1
|
El Tabbal J. Monosodium glutamate in a type 2 diabetes context: A large scoping review. Regul Toxicol Pharmacol 2022; 133:105223. [PMID: 35817208 DOI: 10.1016/j.yrtph.2022.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
This scoping review aimed to map and elaborate the heterogenous and inconclusive body of evidence relating monosodium glutamate (MSG) and type 2 diabetes (T2DM). For this reason, multiple health outcomes related to T2DM were included and a systematic search was conducted. Experimental and observational trials between 1995 and January 2021 were collected. The tests were highly heterogenous in their samples, doses, route of exposures, durations, diets and conclusions. There was a pattern of negative effects of MSG at oral doses ≥2,000 mg/kg of body weight, and by gavage or injection at any given dose. Evidence was lacking in many areas and most of the evidence relied on short term tests. Further research should focus on standardizing and justifying methodologies, conducting long term studies and toxicokinetic tests, and avoiding bias. Focusing on the gaps highlighted and investigating mechanisms of action of MSG is crucial. Evidence-based toxicology is encouraged.
Collapse
Affiliation(s)
- Jana El Tabbal
- Department of Health Sciences, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom.
| |
Collapse
|
2
|
Roberts A, Lynch B, Rietjens IMCM. Risk Assessment Paradigm for Glutamate. ANNALS OF NUTRITION AND METABOLISM 2018; 73 Suppl 5:53-64. [PMID: 30508819 DOI: 10.1159/000494783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Re-evaluation of the use of glutamic acid and glutamate salts (referred to as glutamate hereafter) by the European Food Safety Authority (EFSA) proposed a group acceptable daily intake (ADI) of 30 mg/kg body weight (bw)/day. SUMMARY This ADI is below the normal dietary intake, while even intake of free glutamate by breast-fed babies can be above this ADI. In addition, the pre-natal developmental toxicity study selected by EFSA, has never been used by regulatory authorities worldwide for the safety assessment of glutamate despite it being available for nearly 40 years. Also, the EFSA ignored that toxicokinetic data provide support for eliminating the use of an uncertainty factor for interspecies differences in kinetics. Key Messages: A 3-generation reproductive toxicity study in mice that includes extensive brain histopathology, provides a better point of departure showing no effects up to the highest dose tested of 6,000 mg/kg bw/day. Furthermore, kinetic data support use of a compound-specific uncertainty factor of 25 instead of 100. Thus, an ADI of at least 240 mg/kg bw/day would be indicated. In fact, there is no compelling evidence to indicate that the previous ADI of "not specified" warrants any change.
Collapse
Affiliation(s)
- Ashley Roberts
- Intertek Scientific and Regulatory Consultancy Health, Environmental and Regulatory Services (HERS), Mississauga, Ontario, Canada
| | - Barry Lynch
- Intertek Scientific and Regulatory Consultancy Health, Environmental and Regulatory Services (HERS), Mississauga, Ontario, Canada
| | | |
Collapse
|
3
|
Vitor-de-Lima SM, Medeiros LDB, Benevides RDDL, Dos Santos CN, Lima da Silva NO, Guedes RCA. Monosodium glutamate and treadmill exercise: Anxiety-like behavior and spreading depression features in young adult rats. Nutr Neurosci 2017; 22:435-443. [PMID: 29125056 DOI: 10.1080/1028415x.2017.1398301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The route of administration is an important factor in determining the action of some drugs. We previously demonstrated that subcutaneous monosodium glutamate (MSG) accelerated cortical spreading depression (CSD) in the rat and that treadmill exercise attenuated this effect. This study evaluated whether other routes of administration exert the same action by testing orogastric (gavage) and topical cortical MSG administration in treadmill-exercised and sedentary rats. Additionally, in the orogastric treatment we tested anxiety-like behavior. METHODS Exercised and sedentary rats received per gavage water or MSG (1 or 2 g/kg) daily from postnatal (P) day 7 to 27. Behavioral tests (open field and elevated plus-maze) occurred at P53 ± 3. At P56 ± 3, we analyzed CSD parameters (velocity, amplitude, and duration of the negative potential change). Other three groups of rats received an MSG solution (25, 50 or 75 mg/ml) topically to the intact dura mater during CSD recording. RESULTS MSG-gavage increased anxiety-like behavior and the CSD velocities compared with water-treated controls (P < 0.05). Exercise decelerated CSD. In contrast to gavage, which accelerated CSD, topical MSG dose-dependently and reversibly impaired CSD propagation, reduced CSD amplitude and increased CSD duration (P < 0.05). CONCLUSIONS The exercise-dependent attenuation of the effects of MSG confirms our previous results in rats treated subcutaneously with MSG. CSD results suggest two distinct mechanisms for gavage and topical MSG administration. Additionally, data suggest that exercise can help protect the developing and adult brain against the deleterious actions of MSG.
