations could lead to different pathologies.
Collapse
Affiliation(s)
- L Buée
- INSERM U422, Place de Verdun, 59045 cedex, Lille, France.
| | | | | | | | | |
Collapse
|
27
|
Donahue JE, Berzin TM, Rafii MS, Glass DJ, Yancopoulos GD, Fallon JR, Stopa EG. Agrin in Alzheimer's disease: altered solubility and abnormal distribution within microvasculature and brain parenchyma. Proc Natl Acad Sci U S A 1999; 96:6468-72. [PMID: 10339611 PMCID: PMC26905 DOI: 10.1073/pnas.96.11.6468] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agrin is a heparan sulfate proteoglycan that is widely expressed in neurons and microvascular basal lamina in the rodent and avian central nervous system. Agrin induces the differentiation of nerve-muscle synapses, but its function in either normal or diseased brains is not known. Alzheimer's disease (AD) is characterized by loss of synapses, changes in microvascular architecture, and formation of neurofibrillary tangles and senile plaques. Here we have asked whether AD causes changes in the distribution and biochemical properties of agrin. Immunostaining of normal, aged human central nervous system revealed that agrin is expressed in neurons in multiple brain areas. Robust agrin immunoreactivity was observed uniformly in the microvascular basal lamina. In AD brains, agrin is highly concentrated in both diffuse and neuritic plaques as well as neurofibrillary tangles; neuronal expression of agrin also was observed. Furthermore, patients with AD had microvascular alterations characterized by thinning and fragmentation of the basal lamina. Detergent extraction and Western blotting showed that virtually all the agrin in normal brain is soluble in 1% SDS. In contrast, a large fraction of the agrin in AD brains is insoluble under these conditions, suggesting that it is tightly associated with beta-amyloid. Together, these data indicate that the agrin abnormalities observed in AD are closely linked to beta-amyloid deposition. These observations suggest that altered agrin expression in the microvasculature and the brain parenchyma contribute to the pathogenesis of AD.
Collapse
Affiliation(s)
- J E Donahue
- Department of Pathology (Neuropathology Division), Brown University, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
McShea A, Zelasko DA, Gerst JL, Smith MA. Signal transduction abnormalities in Alzheimer's disease: evidence of a pathogenic stimuli. Brain Res 1999; 815:237-42. [PMID: 9878757 DOI: 10.1016/s0006-8993(98)01135-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hippocampal and select cortical neuronal populations in Alzheimer's disease exhibit phenotypic changes characteristic of cells re-entering the cell division cycle. Therefore, in this study, we investigated whether components, known to trigger cellular proliferation and differentiation, upstream of the ras/mitogen-activated kinase pathway, could contribute to the activation of a signal transduction cascade in Alzheimer's disease. We found that proteins implicated in signal transduction from cell surface receptors via the ras pathway, namely Grb2 and SOS-1, were altered in cases of Alzheimer's disease in comparison to age-matched controls. SOS is increased in susceptible pyramidal neurons, while Grb2 shows more subtle alterations in subcellular distribution. Importantly, both SOS-1 and Grb2 show considerable overlap with early cytoskeletal abnormalities suggesting that the alteration in signal transduction molecules is a concurrent, if not preceding, event in the pathogenesis of Alzheimer's disease. Taken together with the cell cycle abnormalities previously reported, these findings suggest that a signal derived from the cell surface contributes to a stimulus for neurons in Alzheimer's disease to re-enter the cell cycle.
Collapse
Affiliation(s)
- A McShea
- Institute of Pathology, Case Western Reserve University, 2085 Adelbert Road, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|
29
|
Smith MA, Hirai K, Nunomura A, Perry G. Mitochondrial abnormalities: A primary basis for oxidative damage in Alzheimer's disease. Drug Dev Res 1999. [DOI: 10.1002/(sici)1098-2299(199901)46:1<26::aid-ddr5>3.0.co;2-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
30
|
Smith MA, Perry G. What are the facts and artifacts of the pathogenesis and etiology of Alzheimer disease? J Chem Neuroanat 1998; 16:35-41. [PMID: 9924971 DOI: 10.1016/s0891-0618(98)00061-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Over the past decade, an increased clinical awareness, together with advances in biochemical, cellular, and molecular analyses, have catapulted the study of Alzheimer disease to the forefront of biomedical research. During this time, a great number of theories, regarding disease pathogenesis, have come and gone but several have persisted. Here, we critically evaluate these theories in an attempt to delineate the facts from the artifacts.
