1
|
Kasozi KI, Nakimbugwe D, Ninsiima HI, Kasolo J, Matama K, Safiriyu AA, Owembabazi E, Ssempijja F, Okpanachi AO, Valladares MB. Calcium and s100a1 protein balance in the brain-heart axis in diabetic male Wistar rats. J Basic Clin Physiol Pharmacol 2020; 32:/j/jbcpp.ahead-of-print/jbcpp-2020-0074/jbcpp-2020-0074.xml. [PMID: 33098631 DOI: 10.1515/jbcpp-2020-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/07/2020] [Indexed: 11/15/2022]
Abstract
Objectives Calcium deregulation in diabetes mellitus (DM) is central to the brain-heart axis pathology. This has led to the use of medical plants in complementary medicine such as Amaranthus hypochondriacus (GA). The objective of the study was to establish the effects of grain amaranth feed supplementation on calcium, s100al protein and antioxidant levels on the brain-heart axis in diabetic male Wistar rats. Methods The study involved six groups (n=5) with DM being induced in 20 rats. To the diabetic rats, Group I received mixtard®, Group II was positive control, Groups III and IV received GA feed supplementation at 25 and 50%. In the nondiabetic rats (n=10), Group V received 50% grain amaranth while Group VI was the negative control. The brain and heart tissues were harvested after five weeks and processed using standard methods. Results Grain amaranth feed supplementation led to improved calcium levels in DM as compared to the positive control. This also led to increased s100a1, antioxidant levels in the brain-heart axis during DM. This then protected the tissues against oxidative damage, thus preserving tissue function and structure. Conclusions Grain amaranth's actions on calcium signaling subsequently affected s100a1 protein levels, leading to improved tissue function in diabetes.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- School of Medicine, Kabale University, Box 317 Kabale, Uganda
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, United Kingdom
| | - Dorothy Nakimbugwe
- Department of Food Technology & Nutrition, School of Food Technology, Nutrition & Bio-Engineering, Makerere University, Kampala, Uganda
| | | | - Josephine Kasolo
- Department of Physiology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Kevin Matama
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy, Kampala International University Western Campus, Box 71, Bushenyi, Uganda
| | - Abass Alao Safiriyu
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71 Bushenyi, Uganda
| | - Elna Owembabazi
- School of Anatomical Science, University of the Witwatersrand, 29 Princess of Wales Terrace, Johannesburg, South Africa
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71 Bushenyi, Uganda
| | - Fred Ssempijja
- Department of Anatomy, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71 Bushenyi, Uganda
| | - Alfred Omachonu Okpanachi
- Department of Physiology, Faculty of Biomedical Sciences, Kampala International University Western Campus, Box 71 Bushenyi, Uganda
| | | |
Collapse
|
2
|
Alanazi AM, Fadda L, Alhusaini A, Ahmad R, Hasan IH, Mahmoud AM. Liposomal Resveratrol and/or Carvedilol Attenuate Doxorubicin-Induced Cardiotoxicity by Modulating Inflammation, Oxidative Stress and S100A1 in Rats. Antioxidants (Basel) 2020; 9:antiox9020159. [PMID: 32079097 PMCID: PMC7070570 DOI: 10.3390/antiox9020159] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022] Open
Abstract
Doxorubicin (DOX) is a cytotoxic anthracycline antibiotic and one of the important chemotherapeutic agents for different types of cancers. DOX treatment is associated with adverse effects, particularly cardiac dysfunction. This study examined the cardioprotective effects of carvedilol (CAR) and/or resveratrol (RES) and liposomal RES (LIPO-RES) against DOX-induced cardiomyopathy, pointing to their modulatory effect on oxidative stress, inflammation, S100A1 and sarco/endoplasmic reticulum calcium ATPase2a (SERCA2a). Rats received CAR (30 mg/kg) and/or RES (20 mg/kg) or LIPO-RES (20 mg/kg) for 6 weeks and were challenged with DOX (2 mg/kg) twice per week from week 2 to week 6. DOX-administered rats exhibited a significant increase in serum creatine kinase-MB (CK-MB), troponin-I and lactate dehydrogenase (LDH) along with histological alterations, reflecting cardiac cell injury. Cardiac toll-like receptor 4 (TLR-4), inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α and interleukin (IL)-6 protein expression were up-regulated, and lipid peroxidation was increased in DOX-administered rats. Treatment with CAR, RES or LIPO-RES as well as their alternative combinations ameliorated all observed biochemical and histological alterations with the most potent effect exerted by CAR/LIPO-RES. All treatments increased cardiac antioxidants, and the expression of S100A1 and SERCA2a. In conclusion, the present study conferred new evidence on the protective effects of CAR and its combination with either RES or LIPO-RES on DOX-induced inflammation, oxidative stress and calcium dysregulation.