Collapse
|
4
|
Mortensen A, Aguilar F, Crebelli R, Di Domenico A, Dusemund B, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Leblanc JC, Lindtner O, Moldeus P, Mosesso P, Parent-Massin D, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Younes M, Boon P, Chrysafidis D, Gürtler R, Tobback P, Altieri A, Rincon AM, Lambré C. Re-evaluation of glutamic acid (E 620), sodium glutamate (E 621), potassium glutamate (E 622), calcium glutamate (E 623), ammonium glutamate (E 624) and magnesium glutamate (E 625) as food additives. EFSA J 2017; 15:e04910. [PMID: 32625571 PMCID: PMC7009848 DOI: 10.2903/j.efsa.2017.4910] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of glutamic acid-glutamates (E 620-625) when used as food additives. Glutamate is absorbed in the intestine and it is presystemically metabolised in the gut wall. No adverse effects were observed in the available short-term, subchronic, chronic, reproductive and developmental studies. The only effect observed was increased kidney weight and increased spleen weight; however, the increase in organ weight was not accompanied by adverse histopathological findings and, therefore, the increase in organ weight was not considered as an adverse effect. The Panel considered that glutamic acid-glutamates (E 620-625) did not raise concern with regards to genotoxicity. From a neurodevelopmental toxicity study, a no observed adverse effect level (NOAEL) of 3,200 mg monosodium glutamate/kg body weight (bw) per day could be identified. The Panel assessed the suitability of human data to be used for the derivation of a health-based guidance value. Although effects on humans were identified human data were not suitable due to the lack of dose-response data from which a dose without effect could be identified. Based on the NOAEL of 3,200 mg monosodium glutamate/kg bw per day from the neurodevelopmental toxicity study and applying the default uncertainty factor of 100, the Panel derived a group acceptable daily intake (ADI) of 30 mg/kg bw per day, expressed as glutamic acid, for glutamic acid and glutamates (E 620-625). The Panel noted that the exposure to glutamic acid and glutamates (E 620-625) exceeded not only the proposed ADI, but also doses associated with adverse effects in humans for some population groups.
Collapse
|
5
|
Guyenet SJ, Matsen ME, Morton GJ, Kaiyala KJ, Schwartz MW. Rapid glutamate release in the mediobasal hypothalamus accompanies feeding and is exaggerated by an obesogenic food. Mol Metab 2013; 2:116-22. [PMID: 24199157 DOI: 10.1016/j.molmet.2013.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/02/2013] [Accepted: 02/04/2013] [Indexed: 10/27/2022] Open
Abstract
The mediobasal hypothalamus (MBH) plays a central role in the regulation of food intake and energy balance. Although the excitatory neurotransmitter glutamate is implicated in energy balance regulation by the MBH, the hypothesis that feeding elicits local glutamate release remains untested. To test this hypothesis, we employed a glutamate biosensor that measures glutamate concentrations at 1-s intervals in conscious, freely behaving rats. Results indicate that feeding is associated with an increase of MBH glutamate concentration that occurs within 1-2 s of oral contact with a food pellet, and the glutamate response to a palatable high-fat pellet is greatly exaggerated relative to chow. In contrast, glutamate responses were not observed during water ingestion or other observed behaviors. These findings indicate that feeding is associated with rapid release of glutamate in the MBH, that this release is exaggerated with an obesogenic food, and that this response is likely stimulated by orosensory factors.