Collapse
Affiliation(s)
- M A Smith
- Case Western Reserve University, Institute of Pathology, Cleveland, OH 44106, USA
| | | |
Collapse
|
31
|
Abstract
Neurofibrillary tangles, one of the neuropathological signs of Alzheimer's disease, are frequently present in brains of aged nondemented people. Ultrastructurally, neurofibrillary tangles appear as paired helical and straight filaments. Both types of filaments, made of hyperphosphorylated tau protein, are present in neurons with neurofibrillary tangles. Neurons with neurofibrillary tangles have been described to undergo an evolution, starting with the accumulation of hyperphosphorylated tau, followed by the progressive appearance of both types of filaments, and ending in the death of the neuron. We ultrastructurally studied this evolution, using immunocytochemistry with an antibody against phosphorylated tau protein, in both nondemented aged and Alzheimer's disease brains. No differences were found between nondemented and demented brains, thus indicating the occurrence of the same process in both cases. Our results also suggest that hyperphosphorylated tau protein first appears as granular material, which becomes organized into short and disordered paired helical filaments. These filaments elongate and gradually become arranged into bundles whose core regions are occupied by straight filaments.
Collapse
Affiliation(s)
- P Gómez-Ramos
- Department of Morphology, School of Medicine, Autónoma University of Madrid, Spain
| | | |
Collapse
|
32
|
Castellani RJ, Perry G, Harris PL, Cohen ML, Sayre LM, Salomon RG, Smith MA. Advanced lipid peroxidation end-products in Alexander's disease. Brain Res 1998; 787:15-8. [PMID: 9518535 DOI: 10.1016/s0006-8993(97)01224-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Rosenthal fibers (RF), intra-astrocytic hyaline inclusions, accumulate in various pathological conditions and are the histological hallmark of Alexander's disease. While the major protein components of RF have been identified, the factors accounting for their pathogenesis, accumulation, and insolubility are largely unknown. In this study, we immunohistochemically examined three cases of Alexander's disease using antibodies to a lysine-derived pyrrole modification arising from 4-hydroxy-2-nonenal, a highly cytotoxic reactive aldehyde produced by lipid peroxidation. In all the cases of Alexander's disease examined, strong immunolabeling of RF by the antibodies to 4-hydroxy-2-nonenal pyrrole adducts were noted. By contrast, age-matched control cases showed no immunoreactivity. These results indicate that modification of protein by lipid peroxidation adducts may play an important role in the formation of RF as well as in the pathogenesis of Alexander's disease. Furthermore, taken together with our previous data indicating advanced Maillard reaction end products in RF, it seems that post-translational modification of RF, initiated by oxidative stress, is critical for both the accumulation and the insolubility of RF, and therefore, by inference, in the pathogenesis of Alexander's disease.
Collapse
Affiliation(s)
- R J Castellani
- Department of Pathology, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Affiliation(s)
- M A Smith
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| |
Collapse
|
34
|
Delacourte A, Sergeant N, Wattez A, Gauvreau D, Robitaille Y. Vulnerable neuronal subsets in Alzheimer's and Pick's disease are distinguished by their tau isoform distribution and phosphorylation. Ann Neurol 1998; 43:193-204. [PMID: 9485060 DOI: 10.1002/ana.410430209] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aggregated tau proteins constitute the basic matrix of neuronal inclusions specific to numerous neurodegenerative disorders. Monodimensional and two-dimensional Western blot analyses performed on cortical brain homogenates allowed discrimination between disease-specific tau protein profiles. These observations raised the issue of the physiopathological significance of such specificities. Alzheimer's disease (AD) pathological tau proteins (PTPs) (tau 74, 69, 64, 55) were compared with those of Pick's disease (PiD) (tau 64, 55) using a panel of antibodies against peptidic sequences of tau isoforms corresponding to exons 2, 3, and 10. AD and PiD could then be critically differentiated by the absence of translated tau isoforms with exon 10 in PiD PTPs, along with the absence of the phosphorylation site on Ser262. Immunohistochemical studies corroborate these findings. Indeed, Pick bodies were strongly immunostained by an anti-"exon 2" antibody but failed to reveal any anti-exon 10 reactive epitope. Tangles in AD contained exon 2, 3, and 10 epitopes. Altogether, our results demonstrated that Pick bodies develop within specific neuronal subsets that express specific patterns of 7 isoforms lacking exon 10 peptidic sequence. We conclude that neurodegenerative disorders imply attrition of selectively vulnerable neuronal subsets, a process revealed, and may be sustained by specific tau isoform patterns.