Collapse
Affiliation(s)
- Abeer M. Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Laila Fadda
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Ahlam Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
- Correspondence: (A.A.); (A.M.M.)
| | - Rehab Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.M.A.); (L.F.); (R.A.); (I.H.H.)
| | - Ayman M. Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: (A.A.); (A.M.M.)
| |
Collapse
|
3
|
Gao MH, Lai NC, Tang T, Guo T, Tang R, Chun BJ, Wang H, Dalton NN, Suarez J, Dillmann WH, Hammond HK. Preserved cardiac function despite marked impairment of cAMP generation. PLoS One 2013; 8:e72151. [PMID: 24147149 PMCID: PMC3797917 DOI: 10.1371/journal.pone.0072151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/06/2013] [Indexed: 01/10/2023] Open
Abstract
Objectives So many clinical trials of positive inotropes have failed, that it is now axiomatic that agents that increase cAMP are deleterious to the failing heart. An alternative strategy is to alter myocardial Ca2+ handling or myofilament response to Ca2+ using agents that do not affect cAMP. Although left ventricular (LV) function is tightly linked to adenylyl cyclase (AC) activity, the beneficial effects of AC may be independent of cAMP and instead stem from effects on Ca2+ handling. Here we ask whether an AC mutant molecule that reduces LV cAMP production would have favorable effects on LV function through its effects on Ca2+ handling alone. Methods and Results We generated transgenic mice with cardiac-directed expression of an AC6 mutant (AC6mut). Cardiac myocytes showed impaired cAMP production in response to isoproterenol (74% reduction; p<0.001), but LV size and function were normal. Isolated hearts showed preserved LV function in response to isoproterenol stimulation. AC6mut expression was associated with increased sarcoplasmic reticulum Ca2+ uptake and the EC50 for SERCA2a activation was reduced. Cardiac myocytes isolated from AC6mut mice showed increased amplitude of Ca2+ transients in response to isoproterenol (p = 0.0001). AC6mut expression also was associated with increased expression of LV S100A1 (p = 0.03) and reduced expression of phospholamban protein (p = 0.01). Conclusion LV AC mutant expression is associated with normal cardiac function despite impaired cAMP generation. The mechanism appears to be through effects on Ca2+ handling — effects that occur despite diminished cAMP.