Collapse
Affiliation(s)
- Stephan J Guyenet
- Diabetes and Obesity Center of Excellence, Department of Medicine, University of Washington, UW Medicine at South Lake Union, 850 Republican Street, Box 358055, Seattle, WA 98109, USA
| | | | | | | | | |
Collapse
|
6
|
Seo HJ, Ham HD, Jin HY, Lee WH, Hwang HS, Park SA, Kim YS, Choi SC, Lee S, Oh KJ, Kim BS, Park BR, Lee MY. Chronic Administration of Monosodium Glutamate under Chronic Variable Stress Impaired Hypothalamic-Pituitary-Adrenal Axis Function in Rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:213-21. [PMID: 20827335 DOI: 10.4196/kjpp.2010.14.4.213] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 07/08/2010] [Accepted: 07/10/2010] [Indexed: 11/15/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is the primary endocrine system to respond to stress. The HPA axis may be affected by increased level of corticotrophin-releasing factors under chronic stress and by chronic administration of monosodium glutamate (MSG). The purpose of this study was to investigate whether chronic MSG administration aggravates chronic variable stress (CVS)-induced behavioral and hormonal changes. Twenty-four adult male Sprague-Dawley rats, weighing 200~220 g, were divided into 4 groups as follows: water administration (CON), MSG (3 g/kg) administration (MSG), CVS, and CVS with MSG (3 g/kg) administration (CVS+MSG). In addition, for the purpose of comparing the effect on plasma corticosterone levels between chronic stress and daily care or acute stress, 2 groups were added at the end of the experiment; the 2 new groups were as follows: naïve mice (n=7) and mice exposed to restraint stress for 2 h just before decapitation (A-Str, n=7). In an open field test performed after the experiment, the CVS+MSG group significant decrease in activity. The increase in relative adrenal weights in the CVS and CVS+MSG group was significantly greater than those in the CON and/or MSG groups. In spite of the increase in the relative adrenal weight, there was a significant decrease in the plasma corticosterone levels in the CVS+MSG group as compared to all other groups, except the naïve group. These results suggest that impaired HPA axis function as well as the decrease in the behavioral activity in adult rats can be induced by chronic MSG administration under CVS rather than CVS alone.
Collapse
Affiliation(s)
- Hee Jeong Seo
- Department of Physiology and Digestive Disease Research Institute, School of Medicine, Wonkwang University, Iksan 570-749, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Isa IM, Ab Ghani S. A non-plasticized chitosan based solid state electrode for flow injection analysis of glutamate in food samples. Food Chem 2009. [DOI: 10.1016/j.foodchem.2008.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
León D, Albasanz JL, Castillo CA, Martín M. Effect of glutamate intake during gestation on adenosine A(1) receptor/adenylyl cyclase pathway in both maternal and fetal rat brain. J Neurochem 2007; 104:435-45. [PMID: 17953672 DOI: 10.1111/j.1471-4159.2007.04998.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pregnant Wistar rats were orally treated with 1 g/L l-glutamate during the entire gestational period and the status of adenosine A(1) receptor (A(1)R)/adenylyl cyclase transduction pathway from maternal and fetal brain was analyzed. Glutamate consumption, estimated from the loss of water from the drinking bottles, was 110 +/- 4.6 mg/kg/day. In mother brains glutamate intake did not significantly alter the B(max) value, although the K(d) value was significantly decreased. However in fetus brain, a significant decrease in B(max) was observed, without an alteration of K(d) value. Similar results were observed by western blot assays using specific A(1)R antibody, suggesting a down-regulation of A(1)R in fetal brain. Concerning alpha subunits of inhibitory G proteins (Gi), alphaGi(3) protein was slightly but significantly decreased in maternal brain without alterations of either Gi(1) or Gi(2). In contrast, alphaGi(1) and alphaGi(2) isoforms were increased in fetal brain. On the other hand, basal, forskolin, and forskolin plus GTPgammaS-stimulated adenylyl cyclase activity was significantly decreased in both maternal and fetal brain, and this was more prominent in fetal than in maternal brain. Finally, A(1)R functionality was significantly decreased in mother brain whereas no significant differences were detected in fetus brain. These results suggest that glutamate administered to pregnant rats modulates A(1)R signaling pathways in both tissues, showing an A(1)R down-regulation in fetal brain, and desensitization in maternal brain.