Collapse
|
35
|
Miksík I, Deyl Z. Post-translational non-enzymatic modification of proteins. II. Separation of selected protein species after glycation and other carbonyl-mediated modifications. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 1997; 699:311-45. [PMID: 9392381 DOI: 10.1016/s0378-4347(97)00233-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There are two strategies applicable to revealing non-enzymatic post-translational modifications of proteins; while assaying of the hydrolytically stable adducts was the subject of our previous communication [1], here we attempted to review separation technologies for the unfragmented modified proteins. There are a few standard procedures used for this purpose, namely Laemmli gel electrophoresis, different modes of gel permeation chromatography and boronate affinity chromatography. The latter approach makes use of the vicinal hydroxy groups present in glycated proteins. Some (but not all) arising adducts exhibit typical fluorescence which can be exploited for detection. In most cases fluorescence is measured at 370/440 nm for the so-called advanced glycation products or at 335/385 nm for the only so far well characterized glycation marker (pentosidine). Some indication exists that, e.g., synchronous fluorescence detection will probably in the future add to the selectivity and allow the distinction of the different adducts arising during non-enzymatic post-translational modifications (glycation). The proteins reviewed are serum albumin, collagen and lens proteins while glycation of hemoglobin is the subject of another review within the present volume.
Collapse
Affiliation(s)
- I Miksík
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
36
|
Castellani RJ, Perry G, Harris PL, Monnier VM, Cohen ML, Smith MA. Advanced glycation modification of Rosenthal fibers in patients with Alexander disease. Neurosci Lett 1997; 231:79-82. [PMID: 9291145 DOI: 10.1016/s0304-3940(97)00521-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rosenthal fibers, astrocytic inclusions that accumulate in various neoplastic and non-neoplastic conditions, are a characteristic of Alexander disease, a leukodystrophy of unknown etiology. Given that alphaB crystallin is the major protein component of Rosenthal fibers and that crystallins in the diabetic and aged lens are targets for advanced glycation end product modifications via the Maillard reaction we hypothesized that Rosenthal fibers might contain similar modifications. Using antibodies specific for two products of glycation, pyrraline and pentosidine, we showed labeling of Rosenthal fibers that may account for their insolubility and accumulation. These data suggest that advanced glycation end products may be critical to the pathogenesis of Alexander disease.
Collapse
Affiliation(s)
- R J Castellani
- Department of Pathology, University of Maryland Medical System, Baltimore 21201-1595, USA
| | | | | | | | | | | |
Collapse
|
37
|
Smith MA, Nagaraj RH, Perry G. Protocol for quantitative analysis of paired helical filament solubilization: a method applicable to insoluble amyloids and inclusion bodies. BRAIN RESEARCH. BRAIN RESEARCH PROTOCOLS 1997; 1:247-52. [PMID: 9385061 DOI: 10.1016/s1385-299x(96)00038-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Biochemical studies of amyloidoses have been plagued by the sparing solubility of most amyloids in denaturant solvents. Consequently often only a subclass of amyloid protein is analyzed, a fact that is omitted in most studies. This means that there is often no evaluation of the chemical basis for amyloid insolubility, a factor that may provide valuable information concerning amyloid pathogenesis. We have devised a protocol to quantitatively evaluate the solubilization of insoluble amyloid proteins. Specifically, we use protein extraction and reduction in the volume of insoluble material as quantitative assays to establish solvents that dissolve all protein. Here we describe the application of this protocol to quantitatively establish complete solubilization of the paired helical filaments (PHFs) from Alzheimer disease. PHFs are distinct from the other amyloid that defines Alzheimer disease (AD), i.e., extracellular amyloid-beta deposits of senile plaques, nonetheless, PHFs share all the properties of, and are defined as, an amyloid, i.e., binding Congo red; beta-pleated sheet conformation and, most significantly, sparing solubility. PHFs of neurofibrillary tangles are the most striking intraneuronal change seen within the brains of patients with AD. Despite intense efforts to understand the molecular composition of this amyloid, quantitative biochemical analyses have been severely hampered by the extreme insolubility of PHF and by difficulties obtaining a homogeneous PHF fraction. Therefore, to date, all of the published studies on the biochemical composition of insoluble PHFs (SDS-insoluble) are qualitative and have provided little or no quantitative data on the proportion of material assayed. Using the solubilization protocol described herein, we found that only high pH was effective in solubilizing PHF while a variety of denaturants and chaotropes resulted in only partial release of component protein. Significantly, the approach is analytical because it allows direct assessment of the significance of two posttranslational modifications in mediating PHF insolubility, i.e., phosphorylation and glycation. Further this protocol provides solubilized protein that can be readily characterized. For example, coupling the method to immunoblotting, ELISA, microsequencing or other analytical techniques would identify components as well as provide a quantitative measure.