Collapse
Affiliation(s)
- Mei Hua Gao
- VA San Diego Healthcare System and Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Brian R Cannon
- University of Maryland, Baltimore, MD, USA (BRC, DJW); Texas A&M University, College Station, TX, USA (DBZ)
| | - Danna B Zimmer
- University of Maryland, Baltimore, MD, USA (BRC, DJW); Texas A&M University, College Station, TX, USA (DBZ)
| | - David J Weber
- University of Maryland, Baltimore, MD, USA (BRC, DJW); Texas A&M University, College Station, TX, USA (DBZ)
| |
Collapse
|
5
|
Most P, Remppis A, Pleger ST, Katus HA, Koch WJ. S100A1: a novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance. Am J Physiol Regul Integr Comp Physiol 2007; 293:R568-77. [PMID: 17459908 DOI: 10.1152/ajpregu.00075.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Here we review the considerable body of evidence that has accumulated to support the notion of S100A1, a cardiac-specific Ca2+-sensor protein of the EF-hand type, as a physiological regulator of excitation-contraction coupling and inotropic reserve mechanisms in the mammalian heart. In particular, molecular mechanisms will be discussed conveying the Ca2+-dependent inotropic actions of S100A1 protein in cardiomyocytes occurring independently of β-adrenergic signaling. Moreover, we will shed light on the molecular structure-function relationship of S100A1 with its cardiac target proteins at the sarcoplasmic reticulum, the sarcomere, and the mitochondria. Furthermore, pathophysiological consequences of disturbed S100A1 protein expression on altered Ca2+handling and intertwined systems in failing myocardium will be highlighted. Subsequently, therapeutic options by means of genetic manipulation of cardiac S100A1 expression will be discussed, aiming to complete our current understanding of the role of S100A1 in diseased myocardium.
Collapse
Affiliation(s)
- Patrick Most
- Center for Translational Medicine, Laboratory for Cardiac Stem Cell and Gene Therapy, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
6
|
Fischer DF, Backendorf C. Identification of regulatory elements by gene family footprinting and in vivo analysis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 104:37-64. [PMID: 17290818 DOI: 10.1007/10_027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Gene families of recently duplicated but subsequently diverged genes provide an unique opportunity for comparative analysis of regulatory elements. We have studied the human SPRR gene family of small proline rich proteins involved in barrier function of stratified squamous epithelia. These genes are all expressed in normal human keratinocytes, but respond differently to environmental insults. Comparisons of the functional promoter regions allows the rapid identification of both conserved and of novel regulatory elements that appeared after gene duplication. Competitive electrophoretic mobility shift assays can be used to confirm their presence. Here we show the power of gene family footprinting by the identification of two novel elements in the SPRR3 promoter, not present in SPRR1A and SPRR2A. One of these elements binds a protein similar to GAAP-1, a pro-apoptotic activator of IRF-1 and p53. In vivo analysis shows that this element functions as an inhibitor of SPRR3 transcription. The second novel element functions as an activator of promoter activity and is characterized by its A/T rich sequence. The latter interacting protein indeed binds through contacts in the minor groove, and strikingly, depends on the presence of calcium for DNA interaction.
Collapse
Affiliation(s)
- David F Fischer
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
7
|
Sandelin M, Zabihi S, Liu L, Wicher G, Kozlova EN. Metastasis-associated S100A4 (Mts1) protein is expressed in subpopulations of sensory and autonomic neurons and in Schwann cells of the adult rat. J Comp Neurol 2004; 473:233-43. [PMID: 15101091 DOI: 10.1002/cne.20115] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
S100A4 (Mts1) is a member of a family of calcium-binding proteins of the EF-hand type, which are widely expressed in the nervous system, where they appear to be involved in the regulation of neuron survival, plasticity, and response to injury or disease. S100A4 has previously been demonstrated in astrocytes of the white matter and rostral migratory stream of the adult rat. After injury, S100A4 is markedly up-regulated in affected central nervous white matter areas as well as in the periventricular area and rostral migratory stream. Here, we show that S100A4 is expressed in a subpopulation of dorsal root, trigeminal, geniculate, and nodose ganglion cells; in a subpopulation of postganglionic sympathetic and parasympathetic neurons; in chromaffin cells of the adrenal medulla; and in satellite and Schwann cells. In dorsal root ganglia, S100A4-positive cells appear to constitute a subpopulation of small ganglion neurons, a few of which coexpressed calcitonin gene-related peptide (CGRP) and Griffonia simplicifolia agglutinin (GSA) isolectin B4 (B4). S100A4 protein appears to be transported from dorsal root ganglia to the spinal cord, where it is deposited in the tract of Lissauer. After peripheral nerve or dorsal root injury, a few S100A4-positive cells coexpress CGRP, GSA, or galanin. Peripheral nerve or dorsal root injury induces a marked up-regulation of S100A4 expression in satellite cells in the ganglion and in Schwann cells at the injury site and in the distal stump. This pattern of distribution partially overlaps that of the previously studied S100B and S100A6 proteins, indicating a possible functional cooperation between these proteins. The presence of S100A4 in sensory neurons, including their processes in the central nervous system, suggests that S100A4 is involved in propagation of sensory impulses in specific fiber types.