Collapse
Affiliation(s)
- David León
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Químicas, Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, Ciudad Real, Spain
| | | | | | | |
Collapse
|
9
|
Featherstone DE, Shippy SA. Regulation of synaptic transmission by ambient extracellular glutamate. Neuroscientist 2007; 14:171-81. [PMID: 17947494 DOI: 10.1177/1073858407308518] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many neuroscientists assume that ambient extracellular glutamate concentrations in the nervous system are biologically negligible under nonpathological conditions. This assumption is false. Hundreds of studies over several decades suggest that ambient extracellular glutamate levels in the intact mammalian brain are approximately 0.5 to approximately 5 microM. This has important implications. Glutamate receptors are desensitized by glutamate concentrations significantly lower than needed for receptor activation; 0.5 to 5 microM of glutamate is high enough to cause constitutive desensitization of most glutamate receptors. Therefore, most glutamate receptors in vivo may be constitutively desensitized, and ambient extracellular glutamate and receptor desensitization may be potent but generally unrecognized regulators of synaptic transmission. Unfortunately, the mechanisms regulating ambient extracellular glutamate and glutamate receptor desensitization remain poorly understood and understudied.
Collapse
Affiliation(s)
- David E Featherstone
- Department of Biological Sciences, University of Illinois at Chicago 60607, USA.
| | | |
Collapse
|
10
|
Sakuma T, Zhao Y, Sugita M, Sagawa M, Toga H, Ishibashi T, Nishio M, Matthay MA. Malnutrition impairs alveolar fluid clearance in rat lungs. Am J Physiol Lung Cell Mol Physiol 2004; 286:L1268-74. [PMID: 14977628 DOI: 10.1152/ajplung.00229.2003] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Inadequate nutrition complicates the clinical course of critically ill patients, and many of these patients develop pulmonary edema. However, little is known about the effect of malnutrition on the mechanisms that resolve alveolar edema. Therefore, we studied the mechanisms responsible for the decrease in alveolar fluid clearance in rats exposed to malnutrition. Rats were allowed access to water, but not to food, for 120 h. Then, the left and right lungs were isolated for the measurement of lung water volume and alveolar fluid clearance, respectively. The rate of alveolar fluid clearance was measured by the progressive increase in the concentration of Evans blue dye that was instilled into the distal air spaces with an isosmolar 5% albumin solution over 1 h. Malnutrition decreased alveolar fluid clearance by 38% compared with controls. Amiloride (10−3M) abolished alveolar fluid clearance in malnourished rats. Either refeeding for 120 h following nutritional deprivation for 120 h or an oral supply of sodium glutamate during nutritional deprivation for 120 h restored alveolar fluid clearance to 91 and 86% of normal, respectively. Dibutyryl-cGMP, a cyclic nucleotide-gated cation channel agonist, increased alveolar fluid clearance in malnourished rats supplied with sodium glutamate. Terbutaline, a β2-adrenergic agonist, increased alveolar fluid clearance in rats under all conditions (control, malnutrition, refeeding, and glutamate-treated). These results indicate that malnutrition impairs primarily amiloride-insensitive and dibutyryl-cGMP-sensitive alveolar fluid clearance, but this effect is partially reversible by refeeding, treatment with sodium glutamate, or β-adrenergic agonist therapy.
Collapse
Affiliation(s)
- Tsutomu Sakuma
- Department of Thoracic Surgery, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
A High Dietary Intake of Sodium Glutamate as Flavoring (Ajinomoto) Causes Gross Changes in Retinal Morphology and Function. Exp Eye Res 2002. [DOI: 10.1006/exer.2002.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Chapman J, Zhou M. Microplate-based fluorometric methods for the enzymatic determination of l-glutamate: application in measuring l-glutamate in food samples. Anal Chim Acta 1999. [DOI: 10.1016/s0003-2670(99)00533-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|