Collapse
Affiliation(s)
- M A Smith
- Institute of Pathology, Case Western Reserve University, Cleveland, OH 44106-2622, USA
| | | | | |
Collapse
|
38
|
Abstract
Increasing evidence suggests that oxidative damage to proteins and other macromolecules is a salient feature of the pathology of Alzheimer's disease. Establishing the source of oxidants is key to understanding what role they play in the pathogenesis of Alzheimer's disease, and one way to examine this issue is to determine which oxidants are involved in damage. In this study, we examine whether peroxynitrite, a powerful oxidant produced from the reaction of superoxide with nitric oxide, is involved in Alzheimer's disease. Peroxynitrite is a source of hydroxyl radical-like reactivity, and it directly oxidizes proteins and other macromolecules with resultant carbonyl formation from side-chain and peptide-bond cleavage. Although carbonyl formation is a major oxidative modification induced by peroxynitrite, nitration of tyrosine residues is an indicator of peroxynitrite involvement. In brain tissue from cases of Alzheimer's disease, we found increased protein nitration in neurons, including but certainly not restricted to those containing neurofibrillary tangles (NFTs). Conversely, nitrotyrosine was undetectable in the cerebral cortex of age-matched control brains. This distribution is essentially identical to that of free carbonyls. These findings provide strong evidence that peroxynitrite is involved in oxidative damage of Alzheimer's disease. Moreover, the widespread occurrence of nitrotyrosine in neurons suggests that oxidative damage is not restricted to long-lived polymers such as NFTs, but instead reflects a generalized oxidative stress that is important in disease pathogenesis.
Collapse
|
39
|
Appelt DM, Balin BJ. The association of tissue transglutaminase with human recombinant tau results in the formation of insoluble filamentous structures. Brain Res 1997; 745:21-31. [PMID: 9037390 DOI: 10.1016/s0006-8993(96)01121-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
To determine possible mechanisms by which NFTs are formed in Alzheimer's disease (AD), we investigated the ability of tissue transglutaminase (TGase) to convert human recombinant tau proteins into insoluble filamentous structures. TGase derived from guinea pig liver was activated by calcium to catalyze the in vitro cross-linking of the largest soluble recombinant tau isoform (htau40) into insoluble complexes as determined by electrophoresis following incubation in 4 M urea and SDS. The TGase-catalyzed formation of these insoluble complexes occurred within 15 min to 24 h and the decreased migration of the insoluble material correlated with increased calcium concentrations ranging from 2 mM to 50 mM when analyzed electrophoretically. TGase-treated human recombinant tau formed filamentous structures in vitro that were immunoreactive with antibodies to tau and TGase. These structures retained the insoluble characteristics typical of AD PHF/NFTs. Immunolabeling with the TGase antibody revealed that TGase is associated with the filaments formed from human recombinant tau in vitro as well as with PHFs isolated from NFTs from AD brains. These novel findings support an in vitro model for investigating the biophysical changes that occur in converting soluble tau proteins into an insoluble matrix consistent with the insoluble PHFs/NFTs which may contribute to neuronal degeneration and cell death in the AD brain.
Collapse
Affiliation(s)
- D M Appelt
- Department of Anatomy and Neurobiology, Allegheny University of the Health Sciences, Philadelphia, PA 19102-1192, USA
| | | |
Collapse
|
40
|
Smith MA, Sayre LM, Monnier VM, Perry G. Oxidative posttranslational modifications in Alzheimer disease. A possible pathogenic role in the formation of senile plaques and neurofibrillary tangles. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 28:41-8. [PMID: 8871940 DOI: 10.1007/bf02815203] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The distinctive pathological lesions of Alzheimer disease (AD), senile plaques, and neurofibrillary tangles comprise aggregates of insoluble fibrillar protein. We and other investigators recently demonstrated that several mechanisms related to oxidative stress and free-radical reactions could play a crucial role in the pathogenesis of AD and, specifically, in the formation of senile plaques and neurofibrillary tangles (NFT).
Collapse
Affiliation(s)
- M A Smith
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | |
Collapse
|