Collapse
Affiliation(s)
- Martin Sandelin
- Department of Neuroscience, Uppsala University Biomedical Center, SE-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
8
|
Nishiyama H, Knopfel T, Endo S, Itohara S. Glial protein S100B modulates long-term neuronal synaptic plasticity. Proc Natl Acad Sci U S A 2002; 99:4037-42. [PMID: 11891290 PMCID: PMC122644 DOI: 10.1073/pnas.052020999] [Citation(s) in RCA: 195] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Glial cells are traditionally regarded as elements for structural support and ionic homeostasis, but have recently attracted attention as putative integral elements of the machinery involved in synaptic transmission and plasticity. Here, we demonstrate that calcium-binding protein S100B, which is synthesized in considerable amounts in astrocytes (a major glial cell subtype), modulates long-term synaptic plasticity. Mutant mice devoid of S100B developed normally and had no detectable abnormalities in the cytoarchitecture of the brain. These mutant mice, however, had strengthened synaptic plasticity as identified by enhanced long-term potentiation (LTP) in the hippocampal CA1 region. Perfusion of hippocampal slices with recombinant S100B proteins reversed the levels of LTP in the mutant slices to those of the wild-type slices, indicating that S100B might act extracellularly. In addition to enhanced LTP, mutant mice had enhanced spatial memory in the Morris water maze test and enhanced fear memory in the contextual fear conditioning. The results indicate that S100B is a glial modulator of neuronal synaptic plasticity and strengthen the notion that glial-neuronal interaction is important for information processing in the brain.
Collapse
Affiliation(s)
- Hiroshi Nishiyama
- Laboratories for Behavioral Genetics and Neuronal Circuit Dynamics, and Neuronal Circuit Mechanisms Research Group, Brain Science Institute (BSI), Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | |
Collapse
|
9
|
Coppens AG, Kiss R, Heizmann CW, Schäfer BW, Poncelet L. Immunolocalization of the calcium binding S100A1, S100A5 and S100A6 proteins in the dog cochlea during postnatal development. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2001; 126:191-9. [PMID: 11248353 DOI: 10.1016/s0165-3806(00)00153-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The immunolocalization of three members of the S100 calcium-binding protein family was investigated in the dog cochlea during normal postnatal development. Sections of decalcified and paraffin-embedded cochleae from 16 beagle puppies aged from birth to 3 months were treated with polyclonal antisera raised against the human recombinant S100A1, S100A5, and S100A6 proteins. At birth, in the dog cochlea, S100A1 was expressed in the immature Deiter's cells, and slightly in the pillar cells. From the second week, S100A1 was detected in the supporting structures of the organ of Corti, i.e. the Deiter's, the pillar, the border, and the Hensen's cells, and in the reticular membrane. From birth onwards, S100A5 remained a neuronal-specific protein, only located in a subpopulation of neurons in the spiral ganglion. S100A6 was not expressed at birth. From the second week of life, the Schwann cells and nerve sheaths in the modiolus, in the spiral ganglion, and running in the direction of the organ of Corti exhibited S100A6-labeling. From the 12th postnatal day, some scattered intermediate cells started to express S100A6 protein in the stria vascularis. The number of labeled intermediate cells increased during the third week. At adult stage, the intermediate cells were S100A6-stained with cytoplasmic labeling throughout the stria vascularis from the base to the apex of the cochlea. None of the other cochlear structures expressed the S100 proteins under study during the postnatal development of the dog cochlea. The S100A1, S100A5, S100A6 immunostaining was limited to specific cell types in dog cochlea. These S100 proteins were useful markers in the study of supporting cells, neurons, nerve fibers sheaths and stria vascularis (S100A6) during the normal postnatal development of the dog cochlea.
Collapse
Affiliation(s)
- A G Coppens
- Laboratory of Anatomy and Embryology, Veterinary Anatomy, Faculty of Medicine, Free University of Brussels, 808 Lennik Street, B-1070 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
10
|
Kiewitz R, Lyons GE, Schäfer BW, Heizmann CW. Transcriptional regulation of S100A1 and expression during mouse heart development. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1498:207-19. [PMID: 11108964 DOI: 10.1016/s0167-4889(00)00097-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
S100A1, a member of the large EF-hand family of Ca(2+)-binding proteins, is mainly expressed in the mammalian heart. To assess the underlying mechanisms for cell- and tissue-specific expression we isolated and characterized the mouse S100A1 gene. The gene displays a high degree of homology to the human and rat genes, especially in the exonic sequences. In its promoter region and the first intron, we identified regulatory elements characteristic for cardiac and slow skeletal muscle restricted genes. Transfection assays with luciferase constructs containing different parts of the S100A1 gene demonstrated the active expression in primary mouse cardiomyocytes and that its 5'-upstream region containing a putative cardiac enhancer showed a greatly increased activity. Furthermore, we investigated the expression of the S100A1 mRNA during embryonic mouse development, using in situ hybridization. S100A1 transcripts were first detected in the primitive heart at embryonic day (E) 8, with equal levels in the atrium and ventricle. During development up to E17.5 we detected a shift in the S100A1 expression pattern with lower levels in atrial and high levels in ventricular myocardium. The regulatory elements identified in the mouse S100A1 promoter correspond well with the observed expression pattern and suggest that S100A1 has an important function during heart muscle development.
Collapse
Affiliation(s)
- R Kiewitz
- Division of Clinical Chemistry and Biochemistry, Department of Pediatrics, University of Zürich, Switzerland
| | | | | | | |
Collapse
|
11
|
Ehlermann P, Remppis A, Guddat O, Weimann J, Schnabel PA, Motsch J, Heizmann CW, Katus HA. Right ventricular upregulation of the Ca(2+) binding protein S100A1 in chronic pulmonary hypertension. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1500:249-55. [PMID: 10657594 DOI: 10.1016/s0925-4439(99)00106-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Ca(2+) binding protein S100A1 increases the Ca(2+) release from the sarcoplasmatic reticulum by interacting with the ryanodine receptor. In order to understand whether this effect might be operative in the early course of hypertrophy, when myocardium is able to meet increased workload, we investigated the expression of S100A1 in a model of moderate right ventricular hypertrophy. The pulmonary arteries of nine pigs were embolised three times with Sephadex G-50. After 70 days, all pigs showed a moderate pulmonary hypertension. Right ventricular tissue of embolised animals showed a significant increase of connective tissue and enlargement of myocyte diameters. In controls, we found a differential expression of S100A1 with significantly lower S100A1 protein levels in right ventricular compared to left ventricular tissue. In pulmonary hypertension, S100A1 expression increased significantly in hypertrophied right ventricles while it was unchanged in left ventricular tissue. No change was observed in the expression of SERCA2a and phospholamban. Our data show, for the first time, that moderate pressure overload results in an upregulation of S100A1. This may reflect an adaptive response of myocardial Ca(2+) homeostasis to a higher workload.
Collapse
Affiliation(s)
- P Ehlermann
- Medizinische Klinik II, Medizinische Universität zu Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:191-231. [PMID: 10395934 DOI: 10.1016/s0167-4889(99)00058-0] [Citation(s) in RCA: 499] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A multigenic family of Ca2+-binding proteins of the EF-hand type known as S100 comprises 19 members that are differentially expressed in a large number of cell types. Members of this protein family have been implicated in the Ca2+-dependent (and, in some cases, Zn2+- or Cu2+-dependent) regulation of a variety of intracellular activities such as protein phosphorylation, enzyme activities, cell proliferation (including neoplastic transformation) and differentiation, the dynamics of cytoskeleton constituents, the structural organization of membranes, intracellular Ca2+ homeostasis, inflammation, and in protection from oxidative cell damage. Some S100 members are released or secreted into the extracellular space and exert trophic or toxic effects depending on their concentration, act as chemoattractants for leukocytes, modulate cell proliferation, or regulate macrophage activation. Structural data suggest that many S100 members exist within cells as dimers in which the two monomers are related by a two-fold axis of rotation and that Ca2+ binding induces in individual monomers the exposure of a binding surface with which S100 dimers are believed to interact with their target proteins. Thus, any S100 dimer is suggested to expose two binding surfaces on opposite sides, which renders homodimeric S100 proteins ideal for crossbridging two homologous or heterologous target proteins. Although in some cases different S100 proteins share their target proteins, in most cases a high degree of target specificity has been described, suggesting that individual S100 members might be implicated in the regulation of specific activities. On the other hand, the relatively large number of target proteins identified for a single S100 protein might depend on the specific role played by the individual regions that in an S100 molecule contribute to the formation of the binding surface. The pleiotropic roles played by S100 members, the identification of S100 target proteins, the analysis of functional correlates of S100-target protein interactions, and the elucidation of the three-dimensional structure of some S100 members have greatly increased the interest in S100 proteins and our knowledge of S100 protein biology in the last few years. S100 proteins probably are an example of calcium-modulated, regulatory proteins that intervene in the fine tuning of a relatively large number of specific intracellular and (in the case of some members) extracellular activities. Systems, including knock-out animal models, should be now used with the aim of defining the correspondence between the in vitro regulatory role(s) attributed to individual members of this protein family and the in vivo function(s) of each S100 protein.
Collapse
Affiliation(s)
- R Donato
- Section of Anatomy, Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Via del Giochetto, C.P. 81 Succ. 3, 06122, Perugia, Italy.
| |
Collapse
|
13
|
Mandinova A, Atar D, Schäfer BW, Spiess M, Aebi U, Heizmann CW. Distinct subcellular localization of calcium binding S100 proteins in human smooth muscle cells and their relocation in response to rises in intracellular calcium. J Cell Sci 1998; 111 ( Pt 14):2043-54. [PMID: 9645951 DOI: 10.1242/jcs.111.14.2043] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Changes in cytosolic Ca2+ concentration control a wide range of cellular responses, and intracellular Ca2+-binding proteins are the key molecules to transduce Ca2+ signaling via interactions with different types of target proteins. Among these, S100 Ca2+-binding proteins, characterized by a common structural motif, the EF-hand, have recently attracted major interest due to their cell- and tissue-specific expression pattern and involvement in various pathological processes. The aim of our study was to identify the subcellular localization of S100 proteins in vascular smooth muscle cell lines derived from human aorta and intestinal smooth muscles, and in primary cell cultures derived from arterial smooth muscle tissue under normal conditions and after stimulation of the intracellular Ca2+ concentration. Confocal laser scanning microscopy was used with a specially designed colocalization software. Distinct intracellular localization of S100 proteins was observed: S100A6 was present in the sarcoplasmic reticulum as well as in the cell nucleus. S100A1 and S100A4 were found predominantly in the cytosol where they were strongly associated with the sarcoplasmic reticulum and with actin stress fibers. In contrast, S100A2 was located primarily in the cell nucleus. Using a sedimentation assay and subsequent electron microscopy after negative staining, we demonstrated that S100A1 directly interacts with filamentous actin in a Ca2+-dependent manner. After thapsigargin (1 microM) induced increase of the intracellular Ca2+ concentration, specific vesicular structures in the sarcoplasmic reticulum region of the cell were formed with high S100 protein content. In conclusion, we demonstrated a distinct subcellular localization pattern of S100 proteins and their interaction with actin filaments and the sarcoplasmic reticulum in human smooth muscle cells. The specific translocation of S100 proteins after intracellular Ca2+ increase supports the hypothesis that S100 proteins exert several important functions in the regulation of Ca2+ homeostasis in smooth muscle cells.
Collapse
Affiliation(s)
- A Mandinova
- Maurice E. Müller-Institute, Biocentrum, University of Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
14
|
Heierhorst J, Mann RJ, Kemp BE. Interaction of the recombinant S100A1 protein with twitchin kinase, and comparison with other Ca2+-binding proteins. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:127-33. [PMID: 9363763 DOI: 10.1111/j.1432-1033.1997.00127.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The giant myosin-associated twitchin kinase, a member of the Ca2+-regulated protein kinase superfamily, is activated by the EF-hand protein S100A1 in a Ca2+-dependent and Zn2+-enhanced manner. We used recombinant S100A1 to further characterize the interaction between the two proteins. Zn2+ enhanced the binding of Ca2+/S100A1 to twitchin kinase fragments (Kd < 50 nM) in assays using a BIAcore biosensor by reducing the S100A1 off rate. Other Ca2+-binding proteins (S100A6, calmodulin, and the calmodulin-like domain of Ca2+-dependent protein kinase alpha) bound to the kinase but did not activate it. These results indicate that binding of Ca2+-binding proteins alone is insufficient to trigger the intramolecular rearrangement of kinase autoinhibitory contacts required for twitchin kinase activation that is specifically elicited by the S100A1 protein. Kinase fragments that contained only the autoinhibited catalytic sequence or an additional immunoglobulin-like domain had very similar properties, indicating that the tethered immunoglobulin-like domain does not modulate kinase regulation.
Collapse
Affiliation(s)
- J Heierhorst
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| | | | | |
Collapse
|
15
|
Zimmer DB, Chessher J, Song W. Nucleotide homologies in genes encoding members of the S100 protein family. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1313:229-38. [PMID: 8898859 DOI: 10.1016/0167-4889(96)00094-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Members of the S100 protein family exhibit a unique pattern of cell/tissue-specific expression and approx. 50% similarity at the amino-acid level. The cDNAs encoding many of these proteins from a variety of species are now available making a comparison of these family members at the nucleotide level possible. With few exceptions, family members exhibited less nucleotide identity than amino-acid similarity. Furthermore, the pattern of divergence calculated on the basis of nucleotide identity did not always agree with that calculated on the basis of amino-acid similarity. The majority of sequence diversity occurred in the nontranslated regions suggesting that these regions may be involved in directing the expression of particular members of the family to specific cell types. When comparisons of individual family members were made across species, the following order of species diversity was observed: rat/mouse < human/bovine < porcine < rabbit/avian < Xenopus laevis. The structure of the gene loci encoding these proteins was remarkably conserved both within family members of a given species as well as in individual family members from different species. Although there appears to be great diversity in the 5' flanking regions of these genes, members of the family share at least one common potential regulatory element-the S100 protein element. Thus, membership in the S100 family could be ascertained on the basis of gene organization and the presence of an SPE. Although functional data are limited, the available data indicate that the regulation of the expression of S100 family members is complex and involves both positive and negative regulatory elements. Additional nucleic acid sequences and complimentary functional studies will be required to dissect the mechanisms which target the expression of the members of this family to specific cell types during development.
Collapse
Affiliation(s)
- D B Zimmer
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile 36688, USA.
| | | | | |
Collapse
|